Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(9)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39330263

RESUMO

Acid-sensing ion channels (ASICs), which act as proton-gating sodium channels, have garnered attention as pharmacological targets. ASIC1a isoform, notably prevalent in the central nervous system, plays an important role in synaptic plasticity, anxiety, neurodegeneration, etc. In the peripheral nervous system, ASIC1a shares prominence with ASIC3, the latter well established for its involvement in pain signaling, mechanical sensitivity, and inflammatory hyperalgesia. However, the precise contributions of ASIC1a in peripheral functions necessitate thorough investigation. To dissect the specific roles of ASICs, peptide ligands capable of modulating these channels serve as indispensable tools. Employing molecular modeling, we designed the peptide targeting ASIC1a channel from the sea anemone peptide Ugr9-1, originally targeting ASIC3. This peptide (A23K) retained an inhibitory effect on ASIC3 (IC50 9.39 µM) and exhibited an additional inhibitory effect on ASIC1a (IC50 6.72 µM) in electrophysiological experiments. A crucial interaction between the Lys23 residue of the A23K peptide and the Asp355 residue in the thumb domain of the ASIC1a channel predicted by molecular modeling was confirmed by site-directed mutagenesis of the channel. However, A23K peptide revealed a significant decrease in or loss of analgesic properties when compared to the wild-type Ugr9-1. In summary, using A23K, we show that negative modulation of the ASIC1a channel in the peripheral nervous system can compromise the efficacy of an analgesic drug. These results provide a compelling illustration of the complex balance required when developing peripheral pain treatments targeting ASICs.


Assuntos
Canais Iônicos Sensíveis a Ácido , Analgésicos , Peptídeos , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Analgésicos/farmacologia , Analgésicos/química , Peptídeos/farmacologia , Peptídeos/química , Camundongos , Anêmonas-do-Mar , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Dor/tratamento farmacológico , Masculino , Modelos Moleculares , Mutagênese Sítio-Dirigida
2.
Stroke ; 55(6): 1660-1671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660789

RESUMO

BACKGROUND: Activation of the acid-sensing ion channels (ASICs) by tissue acidosis, a common feature of brain ischemia, contributes to ischemic brain injury, while blockade of ASICs results in protection. Cholestane-3ß,5α,6ß-triol (Triol), a major cholesterol metabolite, has been demonstrated as an endogenous neuroprotectant; however, the mechanism underlying its neuroprotective activity remains elusive. In this study, we tested the hypothesis that inhibition of ASICs is a potential mechanism. METHODS: The whole-cell patch-clamp technique was used to examine the effect of Triol on ASICs heterogeneously expressed in Chinese hamster ovary cells and ASICs endogenously expressed in primary cultured mouse cortical neurons. Acid-induced injury of cultured mouse cortical neurons and middle cerebral artery occlusion-induced ischemic brain injury in wild-type and ASIC1 and ASIC2 knockout mice were studied to examine the protective effect of Triol. RESULTS: Triol inhibits ASICs in a subunit-dependent manner. In Chinese hamster ovary cells, it inhibits homomeric ASIC1a and ASIC3 without affecting ASIC1ß and ASIC2a. In cultured mouse cortical neurons, it inhibits homomeric ASIC1a and heteromeric ASIC1a-containing channels. The inhibition is use-dependent but voltage- and pH-independent. Structure-activity relationship analysis suggests that hydroxyls at the 5 and 6 positions of the A/B ring are critical functional groups. Triol alleviates acidosis-mediated injury of cultured mouse cortical neurons and protects against middle cerebral artery occlusion-induced brain injury in an ASIC1a-dependent manner. CONCLUSIONS: Our study identifies Triol as a novel ASIC inhibitor, which may serve as a new pharmacological tool for studying ASICs and may also be developed as a potential drug for treating stroke.


Assuntos
Canais Iônicos Sensíveis a Ácido , Acidose , Cricetulus , Camundongos Knockout , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Camundongos , Células CHO , Acidose/metabolismo , Acidose/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cricetinae , Fármacos Neuroprotetores/farmacologia , Colestanóis/farmacologia , Camundongos Endogâmicos C57BL , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Masculino , Células Cultivadas
3.
Biochem Pharmacol ; 228: 116175, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38552850

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered. Here we report the characterisation of Hc3a, a single inhibitor cystine knot peptide from the Australian funnel-web spider Hadronyche cerberea with sequence similarity to PcTx1. We show that Hc3a has complex pharmacology and binds different ASIC1a conformational states (closed, open, and desensitised) with different affinities, with the most prominent effect on desensitisation. Hc3a slows the desensitisation kinetics of proton-activated ASIC1a currents across multiple application pHs, and when bound directly to ASIC1a in the desensitised conformation promotes current inhibition. The solution structure of Hc3a was solved, and the peptide-channel interaction examined via mutagenesis studies to highlight how small differences in sequence between Hc3a and PcTx1 can lead to peptides with distinct pharmacology. The discovery of Hc3a expands the pharmacological diversity of spider venom peptides targeting ASIC1a and adds to the toolbox of compounds to study the intricacies of ASIC1 gating.


Assuntos
Canais Iônicos Sensíveis a Ácido , Venenos de Aranha , Aranhas , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Venenos de Aranha/genética , Animais , Aranhas/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Xenopus laevis , Sequência de Aminoácidos , Humanos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/química
4.
Neurosci Bull ; 39(5): 845-862, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36445556

RESUMO

Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.


Assuntos
Canais Iônicos Sensíveis a Ácido , Trifosfato de Adenosina , Encefalopatias , Prótons , Receptores Purinérgicos P2X , Humanos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer , Esclerose Lateral Amiotrófica , Encefalopatias/epidemiologia , Encefalopatias/metabolismo , Encefalopatias/patologia , Dor Crônica , COVID-19 , Epilepsia , Doença de Huntington , AVC Isquêmico , Transtornos Mentais , Esclerose Múltipla , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Doença de Parkinson , Receptores Purinérgicos P2X/metabolismo , Animais
5.
J Bacteriol ; 203(22): e0036721, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34516280

RESUMO

The bacterial flagellar motor (BFM) is a protein complex that confers motility to cells and contributes to survival and virulence. The BFM consists of stators that are ion-selective membrane protein complexes and a rotor that directly connects to a large filament, acting as a propeller. The stator complexes couple ion transit across the membrane to torque that drives rotation of the motor. The most common ion gradients that drive BFM rotation are protons (H+) and sodium ions (Na+). The sodium-powered stators, like those in the PomA/PomB stator complex of Vibrio spp., can be inhibited by sodium channel inhibitors, in particular, by phenamil, a potent and widely used inhibitor. However, relatively few new sodium motility inhibitors have been described since the discovery of phenamil. In this study, we characterized two possible motility inhibitors, HM2-16F and BB2-50F, from a small library of previously reported amiloride derivatives. We used three approaches: effect on rotation of tethered cells, effect on free-swimming bacteria, and effect on rotation of marker beads. We showed that both HM2-16F and BB2-50F stopped rotation of tethered cells driven by Na+ motors comparable to phenamil at matching concentrations and could also stop rotation of tethered cells driven by H+ motors. Bead measurements in the presence and absence of stators confirmed that the compounds did not inhibit rotation via direct association with the stator, in contrast to the established mode of action of phenamil. Overall, HM2-16F and BB2-50F stopped swimming in both Na+ and H+ stator types and in pathogenic and nonpathogenic strains. IMPORTANCE Here, we characterized two novel amiloride derivatives in the search for antimicrobial compounds that target bacterial motility. These compounds were shown to inhibit flagellar motility at 10 µM across multiple strains: from nonpathogenic Escherichia coli with flagellar rotation driven by proton or chimeric sodium-powered stators, to proton-powered pathogenic E. coli (enterohemorrhagic E. coli or uropathogenic E. coli [EHEC or UPEC, respectively]), and finally, sodium-powered Vibrio alginolyticus. Broad antimotility compounds such as these are important tools in our efforts to control virulence of pathogens in health and agricultural settings.


Assuntos
Amilorida/análogos & derivados , Amilorida/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Amilorida/química , Escherichia coli/classificação , Movimento
6.
Am J Physiol Heart Circ Physiol ; 319(1): H171-H182, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502377

RESUMO

The role of the ASIC1a in evoking the exercise pressor reflex in rats with simulated peripheral artery disease is unknown. This prompted us to determine whether ASIC1a plays a role in evoking the exaggerated exercise pressor reflex in decerebrated rats with simulated peripheral artery disease. To simulate peripheral artery disease, we ligated the left femoral artery 72 h before the experiment. The right femoral artery was freely perfused and used as a control. To test our hypothesis, we measured the effect of injecting two ASIC1a blockers into the arterial supply of the triceps surae muscles with and without the femoral artery ligated on the reflex pressor responses to 1) static contraction of the triceps surae muscles, 2) calcaneal tendon stretch, and 3) intra-arterial injection of diprotonated phosphate (pH 6.0). We found that the ASIC1a blockers psalmotoxin-1 (200 ng/kg) and mambalgin-1 (6.5 µg/kg) decreased the pressor responses to static contraction as well as the peak pressor responses to injection of diprotonated phosphate when these responses were evoked from the freely perfused hindlimb. In contrast, ASIC1a blockers only decreased the peak pressor responses evoked by injection of diprotonated phosphate in the hindlimb circulation with simulated peripheral artery disease. This inhibitory effect was less than the one measured from the healthy hindlimb. Independently of the hindlimb of interest, ASIC1a blockers had no effect on the pressor responses to tendon stretch. Our results do not support the hypothesis that ASIC1a play a role in evoking the exercise pressor reflex arising from a hindlimb with simulated peripheral artery disease.NEW & NOTEWORTHY The role of ASIC1a in evoking the metabolic component of the exercise pressor reflex in peripheral artery disease is unknown. Using a within-rat experimental design, we found that the contribution of ASIC1a decreased in a rat model of peripheral artery disease. These results have key implications to help finding better treatments and improve morbidity, quality of life, and mortality in patients with peripheral artery disease.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Contração Muscular , Doença Arterial Periférica/metabolismo , Esforço Físico , Reflexo , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Venenos Elapídicos/farmacologia , Artéria Femoral/fisiopatologia , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Peptídeos/farmacologia , Doença Arterial Periférica/fisiopatologia , Ratos , Ratos Sprague-Dawley , Venenos de Aranha/farmacologia , Tendões/fisiopatologia
7.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L873-L887, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32160007

RESUMO

Tenacious mucus produced by tracheal and bronchial submucosal glands is a defining feature of several airway diseases, including cystic fibrosis (CF). Airway acidification as a driving force of CF airway pathology has been controversial. Here we tested the hypothesis that transient airway acidification produces pathologic mucus and impairs mucociliary transport. We studied pigs challenged with intra-airway acid. Acid had a minimal effect on mucus properties under basal conditions. However, cholinergic stimulation in acid-challenged pigs revealed retention of mucin 5B (MUC5B) in the submucosal glands, decreased concentrations of MUC5B in the lung lavage fluid, and airway obstruction. To more closely mimic a CF-like environment, we also examined mucus secretion and transport following cholinergic stimulation under diminished bicarbonate and chloride transport conditions ex vivo. Under these conditions, airways from acid-challenged pigs displayed extensive mucus films and decreased mucociliary transport. Pretreatment with diminazene aceturate, a small molecule with ability to inhibit acid detection through blockade of the acid-sensing ion channel (ASIC) at the doses provided, did not prevent acid-induced pathologic mucus or transport defects but did mitigate airway obstruction. These findings suggest that transient airway acidification early in life has significant impacts on mucus secretion and transport properties. Furthermore, they highlight diminazene aceturate as an agent that might be beneficial in alleviating airway obstruction.


Assuntos
Ácido Acético/administração & dosagem , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/genética , Obstrução das Vias Respiratórias/induzido quimicamente , Fibrose Cística/induzido quimicamente , Diminazena/análogos & derivados , Canais Iônicos Sensíveis a Ácido/metabolismo , Obstrução das Vias Respiratórias/tratamento farmacológico , Obstrução das Vias Respiratórias/metabolismo , Obstrução das Vias Respiratórias/patologia , Animais , Animais Recém-Nascidos , Bicarbonatos/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/química , Cloretos/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Diminazena/farmacologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Muco/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Suínos , Traqueia/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/patologia
8.
Acupunct Med ; 38(3): 188-193, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31986902

RESUMO

BACKGROUND: Fibromyalgia (FM) is a syndrome involving chronic pain, fatigue, sleep difficulties, morning stiffness and muscle cramping lasting longer than 3 months. The epidemiological prevalence is approximately 3-5% in women and increases with age. Antagonism of acid-sensing ion channel 3 (ASIC3) reportedly attenuates acid saline-induced FM pain in mice. AIMS: Whether pre-treatment with electroacupuncture (EA) or APETx2 can attenuate mechanical hyperalgesia in this murine model remains unknown. METHODS: Accordingly, we examined the analgesic effect of EA in a murine model of FM pain induced by dual injections of acid saline and investigated whether EA or APETx2 can attenuate FM pain via the ASIC3 channel. RESULTS: EA significantly reduced mechanical hyperalgesia in this model. ASIC3 antagonism, induced by injecting APETx2, also significantly reduced mechanical hyperalgesia. The expression of ASIC3 in the dorsal root ganglia, spinal cord and thalamus was increased after FM model induction. Over-expression of these nociceptive channels was attenuated by pre-treatment with EA or an ASIC3 antagonist. CONCLUSION: Our data reveal that both EA and ASIC3 blockade significantly reduce FM pain in mice via the ASIC3, Nav1.7 and Nav1.8 signalling pathways. Moreover, our findings support the potential clinical use of EA for the treatment of FM pain.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Eletroacupuntura/métodos , Fibromialgia/terapia , Hiperalgesia/terapia , Manejo da Dor/métodos , Bloqueadores do Canal Iônico Sensível a Ácido/administração & dosagem , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Camundongos
9.
Pharmacol Res ; 154: 104166, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30731197

RESUMO

The pH in the different tissues and organs of our body is kept within tight limits. Local pH changes occur, however, temporarily under physiological conditions, as for example in synapses during neuronal activity. In pathological situations, such as in ischemia, inflammation, and tumor growth, long-lasting acidification develops. Acid-sensing ion channels (ASICs) are low pH-activated Na+-permeable ion channels that are widely expressed in the central and peripheral nervous systems. ASICs act as pH sensors, leading to neuronal excitation when the pH drops. Animal studies have shown that ASICs are involved in several physiological and pathological processes, such as pain sensation, learning, fear sensing, and neurodegeneration after ischemic stroke. ASIC inhibitors could be used as analgesic and anxiolytic drugs, and as drugs for the treatment of ischemic stroke. For these reasons, ASICs have recently attracted increasing attention. Currently, no drugs are clinically used as ASIC modulators. ASICs are however targets of several peptide toxins from animals. Much effort is invested in research studying the function of these channels. We review here the available pharmacological agents acting on ASICs, which include small molecules and animal toxins. We then discuss the current understanding of the molecular mechanisms by which pH controls ASIC activity. Knowledge of the function of ASICs at the molecular level should allow the development of new pharmacological strategies for targeting these promising ion channels.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Humanos
10.
Front Immunol ; 11: 580936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584647

RESUMO

Acid-sensing ion channel 1a (ASIC1a) is a member of the extracellular H+-activated cation channel family. Emerging evidence has suggested that ASIC1a plays a crucial role in the pathogenesis of rheumatoid arthritis (RA). Specifically, ASIC1a could promote inflammation, synovial hyperplasia, articular cartilage, and bone destruction; these lead to the progression of RA, a chronic autoimmune disease characterized by chronic synovial inflammation and extra-articular lesions. In this review, we provided a brief overview of the molecular properties of ASIC1a, including the basic biological characteristics, tissue and cell distribution, channel blocker, and factors influencing the expression and function, and focused on the potential therapeutic targets of ASIC1a in RA and possible mechanisms of blocking ASIC1a to improve RA symptoms, such as regulation of apoptosis, autophagy, pyroptosis, and necroptosis of articular cartilage, and synovial inflammation and invasion of fibroblast-like cells in synovial tissue.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Membrana Sinovial/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Cartilagem Articular/patologia , Condrócitos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Modelos Biológicos , Ratos , Morte Celular Regulada/fisiologia , Transdução de Sinais , Membrana Sinovial/patologia
11.
Toxins (Basel) ; 11(10)2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658776

RESUMO

In this work, we evaluate the effect of two peptides Sa12b (EDVDHVFLRF) and Sh5b (DVDHVFLRF-NH2) on Acid-Sensing Ion Channels (ASIC). These peptides were purified from the venom of solitary wasps Sphex argentatus argentatus and Isodontia harmandi, respectively. Voltage clamp recordings of ASIC currents were performed in whole cell configuration in primary culture of dorsal root ganglion (DRG) neurons from (P7-P10) CII Long-Evans rats. The peptides were applied by preincubation for 25 s (20 s in pH 7.4 solution and 5 s in pH 6.1 solution) or by co-application (5 s in pH 6.1 solution). Sa12b inhibits ASIC current with an IC50 of 81 nM, in a concentration-dependent manner when preincubation application was used. While Sh5b did not show consistent results having both excitatory and inhibitory effects on the maximum ASIC currents, its complex effect suggests that it presents a selective action on some ASIC subunits. Despite the similarity in their sequences, the action of these peptides differs significantly. Sa12b is the first discovered wasp peptide with a significant ASIC inhibitory effect.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/fisiologia , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Células Cultivadas , Feminino , Gânglios Espinais/fisiologia , Masculino , Neurônios/fisiologia , Ratos Long-Evans , Vespas
12.
Toxins (Basel) ; 11(9)2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540492

RESUMO

Acid-sensing ion channels (ASICs), which are present in almost all types of neurons, play an important role in physiological and pathological processes. The ASIC1a subtype is the most sensitive channel to the medium's acidification, and it plays an important role in the excitation of neurons in the central nervous system. Ligands of the ASIC1a channel are of great interest, both fundamentally and pharmaceutically. Using a two-electrode voltage-clamp electrophysiological approach, we characterized lindoldhamine (a bisbenzylisoquinoline alkaloid extracted from the leaves of Laurus nobilis L.) as a novel inhibitor of the ASIC1a channel. Lindoldhamine significantly inhibited the ASIC1a channel's response to physiologically-relevant stimuli of pH 6.5-6.85 with IC50 range 150-9 µM, but produced only partial inhibition of that response to more acidic stimuli. In mice, the intravenous administration of lindoldhamine at a dose of 1 mg/kg significantly reversed complete Freund's adjuvant-induced thermal hyperalgesia and inflammation; however, this administration did not affect the pain response to an intraperitoneal injection of acetic acid (which correlated well with the function of ASIC1a in the peripheral nervous system). Thus, we describe lindoldhamine as a novel antagonist of the ASIC1a channel that could provide new approaches to drug design and structural studies regarding the determinants of ASIC1a activation.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/fisiologia , Anti-Inflamatórios/uso terapêutico , Derivados de Benzeno/uso terapêutico , Quinolinas/uso terapêutico , Ácido Acético , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Derivados de Benzeno/farmacologia , Feminino , Adjuvante de Freund , Temperatura Alta/efeitos adversos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos , Oócitos/fisiologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Quinolinas/farmacologia , Xenopus laevis
13.
Eur J Pain ; 23(10): 1801-1813, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31314951

RESUMO

BACKGROUND: Delayed onset muscle soreness (DOMS) is characterized by mechanical hyperalgesia after lengthening contractions (LC). It is relatively common and causes disturbance for many people who require continuous exercise, yet its molecular and peripheral neural mechanisms are poorly understood. METHODS: We examined whether muscular myelinated Aδ-fibres, in addition to unmyelinated C-fibres, are involved in LC-induced mechanical hypersensitivity, and whether acid-sensing ion channel (ASIC)-3 expressed in thin-fibre afferents contributes to this type of pain using a rat model of DOMS. The peripheral contribution of ASIC3 was investigated using single-fibre electrophysiological recordings in extensor digitorum longus muscle-peroneal nerve preparations in vitro. RESULTS: Behavioural tests demonstrated a significant decrease of the muscular mechanical withdrawal threshold following LC to ankle extensor muscles, and it was improved by intramuscular injection of APETx2 (2.2 µM), a selective blocker of ASIC3. The lower concentration of APETx2 (0.22 µM) and its vehicle had no effect on the threshold. Intramuscular injection of APETx2 (2.2 µM) in naïve rats without LC did not affect the withdrawal threshold. In the ankle extensor muscles that underwent LC one day before the electrophysiological recordings, the mechanical response of Aδ- and C-fibres was significantly facilitated (i.e. decreased response threshold and increased magnitude of the response). The facilitated mechanical response of the Aδ- and C-fibres was significantly suppressed by selective blockade of ASIC3 with APETx2, but not by its vehicle. CONCLUSIONS: These results clearly indicate that ASIC3 contributes to the augmented mechanical response of muscle thin-fibre receptors in delayed onset muscular mechanical hypersensitivity after LC. SIGNIFICANCE: Here, we show that not only C- but also Aδ-fibre nociceptors in the muscle are involved in mechanical hypersensitivity after lengthening contractions, and that acid-sensing ion channel (ASIC)-3 expressed in the thin-fibre nociceptors is responsible for the mechanical hypersensitivity. ASIC3 might be a novel pharmacological target for pain after exercise.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Hiperalgesia/metabolismo , Músculo Esquelético/inervação , Mialgia/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Amielínicas/metabolismo , Condicionamento Físico Animal , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Injeções Intramusculares , Masculino , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Amielínicas/efeitos dos fármacos , Condução Nervosa , Nociceptores , Medição da Dor , Nervo Fibular/efeitos dos fármacos , Nervo Fibular/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Neuromolecular Med ; 21(4): 454-466, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31134484

RESUMO

Diabetes is a chronic metabolic disease and cerebral ischemia is a serious complication of diabetes. Anti-diabetic therapy mitigates this complication but increases the risk of exposure to recurrent hypoglycemia (RH). We showed previously that RH exposure increases ischemic brain damage in insulin-treated diabetic (ITD) rats. The present study evaluated the hypothesis that increased intra-ischemic acidosis in RH-exposed ITD rats leads to pronounced post-ischemic hypoperfusion via activation of acid-sensing (proton-gated) ion channels (ASICs). Streptozotocin-diabetic rats treated with insulin were considered ITD rats. ITD rats were exposed to RH for 5 days and were randomized into Psalmotoxin1 (PcTx1, ASIC1a inhibitor), APETx2 (ASIC3 inhibitor), or vehicle groups. Transient global cerebral ischemia was induced overnight after RH. Cerebral blood flow was measured using laser Doppler flowmetry. Ischemic brain injury in hippocampus was evaluated using histopathology. Post-ischemic hypoperfusion in RH-exposed rats was of greater extent than that in control rats. Inhibition of ASICs prevented RH-induced increase in the extent of post-ischemic hypoperfusion and ischemic brain injury. Since ASIC activation-induced store-operated calcium entry (SOCE) plays a role in vascular tone, next we tested if acidosis activates SOCE via activating ASICs in vascular smooth muscle cells (VSMCs). We observed that SOCE in VSMCs at lower pH is ASIC3 dependent. The results show the role of ASIC in post-ischemic hypoperfusion and increased ischemic damage in RH-exposed ITD rats. Understanding the pathways mediating exacerbated ischemic brain injury in RH-exposed ITD rats may help lower diabetic aggravation of ischemic brain damage.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/fisiologia , Acidose/tratamento farmacológico , Dano Encefálico Crônico/prevenção & controle , Isquemia Encefálica/complicações , Estenose das Carótidas/complicações , Venenos de Cnidários/uso terapêutico , Diabetes Mellitus Experimental/complicações , Hipoglicemia/complicações , Hipoglicemiantes/toxicidade , Insulina/toxicidade , Peptídeos/uso terapêutico , Venenos de Aranha/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Acidose/etiologia , Animais , Dano Encefálico Crônico/etiologia , Isquemia Encefálica/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Circulação Cerebrovascular , Venenos de Cnidários/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemia/sangue , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Fluxometria por Laser-Doppler , Masculino , Peptídeos/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Recidiva , Venenos de Aranha/farmacologia
15.
Sci Rep ; 9(1): 6781, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043630

RESUMO

Acid-sensing ion channels (ASICs) belong to the degenerin/epithelial sodium channel protein family that form mechanosensitive ion channels. Evidence as to whether or not ASICs activity is directly modulated by mechanical force is lacking. Human ASICs (hASIC1V3, hASIC2a and hASIC3a) were heterologously expressed as homomeric channels in Xenopus oocytes and two-electrode voltage-clamp recordings were performed. hASIC3a was expressed in HEK-293 cells and currents measured by whole-cell patch-clamp recordings. ASIC currents in response to shear force (SF) were measured at pH 7.4, acidic pH, or in the presence of non-proton ligands at pH 7.4. SF was applied via a fluid stream generated through a pressurized perfusion system. No effect was observed at pH 7.4. Increased transient currents for each homomeric channel were observed when elevated SF was applied in conjunction with acidic pH (6.0-4.0). The sustained current was not (hASIC2a) or only slightly increased (hASIC1V3 and hASIC3a). SF-induced effects were not seen in water injected oocytes and were blocked by amiloride. Non-proton ligands activated a persistent current in hASIC1V3 and cASIC1 (MitTx) and hASIC3a (GMQ) at pH 7.4. Here SF caused a further current increase. Results suggest that ASICs do have an intrinsic ability to respond to mechanical force, supporting their role as mechanosensors in certain local environments.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Epiteliais de Sódio/metabolismo , Prótons , Resistência ao Cisalhamento , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Animais , Feminino , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ligantes , Técnicas de Patch-Clamp , Xenopus laevis
16.
Biochem Pharmacol ; 164: 342-348, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028742

RESUMO

Conorfamides are a poorly studied family of cone snail venom peptides with broad biological activities, including inhibition of glutamate receptors, acid-sensing ion channels, and voltage-gated potassium channels. The aim of this study was to characterize the pharmacological activity of two novel linear conorfamides (conorfamide_As1a and conorfamide_As2a) and their non-amidated counterparts (conopeptide_As1b and conopeptide_As2b) that were isolated from the venom of the Mexican cone snail Conus austini. Although As1a, As2a, As1b and As2b were identified by activity-guided fractionation using a high-throughput fluorescence imaging plate reader (FLIPR) assay assessing α7 nAChR activity, sequence determination revealed activity associated with four linear peptides of the conorfamide rather than the anticipated α-conotoxin family. Pharmacological testing revealed that the amidated peptide variants altered desensitization of acid-sensing ion channels (ASICs) 1a and 3, and the native lysine to arginine mutation differentiating As1a and As1b from As2a and As2b introduced ASIC1a peak current potentiation. Surprisingly, these conorfamides also inhibited α7 and muscle-type nicotinic acetylcholine receptors (nAChR) at nanomolar concentrations. This is the first report of conorfamides with dual activity, with the nAChR activity being the most potent molecular target of any conorfamide discovered to date.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/fisiologia , Venenos de Moluscos/farmacologia , Neuropeptídeos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/isolamento & purificação , Animais , Caramujo Conus , Relação Dose-Resposta a Droga , Feminino , Humanos , Venenos de Moluscos/isolamento & purificação , Neuropeptídeos/isolamento & purificação , Antagonistas Nicotínicos/isolamento & purificação , Xenopus laevis
17.
Sci Rep ; 9(1): 6430, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015514

RESUMO

The central clock in the suprachiasmatic nucleus (SCN) has higher metabolic activity than extra-SCN areas in the anterior hypothalamus. Here we investigated whether the Na+/H+ exchanger (NHE) may regulate extracellular pH (pHe), intracellular pH (pHi) and [Ca2+]i in the SCN. In hypothalamic slices bathed in HEPES-buffered solution a standing acidification of ~0.3 pH units was recorded with pH-sensitive microelectrodes in the SCN but not extra-SCN areas. The NHE blocker amiloride alkalinised the pHe. RT-PCR revealed mRNA for plasmalemmal-type NHE1, NHE4, and NHE5 isoforms, whereas the NHE1-specific antagonist cariporide alkalinised the pHe. Real-time PCR and western blotting failed to detect day-night variation in NHE1 mRNA and protein levels. Cariporide induced intracellular acidosis, increased basal [Ca2+]i, and decreased depolarisation-induced Ca2+ rise, with the latter two effects being abolished with nimodipine blocking the L-type Ca2+ channels. Immunofluorescent staining revealed high levels of punctate colocalisation of NHE1 with serotonin transporter (SERT) or CaV1.2, as well as triple staining of NHE1, CaV1.2, and SERT or the presynaptic marker Bassoon. Our results indicate that NHE1 actively extrudes H+ to regulate pHi and nimodipine-sensitive [Ca2+]i in the soma, and along with CaV1.2 may also regulate presynaptic Ca2+ levels and, perhaps at least serotonergic, neurotransmission in the SCN.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Neurônios/fisiologia , Trocador 1 de Sódio-Hidrogênio/genética , Núcleo Supraquiasmático/fisiologia , Transmissão Sináptica/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Amilorida/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Regulação da Expressão Gênica , Guanidinas/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Transporte de Íons/efeitos dos fármacos , Microtomia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nimodipina/farmacologia , Fotoperíodo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Trocador 1 de Sódio-Hidrogênio/antagonistas & inibidores , Trocador 1 de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Sulfonas/farmacologia , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Técnicas de Cultura de Tecidos
18.
Neuropharmacology ; 148: 366-376, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30716415

RESUMO

Acid-sensing ion channels (ASICs) are proton-activated, sodium-permeable channels, highly expressed in both central and peripheral nervous systems. ASIC1a is the most abundant isoform in the central nervous system and is credited to be involved in several neurological disorders including stroke, multiple sclerosis, and epilepsy. Interestingly, the affinity of ASIC1a for two antagonists, diminazene and amiloride, has recently been proposed to be voltage sensitive. Based on this evidence, it is expected that the pharmacology of ASIC1cannot be properly characterized by single-cell voltage-clamp, an experimental condition in which membrane potential is maintained close to resting values. In particular, these measurements do not take into account the influence of the membrane potential depolarization induced by ASIC1a activation during acidosis or neuronal activity. We show here the voltage-dependence of some small molecules antagonists (diminazene, amiloride and a new patented drug from Merck), but not of Psalmotoxin 1, a peptide binding to regions other than the pore. We also demonstrate that the opening of ASIC1a induced by moderate acidosis determines a depolarization sufficient to change the affinity of small molecule antagonists. The characterization of this mechanism was performed on CHO-K1 expressing ASIC1a and further confirmed in hippocampal neurons in culture. Finally, perforated-patch experiments indicate that intracellular modulations do not play a role in the voltage-dependent binding of small molecules. Since ASIC1a activation promotes a membrane depolarization that may influence the binding of small molecules, we propose to adopt experimental methods that do not interfere with the membrane potential for the drug screening of ASIC1a modulators.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/fisiologia , Potenciais da Membrana/fisiologia , Acidose/fisiopatologia , Amilorida/farmacologia , Animais , Células Cultivadas , Cricetinae , Diminazena/farmacologia , Hipocampo/fisiologia , Neurônios/fisiologia , Venenos de Aranha/farmacologia
19.
J Appl Physiol (1985) ; 126(4): 1160-1170, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763166

RESUMO

Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.


Assuntos
Ácidos/metabolismo , Sulfatos de Condroitina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Barorreflexo/efeitos dos fármacos , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Masculino , Fibras Musculares Esqueléticas/metabolismo , Neurônios Aferentes/metabolismo , Ratos , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo
20.
Curr Drug Targets ; 20(1): 111-121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30124148

RESUMO

The H+-gated (proton) currents are widely present in brain sensory neuronal system and various studies identified the structural units and deciphered the physiological and pathological function of ion channels. The normal neuron requires an optimal pH to carry out its functions. In acidosis, the ASICs (Acid-sensing Ion Channels) are activated in both the CNS (central nervous system) and PNS (peripheral nervous system). ASICs are related to degenerin channels (DEGs), epithelial sodium cation channels (ENaCs), and FMRF-amide (Phe-Met-Arg-Phe-NH2)-gated channels (FaNaC). Its activation leads physiologically to pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. It detects the level of acid fluctuation in the extracellular environment and responds to acidic pH by increasing the rate of membrane depolarization. It conducts cations like Na+ (Sodium) and Ca2+ (Calcium) ions across the membrane upon protonation. The ASICs subtypes are characterized by differing biophysical properties and pH sensitivities. The subtype ASIC1 is involved in various CNS diseases and therefore focusing on its specific functional properties will guide in drug design methods. The review highlights the cASIC1 (Chicken ASIC1) crystal structures, involvement in physiological environment and limitations of currently available inhibitors. In addition, it details the mutational data available to design an inhibitor against hASIC1 (Human ASIC1).


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Desenho de Fármacos , Neurônios/efeitos dos fármacos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Neurônios/patologia , Mutação Puntual , Domínios Proteicos/efeitos dos fármacos , Domínios Proteicos/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA