Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 25(1): 47-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29781252

RESUMO

AIMS: Acid-sensing ion channels (ASICs) are extracellular proton-gated cation channels that have been implicated in multiple physiological and pathological processes, and peripheral ASIC3 prominently participate into the pathogenesis of chronic pain, itch, and neuroinflammation, which necessitates the need for discovery and development of novel modulators in a subtype-specific manner. METHODS: Whole-cell patch clamp recordings and behavioral assays were used to examine the effect of several natural compounds on the ASIC-mediated currents and acid-induced nocifensive behavior, respectively. RESULTS: We identified a natural flavonoid compound, (-)-epigallocatechin gallate (EGCG, compound 11), that acts as a potent inhibitor for the ASIC3 channel in an isoform-specific way. The compound 11 inhibited ASIC3 currents with an apparent half maximal inhibitory concentration of 13.2 µmol/L when measured at pH 5.0. However, at the concentration up to 100 µmol/L, the compound 11 had no significant impacts on the homomeric ASIC1a, 1b, and 2a channels. In contrast to most of the known ASIC inhibitors that usually bear either basic or carboxylic groups, the compound 11 belongs to the polyphenolic family. In compound 11, both the chirality and the 3-hydroxyl group of its pyrogallol part, in addition to the integrity of the gallate part, are crucial for the inhibitory efficacy. Finally, EGCG was found significantly to decrease the acid-induced nocifensive behavior in mice. CONCLUSION: Taken together, these results thus defined a novel backbone structure for small molecule drug design targeting ASIC3 channels to treat pain-related diseases.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Catequina/análogos & derivados , Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/química , Analgésicos/farmacologia , Animais , Células CHO , Catequina/química , Catequina/farmacologia , Cricetulus , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Dor/tratamento farmacológico , Dor/metabolismo , Distribuição Aleatória , Ratos , Relação Estrutura-Atividade
2.
Curr Drug Targets ; 20(1): 111-121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30124148

RESUMO

The H+-gated (proton) currents are widely present in brain sensory neuronal system and various studies identified the structural units and deciphered the physiological and pathological function of ion channels. The normal neuron requires an optimal pH to carry out its functions. In acidosis, the ASICs (Acid-sensing Ion Channels) are activated in both the CNS (central nervous system) and PNS (peripheral nervous system). ASICs are related to degenerin channels (DEGs), epithelial sodium cation channels (ENaCs), and FMRF-amide (Phe-Met-Arg-Phe-NH2)-gated channels (FaNaC). Its activation leads physiologically to pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. It detects the level of acid fluctuation in the extracellular environment and responds to acidic pH by increasing the rate of membrane depolarization. It conducts cations like Na+ (Sodium) and Ca2+ (Calcium) ions across the membrane upon protonation. The ASICs subtypes are characterized by differing biophysical properties and pH sensitivities. The subtype ASIC1 is involved in various CNS diseases and therefore focusing on its specific functional properties will guide in drug design methods. The review highlights the cASIC1 (Chicken ASIC1) crystal structures, involvement in physiological environment and limitations of currently available inhibitors. In addition, it details the mutational data available to design an inhibitor against hASIC1 (Human ASIC1).


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Desenho de Fármacos , Neurônios/efeitos dos fármacos , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/patologia , Cristalografia por Raios X , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Neurônios/patologia , Mutação Puntual , Domínios Proteicos/efeitos dos fármacos , Domínios Proteicos/genética , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 115(32): E7469-E7477, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30042215

RESUMO

Acid-sensing ion channels (ASICs) have emerged as important, albeit challenging therapeutic targets for pain, stroke, etc. One approach to developing therapeutic agents could involve the generation of functional antibodies against these channels. To select such antibodies, we used channels assembled in nanodiscs, such that the target ASIC1a has a configuration as close as possible to its natural state in the plasma membrane. This methodology allowed selection of functional antibodies that inhibit acid-induced opening of the channel in a dose-dependent way. In addition to regulation of pH, these antibodies block the transport of cations, including calcium, thereby preventing acid-induced cell death in vitro and in vivo. As proof of concept for the use of these antibodies to modulate ion channels in vivo, we showed that they potently protect brain cells from death after an ischemic stroke. Thus, the methodology described here should be general, thereby allowing selection of antibodies to other important ASICs, such as those involved in pain, neurodegeneration, and other conditions.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/imunologia , Apoptose/efeitos dos fármacos , Infarto Encefálico/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Animais , Encéfalo/irrigação sanguínea , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Infarto Encefálico/etiologia , Células CHO , Artérias Cerebrais , Cricetulus , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular/métodos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/uso terapêutico
4.
Br J Pharmacol ; 175(12): 2204-2218, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29134638

RESUMO

BACKGROUND AND PURPOSE: Acid-sensing ion channels (ASICs) are primary acid sensors in mammals, with the ASIC1b and ASIC3 subtypes being involved in peripheral nociception. The antiprotozoal drug diminazene is a moderately potent ASIC inhibitor, but its analgesic activity has not been assessed. EXPERIMENTAL APPROACH: We determined the ASIC subtype selectivity of diminazene and the mechanism by which it inhibits ASICs using voltage-clamp electrophysiology of Xenopus oocytes expressing ASICs 1-3. Its peripheral analgesic activity was then assessed relative to APETx2, an ASIC3 inhibitor, and morphine, in a Freund's complete adjuvant (FCA)-induced rat model of inflammatory pain. KEY RESULTS: Diminazene inhibited homomeric rat ASICs with IC50 values of ~200-800 nM, via an open channel and subtype-dependent mechanism. In rats with FCA-induced inflammatory pain in one hindpaw, diminazene and APETx2 evoked more potent peripheral antihyperalgesia than morphine, but the effect was partial for APETx2. APETx2 potentiated rat ASIC1b at concentrations 30-fold to 100-fold higher than the concentration inhibiting ASIC3, which may have implications for its use in in vivo experiments. CONCLUSIONS AND IMPLICATIONS: Diminazene and APETx2 are moderately potent ASIC inhibitors, both inducing peripheral antihyperalgesia in a rat model of chronic inflammatory pain. APETx2 has a more complex ASIC pharmacology, which must be considered when it is used as a supposedly selective ASIC3 inhibitor in vivo. Our use of outbred rats revealed responders and non-responders when ASIC inhibition was used to alleviate inflammatory pain, which is aligned with the concept of number-needed-to-treat in human clinical studies. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Dor Crônica/tratamento farmacológico , Venenos de Cnidários/metabolismo , Diminazena/farmacologia , Hiperalgesia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Inflamação/tratamento farmacológico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Dor Crônica/metabolismo , Diminazena/química , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hipoglicemiantes/química , Inflamação/metabolismo , Masculino , Medição da Dor , Ratos , Ratos Sprague-Dawley , Xenopus laevis
5.
J Med Chem ; 60(19): 8192-8200, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-28949138

RESUMO

A growing body of evidence links certain aspects of nonsteroidal anti-inflammatory drug (NSAID) pharmacology with acid-sensing ion channels (ASICs), a small family of excitatory neurotransmitter receptors implicated in pain and neuroinflammation. The molecular basis of NSAID inhibition of ASICs has remained unknown, hindering the exploration of this line of therapy. Here, we characterized the mechanism of inhibition, explored the molecular determinants of sensitivity, and sought to establish informative structure-activity relationships, using electrophysiology, site-directed mutagenesis, and voltage-clamp fluorometry. Our results show that ibuprofen is an allosteric inhibitor of ASIC1a, which binds to a crucial site in the agonist transduction pathway and causes conformational changes that oppose channel activation. Ibuprofen inhibits several ASIC subtypes, but certain ibuprofen derivatives show some selectivity for ASIC1a over ASIC2a and vice versa. These results thus define the NSAID/ASIC interaction and pave the way for small-molecule drug design targeting pain and inflammation.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Ibuprofeno/farmacologia , Regulação Alostérica , Animais , Sítios de Ligação , Embrião de Galinha , Modelos Moleculares , Conformação Proteica , Ratos , Relação Estrutura-Atividade , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 114(14): 3750-3755, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320941

RESUMO

Stroke is the second-leading cause of death worldwide, yet there are no drugs available to protect the brain from stroke-induced neuronal injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and a key mediator of acidosis-induced neuronal damage following cerebral ischemia. Genetic ablation and selective pharmacologic inhibition of ASIC1a reduces neuronal death following ischemic stroke in rodents. Here, we demonstrate that Hi1a, a disulfide-rich spider venom peptide, is highly neuroprotective in a focal model of ischemic stroke. Nuclear magnetic resonance structural studies reveal that Hi1a comprises two homologous inhibitor cystine knot domains separated by a short, structurally well-defined linker. In contrast with known ASIC1a inhibitors, Hi1a incompletely inhibits ASIC1a activation in a pH-independent and slowly reversible manner. Whole-cell, macropatch, and single-channel electrophysiological recordings indicate that Hi1a binds to and stabilizes the closed state of the channel, thereby impeding the transition into a conducting state. Intracerebroventricular administration to rats of a single small dose of Hi1a (2 ng/kg) up to 8 h after stroke induction by occlusion of the middle cerebral artery markedly reduced infarct size, and this correlated with improved neurological and motor function, as well as with preservation of neuronal architecture. Thus, Hi1a is a powerful pharmacological tool for probing the role of ASIC1a in acid-mediated neuronal injury and various neurological disorders, and a promising lead for the development of therapeutics to protect the brain from ischemic injury.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/administração & dosagem , Canais Iônicos Sensíveis a Ácido/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Venenos de Aranha/administração & dosagem , Acidente Vascular Cerebral/tratamento farmacológico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Fármacos Neuroprotetores/farmacologia , Ratos , Venenos de Aranha/química , Venenos de Aranha/farmacologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/metabolismo
7.
CNS Neurosci Ther ; 22(2): 135-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663905

RESUMO

AIMS: Here, we investigate the pharmacology of NS383, a novel small molecule inhibitor of acid-sensing ion channels (ASICs). METHODS: ASIC inhibition by NS383 was characterized in patch-clamp electrophysiological studies. Analgesic properties were evaluated in four rat behavioral models of pain. RESULTS: NS383 inhibited H(+)-activated currents recorded from rat homomeric ASIC1a, ASIC3, and heteromeric ASIC1a+3 with IC50 values ranging from 0.61 to 2.2 µM. However, NS383 was completely inactive at homomeric ASIC2a. Heteromeric receptors containing AISC2a, such as ASIC1a+2a and ASIC2a+3, were only partially inhibited, presumably as a result of stoichiometry-dependent binding. NS383 (10-60 mg/kg, i.p.), amiloride (50-200 mg/kg, i.p.), acetaminophen (100-400 mg/kg, i.p.), and morphine (3-10 mg/kg, i.p.) all dose-dependently attenuated nocifensive behaviors in the rat formalin test, reversed pathological inflammatory hyperalgesia in complete Freund's adjuvant-inflamed rats, and reversed mechanical hypersensitivity in the chronic constriction injury model of neuropathic pain. However, in contrast to acetaminophen and morphine, motor function was unaffected by NS383 at doses at least 8-fold greater than those that were effective in pain models, whilst analgesic doses of amiloride were deemed to be toxic. CONCLUSIONS: NS383 is a potent and uniquely selective inhibitor of rat ASICs containing 1a and/or 3 subunits. It is well tolerated and capable of reversing pathological painlike behaviors, presumably via peripheral actions, but possibly also via actions within central pain circuits.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Oximas/química , Oximas/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/fisiologia , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/fisiopatologia , Oximas/farmacologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/fisiologia , Ratos
8.
Toxicon ; 116: 11-6, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26686983

RESUMO

Peptide Ugr9-1 from the venom of sea anemone Urticina grebelnyi selectively inhibits the ASIC3 channel and significantly reverses inflammatory and acid-induced pain in vivo. A close homolog peptide Ugr 9-2 does not have these features. To find the pharmacophore residues and explore structure-activity relationships of Ugr 9-1, we performed site-directed mutagenesis of Ugr 9-2 and replaced several positions by the corresponding residues from Ugr 9-1. Mutant peptides Ugr 9-2 T9F and Ugr 9-2 Y12H were able to inhibit currents of the ASIC3 channels 2.2 times and 1.3 times weaker than Ugr 9-1, respectively. Detailed analysis of the spatial models of Ugr 9-1, Ugr 9-2 and both mutant peptides revealed the presence of the basic-aromatic clusters on opposite sides of the molecule, each of which is responsible for the activity. Additionally, Ugr9-1 mutant with truncated N- and C-termini retained similar with the Ugr9-1 action in vitro and was equally potent in vivo model of thermal hypersensitivity. All together, these results are important for studying the structure-activity relationships of ligand-receptor interaction and for the future development of peptide drugs from animal toxins.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/química , Venenos de Cnidários/química , Animais , Domínio Catalítico , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Xenopus laevis
9.
Elife ; 4: e06774, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948544

RESUMO

Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Canais Iônicos Sensíveis a Ácido/química , Proteínas de Artrópodes/química , Neurotoxinas/química , Peptídeos/química , Canais de Potássio Shab/química , Venenos de Aranha/química , Bloqueadores do Canal Iônico Sensível a Ácido/síntese química , Bloqueadores do Canal Iônico Sensível a Ácido/toxicidade , Canais Iônicos Sensíveis a Ácido/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/síntese química , Proteínas de Artrópodes/toxicidade , Expressão Gênica , Ativação do Canal Iônico , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Neurotoxinas/síntese química , Neurotoxinas/toxicidade , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Peptídeos/síntese química , Peptídeos/toxicidade , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Homologia de Sequência de Aminoácidos , Canais de Potássio Shab/antagonistas & inibidores , Canais de Potássio Shab/genética , Venenos de Aranha/síntese química , Venenos de Aranha/toxicidade , Aranhas , Lipossomas Unilamelares/química , Xenopus laevis
10.
Curr Top Med Chem ; 15(7): 617-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25686734

RESUMO

In lumbar radiculopathy, the dorsal root or dorsal root ganglia (DRG) are compressed or affected by herniated discs or degenerative spinal canal stenosis. The disease is multi-factorial and involves almost all types of pain, such as ischemic, inflammatory, mechanical, and neuropathic pain. Acid-sensing ion channels (ASICs) activated by extracellular acidosis play an important role in pain generation, and the effects of ASICs are widespread in lumbar radiculopathy. ASICs may be involved in the disc degeneration process, which results in disc herniation and, therefore, the compression of the dorsal roots or DRG. ASIC3 is involved in inflammatory pain and ischemic pain, and, likely, mechanical pain. ASIC1a and ASIC3 may have an important effect on control of the vascular tone of the radicular artery. In the central nervous system, ASIC1a modulates the central sensitization of the spinal dorsal horn. Thus, toxins targeting ASICs, because of their specificity, may help elucidate the roles of ASICs in lumbar radiculopathy and could be developed as novel analgesic agents.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Pesquisa Biomédica/métodos , Dor Lombar/tratamento farmacológico , Radiculopatia/tratamento farmacológico , Toxinas Biológicas/farmacologia , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Dor Lombar/metabolismo , Região Lombossacral , Radiculopatia/metabolismo , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/uso terapêutico
11.
Neuropharmacology ; 94: 19-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25613302

RESUMO

Development of the pharmacology of Acid-Sensing Ion Channels (ASICs) has become a key challenge to study their structure, their molecular and cellular functions and their physiopathological roles. This review provides a summary of the different compounds that directly interact with these channels, either with inhibitory or stimulatory effect, and with high selectivity or poor specificity. They include drugs and endogenous regulators, natural compounds of vegetal origin, and peptides isolated from animal venoms. The in vivo use of some of these pharmacological modulators in animal models and a few small clinical studies in humans have provided substantial data on the physiological and physiopathological roles of ASIC channels. Modulation of these channels will certainly provide new therapeutic opportunities in neurological and psychiatric diseases including pain, stroke, epilepsy, anxiety, depression or traumatic injury, as well as in some non-neurological pathologies. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Bloqueadores do Canal Iônico Sensível a Ácido/química , Animais , Humanos
12.
Anal Chim Acta ; 837: 31-7, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25000855

RESUMO

An advanced and powerful chemometric approach is proposed for the analysis of incomplete multiset data obtained by fusion of hyphenated liquid chromatographic DAD/MS data with UV spectrophotometric data from acid-base titration and kinetic degradation experiments. Column- and row-wise augmented data blocks were combined and simultaneously processed by means of a new version of the multivariate curve resolution-alternating least squares (MCR-ALS) technique, including the simultaneous analysis of incomplete multiset data from different instrumental techniques. The proposed procedure was applied to the detailed study of the kinetic photodegradation process of the amiloride (AML) drug. All chemical species involved in the degradation and equilibrium reactions were resolved and the pH dependent kinetic pathway described.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/química , Amilorida/química , Cromatografia , Espectrofotometria , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodos , Estrutura Molecular , Análise Multivariada
13.
Proc Natl Acad Sci U S A ; 111(24): 8961-6, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889629

RESUMO

Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Tonsila do Cerebelo/fisiologia , Plasticidade Neuronal , Neurotransmissores/metabolismo , Prótons , Sinapses/fisiologia , Bloqueadores do Canal Iônico Sensível a Ácido/química , Acidose , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Eletrodos , Potenciais Pós-Sinápticos Excitadores , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Aprendizagem , Potenciação de Longa Duração , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Peptídeos/química , Venenos de Aranha/química
14.
BMB Rep ; 46(6): 295-304, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23790972

RESUMO

Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn(2+), and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel's large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/química , Humanos , Concentração de Íons de Hidrogênio , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Isquemia/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Convulsões/patologia , Transdução de Sinais
15.
Acta Pharmacol Sin ; 34(1): 33-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22820909

RESUMO

In the nervous system, a decrease in extracellular pH is a common feature of various physiological and pathological processes, including synaptic transmission, cerebral ischemia, epilepsy, brain trauma, and tissue inflammation. Acid-sensing ion channels (ASICs) are proton-gated cation channels that are distributed throughout the central and peripheral nervous systems. Following the recent identification of ASICs as critical acid-sensing extracellular proton receptors, growing evidence has suggested that the activation of ASICs plays important roles in physiological processes such as nociception, mechanosensation, synaptic plasticity, learning and memory. However, the over-activation of ASICs is also linked to adverse outcomes for certain pathological processes, such as brain ischemia and multiple sclerosis. Based on the well-demonstrated role of ASIC1a activation in acidosis-mediated brain injury, small molecule inhibitors of ASIC1a may represent novel therapeutic agents for the treatment of neurological disorders, such as stroke.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Bloqueadores do Canal Iônico Sensível a Ácido/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Bibliotecas de Moléculas Pequenas/química , Acidente Vascular Cerebral/patologia
16.
Nature ; 490(7421): 552-5, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23034652

RESUMO

Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake toxin activating peripheral ASICs in nociceptive neurons has been recently shown to evoke pain. Here we show that a new class of three-finger peptides from another snake, the black mamba, is able to abolish pain through inhibition of ASICs expressed either in central or peripheral neurons. These peptides, which we call mambalgins, are not toxic in mice but show a potent analgesic effect upon central and peripheral injection that can be as strong as morphine. This effect is, however, resistant to naloxone, and mambalgins cause much less tolerance than morphine and no respiratory distress. Pharmacological inhibition by mambalgins combined with the use of knockdown and knockout animals indicates that blockade of heteromeric channels made of ASIC1a and ASIC2a subunits in central neurons and of ASIC1b-containing channels in nociceptors is involved in the analgesic effect of mambalgins. These findings identify new potential therapeutic targets for pain and introduce natural peptides that block them to produce a potent analgesia.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos/farmacologia , Venenos Elapídicos/farmacologia , Dor/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/química , Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/classificação , Canais Iônicos Sensíveis a Ácido/genética , Analgésicos/efeitos adversos , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Tolerância a Medicamentos , Venenos Elapídicos/administração & dosagem , Venenos Elapídicos/química , Venenos Elapídicos/uso terapêutico , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Morfina/efeitos adversos , Morfina/farmacologia , Naloxona/farmacologia , Nociceptores/química , Nociceptores/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Dor/metabolismo , Peptídeos/administração & dosagem , Peptídeos/química , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Ratos , Insuficiência Respiratória/induzido quimicamente , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA