Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 17(8): 1307-1327, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39001606

RESUMO

Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-ß-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.


Assuntos
Bipolaris , Diterpenos , Fusarium , Hordeum , Fitoalexinas , Doenças das Plantas , Raízes de Plantas , Sesquiterpenos , Fusarium/patogenicidade , Fusarium/fisiologia , Hordeum/microbiologia , Diterpenos/farmacologia , Diterpenos/metabolismo , Raízes de Plantas/microbiologia , Doenças das Plantas/microbiologia , Bipolaris/metabolismo , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia
2.
Microbiology (Reading) ; 167(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555250

RESUMO

l-Arabinose, a major constituent pentose of plant cell-wall polysaccharides, has been suggested to be a less preferred carbon source for fungi but to be a potential signalling molecule that can cause distinct genome-wide transcriptional changes in fungal cells. Here, we explore the possibility that this unique pentose influences the morphological characteristics of the phytopathogenic fungus Bipolaris maydis strain HITO7711. When grown on plate media under different sugar conditions, the mycelial dry weight of cultures on l-arabinose was as low as that with no sugar, suggesting that l-arabinose does not substantially contribute to vegetative growth. However, the intensity of conidiation on l-arabinose was comparable to or even higher than that on d-glucose and on d-xylose, in contrast to the poor conidiation under the no-sugar condition. To explore the physiological basis of the passive growth and active conidiation on l-arabinose, we next investigated cellular responses of the fungus to these sugar conditions. Transcriptional analysis of genes related to carbohydrate metabolism showed that l-arabinose stimulates carbohydrate utilization through the hexose monophosphate shunt (HMP shunt), a catabolic pathway parallel to glycolysis and which participates in the generation of the reducing agent NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). Then, the HMP shunt was impaired by disrupting the related gene BmZwf1, which encodes glucose-6-phosphate dehydrogenase in this fungus. The resulting mutants on l-arabinose showed remarkably decreased conidiation, but a conversely increased mycelial dry weight compared with the wild-type. Our study demonstrates that l-arabinose acts to enhance resource allocation to asexual reproduction in B. maydis HITO7711 at the cost of vegetative growth, and suggests that this is mediated by the concomitant stimulation of the HMP shunt.


Assuntos
Arabinose/metabolismo , Bipolaris/crescimento & desenvolvimento , Bipolaris/metabolismo , Bipolaris/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Mutação , Micélio/genética , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Reprodução Assexuada , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
3.
Sci Rep ; 11(1): 4760, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637771

RESUMO

Soil is considered an extensively explored ecological niche for microorganisms that produce useful biologically active natural products suitable for pharmaceutical applications. The current study aimed at investigating biological activities and metabolic profiles of three fungal strains identified from different desert sites in Saudi Arabia. Soil fungal isolates were collected from AlQasab, Tabuk, and Almuzahimiyah in Saudi Arabia and identified. Furthermore, their antibacterial activity was investigated against Staphylococcus aureus, Enterococcus faecalis, Klebsiella pneumonia, and Escherichia coli in blood, nutrient, and Sabouraud dextrose agars. Moreover, fungal extracts were evaluated on cell viability/proliferation against human breast carcinoma and colorectal adenocarcinoma cells. To identify the biomolecules of the fungal extracts, High-performance liquid chromatography HPLC-DAD coupled to analytical LC-QTOF-MS method was employed for fungal ethyl acetate crude extract. Identified fungal isolates, Chaetomium sp. Bipolaris sp. and Fusarium venenatum showed varied inhibitory activity against tested microbes in relation to crude extract, microbial strain tested, and growth media. F. venenatum showed higher anticancer activity compared to Chaetomium sp. and Bipolaris sp. extracts against four of the tested cancer cell lines. Screening by HPLC and LC/MS-QTOF identified nine compounds from Chaetomium sp. and three from Bipolaris sp. however, for F. venenatum extracts compounds were not fully identified. In light of the present findings, some biological activities of fungal extracts were approved in vitro, suggesting that such extracts could be a useful starting point to find compounds that possess promising agents for medical applications. Further investigations to identify exact biomolecules from F. venenatum extracts are needed.


Assuntos
Bipolaris/metabolismo , Chaetomium/metabolismo , Fusarium/metabolismo , Metaboloma , Microbiologia do Solo , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bipolaris/química , Linhagem Celular Tumoral , Chaetomium/química , Cromatografia Líquida de Alta Pressão , Clima Desértico , Descoberta de Drogas , Fusarium/química , Humanos , Espectrometria de Massas , Arábia Saudita
4.
J Am Chem Soc ; 143(7): 2970-2983, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570388

RESUMO

Structurally unprecedented antibacterial alkaloids containing multiple electron-rich pyrrole units have recently been isolated from Curvularia sp. and Bipolaris maydis fungi. This article documents the evolution of a synthetic program aimed at accessing the flagship metabolites curvulamine and curindolizine which are presumably a dimer and trimer of a C10N biosynthetic building block, respectively. Starting with curvulamine, we detail several strategies to merge two simple, bioinspired fragments, which while ultimately unsuccessful, led us toward a pyrroloazepinone building block-based strategy and an improved synthesis of this 10π-aromatic heterocycle. A two-step annulation process was then designed to forge a conserved tetracyclic bis-pyrrole architecture and advanced into a variety of late-stage intermediates; unfortunately, however, a failed decarboxylation thwarted the total synthesis of curvulamine. By tailoring our annulation precursors, success was ultimately found through the use of a cyanohydrin nucleophile which enabled a 10-step total synthesis of curvulamine. Attempts were then made to realize a biomimetic coupling of curvulamine with an additional C10N fragment to arrive at curindolizine, the most complex family member. Although unproductive, we developed a 14-step total synthesis of this alkaloid through an abiotic coupling approach. Throughout this work, effort was made to harness and exploit the innate reactivity of the pyrrole nucleus, an objective which has uncovered many interesting findings in the chemistry of this reactive heterocycle.


Assuntos
Alcaloides/síntese química , Alcaloides Indólicos/síntese química , Alcaloides/química , Azepinas/química , Bipolaris/química , Bipolaris/metabolismo , Cristalografia por Raios X , Curvularia/química , Curvularia/metabolismo , Ciclização , Alcaloides Indólicos/química , Indolizidinas/química , Conformação Molecular , Pirróis/química , Estereoisomerismo
5.
Org Biomol Chem ; 19(6): 1378-1385, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33480950

RESUMO

The search for active microorganisms for the biotransformation of guttiferone A (1) and C (6) has been successfully undertaken from a collection of endophytic fungi of Symphonia globulifera. Of the twenty-five isolates obtained from the leaves, three are active and have been identified as Bipolaris cactivora. The products obtained are the result of xanthone cyclisation with the formation of two regioisomers among four possible and corresponding to 1,16-oxy-guttiferone and 3,16-oxy-guttiferone. The biotransformation conditions were studied. Interestingly, both oxy-guttiferones A are present in the plant, and the ratio of 3,16-oxy-guttiferone to 1,16-oxy-guttiferone is 4 : 1, very close to that observed by biotransformation (3.8 : 1). These results are consistent with the involvement of endophytes in their formation pathway from guttiferone A, in planta. Finally, biotransformation made it possible to obtain and describe for the first time oxy-guttiferones C.


Assuntos
Benzofenonas/metabolismo , Bipolaris/metabolismo , Endófitos/metabolismo , Malpighiales/microbiologia , Biotransformação , Malpighiales/química , Folhas de Planta/química , Folhas de Planta/microbiologia
6.
Bioorg Chem ; 99: 103816, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305693

RESUMO

Three previously undescribed compounds, including a meroterpenoid, guignardone T (1), and two ophiobolin-type sesterterpenoids, maydispenoids A and B (2 and 3), along with four known compounds (4-7), were isolated from the phytopathogenic fungus Bipolaris maydis collected from Anoectochilus roxburghii (Wall.) Lindl leaves. The structures of all undescribed compounds were elucidated by spectroscopic analysis, electronic circular dichroism (ECD) calculations and single-crystal X-ray diffraction. Structurally, maydispenoids A was characterized by a fascinating decahydro-3-oxacycloocta[cd]pentalene fragment. It is notable that the compounds 2 and 3 exhibited potential inhibitory activity in anti-CD3/anti-CD28 monoclonal antibodies (mAbs) stimulated murine splenocytes proliferation, with IC50 values of 5.28 and 9.38 µM, respectively, and also suppress the murine splenocytes proliferation activated by lipopolysaccharide (LPS), with IC50 values of 7.25 and 16.82 µM, respectively. This is the first report of ophiobolin-type sesterterpenoids as immunosuppressor, and may provide new chemical templates for the development of new immunosuppressive drugs for autoimmune disease treatment.


Assuntos
Bipolaris/química , Imunossupressores/farmacologia , Sesterterpenos/farmacologia , Animais , Bipolaris/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imunossupressores/química , Imunossupressores/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Orchidaceae/química , Orchidaceae/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Sesterterpenos/química , Sesterterpenos/metabolismo , Baço/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA