Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
1.
Sci Adv ; 10(18): eadj6979, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701204

RESUMO

Nature has devised many ways of producing males and females. Here, we report on a previously undescribed mechanism for Lepidoptera that functions without a female-specific gene. The number of alleles or allele heterozygosity in a single Z-linked gene (BaMasc) is the primary sex-determining switch in Bicyclus anynana butterflies. Embryos carrying a single BaMasc allele develop into WZ (or Z0) females, those carrying two distinct alleles develop into ZZ males, while (ZZ) homozygotes initiate female development, have mismatched dosage compensation, and die as embryos. Consequently, selection against homozygotes has favored the evolution of spectacular allelic diversity: 205 different coding sequences of BaMasc were detected in a sample of 246 females. The structural similarity of a hypervariable region (HVR) in BaMasc to the HVR in Apis mellifera csd suggests molecular convergence between deeply diverged insect lineages. Our discovery of this primary switch highlights the fascinating diversity of sex-determining mechanisms and underlying evolutionary drivers.


Assuntos
Borboletas , Processos de Determinação Sexual , Animais , Borboletas/genética , Feminino , Masculino , Processos de Determinação Sexual/genética , Alelos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Homozigoto
2.
Chromosome Res ; 32(2): 7, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702576

RESUMO

Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.


Assuntos
Borboletas , Meiose , Animais , Borboletas/genética , Meiose/genética , Hibridização Genética , Cariótipo , Cromossomos de Insetos/genética , Feminino , Masculino
3.
Sci Adv ; 10(16): eadl0989, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630820

RESUMO

The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.


Assuntos
Borboletas , Animais , Filogenia , Borboletas/genética , Cariótipo , Cariotipagem , Aberrações Cromossômicas , Evolução Molecular
4.
PeerJ ; 12: e17172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680885

RESUMO

A peculiar population of Ravenna nivea (Nire, 1920) was discovered from the Yinggeling Mountain Mass of central Hainan. Its wing pattern and COI barcode data show considerable distinction from other geographic populations of R. nivea, including that of Bawangling, approximately only 40 km away and also located in Hainan. The p-distance value of the COI barcode between the Yinggeling and Bawangling populations was 1.1%, considerably higher than the value (0.6%) between Bawangling population and populations in eastern China, where the subspecific name howarthi Saigusa, 1993 applies. The population is regarded as a distinct subspecies ngiunmoiae Lo & Hsu, subsp. nov. The distinctness and high degree of COI haplotype diversity of R. nivea found in Hainan and Taiwan suggest continental islands may serve as glacial refugees for the butterfly and other organisms during previous glaciations, and the presence of the relict populations of montane butterflies like R. nivea may provide useful clues towards a better understanding of the geological history of mountain formation within islands.


Assuntos
Borboletas , Animais , China , Borboletas/genética , Ilhas , Asas de Animais/anatomia & histologia , Haplótipos , Variação Genética/genética , Código de Barras de DNA Taxonômico , Filogenia , Complexo IV da Cadeia de Transporte de Elétrons/genética
5.
Nature ; 628(8009): 811-817, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632397

RESUMO

Hybridization allows adaptations to be shared among lineages and may trigger the evolution of new species1,2. However, convincing examples of homoploid hybrid speciation remain rare because it is challenging to demonstrate that hybridization was crucial in generating reproductive isolation3. Here we combine population genomic analysis with quantitative trait locus mapping of species-specific traits to examine a case of hybrid speciation in Heliconius butterflies. We show that Heliconius elevatus is a hybrid species that is sympatric with both parents and has persisted as an independently evolving lineage for at least 180,000 years. This is despite pervasive and ongoing gene flow with one parent, Heliconius pardalinus, which homogenizes 99% of their genomes. The remaining 1% introgressed from the other parent, Heliconius melpomene, and is scattered widely across the H. elevatus genome in islands of divergence from H. pardalinus. These islands contain multiple traits that are under disruptive selection, including colour pattern, wing shape, host plant preference, sex pheromones and mate choice. Collectively, these traits place H. elevatus on its own adaptive peak and permit coexistence with both parents. Our results show that speciation was driven by introgression of ecological traits, and that speciation with gene flow is possible with a multilocus genetic architecture.


Assuntos
Borboletas , Introgressão Genética , Especiação Genética , Hibridização Genética , Locos de Características Quantitativas , Animais , Feminino , Masculino , Borboletas/anatomia & histologia , Borboletas/classificação , Borboletas/genética , Fluxo Gênico , Introgressão Genética/genética , Genoma de Inseto/genética , Preferência de Acasalamento Animal , Fenótipo , Pigmentação/genética , Locos de Características Quantitativas/genética , Isolamento Reprodutivo , Seleção Genética/genética , Especificidade da Espécie , Simpatria/genética , Asas de Animais/anatomia & histologia , Asas de Animais/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(17): e2319726121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630713

RESUMO

The Ornate Moth, Utetheisa ornatrix, has served as a model species in chemical ecology studies for decades. Like in the widely publicized stories of the Monarch and other milkweed butterflies, the Ornate Moth and its relatives are tropical insects colonizing whole continents assisted by their chemical defenses. With the recent advances in genomic techniques and evo-devo research, it is becoming a model for studies in other areas, from wing pattern development to phylogeography, from toxicology to epigenetics. We used a genomic approach to learn about Utetheisa's evolution, detoxification, dispersal abilities, and wing pattern diversity. We present an evolutionary genomic analysis of the worldwide genus Utetheisa, then focusing on U. ornatrix. Our reference genome of U. ornatrix reveals gene duplications in the regions possibly associated with detoxification abilities, which allows them to feed on toxic food plants. Finally, comparative genomic analysis of over 100 U. ornatrix specimens from the museum with apparent differences in wing patterns suggest the potential roles of cortex and lim3 genes in wing pattern formation of Lepidoptera and the utility of museum-preserved collection specimens for wing pattern research.


Assuntos
Borboletas , Mariposas , Animais , Mariposas/genética , Borboletas/genética , Genômica , Asas de Animais
7.
Arch Insect Biochem Physiol ; 115(4): e22113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628056

RESUMO

The efficiency of RNA interference (RNAi) has always limited the research on the phenotype innovation of Lepidoptera insects. Previous studies have found that double-stranded RNA-degrading enzyme (dsRNase) is an important factor in RNAi efficiency, but there have been no relevant reports in butterflies (Papilionoidea). Papilio xuthus is one of the important models in butterflies with an extensive experimental application value. To explore the effect of dsRNase in the RNAi efficiency on butterflies, six dsRNase genes (PxdsRNase 1-6) were identified in P. xuthus genome, and their dsRNA-degrading activities were subsequently detected by ex vivo assays. The result shows that the dsRNA-degrading ability of gut content (<1 h) was higher than hemolymph content (>12 h). We then investigated the expression patterns of these PxdsRNase genes during different tissues and developmental stages, and related RNAi experiments were carried out. Our results show that different PxdsRNase genes had different expression levels at different developmental stages and tissues. The expression of PxdsRNase2, PxdsRNase3, and PxdsRNase6 were upregulated significantly through dsGFP injection, and PxdsRNase genes can be silenced effectively by injecting their corresponding dsRNA. RNAi-of-RNAi studies with PxEbony, which acts as a reporter gene, observed that silencing PxdsRNase genes can increase RNAi efficiency significantly. These results confirm that silencing dsRNase genes can improve RNAi efficiency in P. xuthus significantly, providing a reference for the functional study of insects such as butterflies with low RNAi efficiency.


Assuntos
Borboletas , Animais , Borboletas/genética , Interferência de RNA , RNA de Cadeia Dupla , Insetos/genética , Inativação Gênica
8.
PLoS One ; 19(4): e0300811, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568891

RESUMO

Multi-locus genetic data for phylogeographic studies is generally limited in geographic and taxonomic scope as most studies only examine a few related species. The strong adoption of DNA barcoding has generated large datasets of mtDNA COI sequences. This work examines the butterfly fauna of Canada and United States based on 13,236 COI barcode records derived from 619 species. It compiles i) geographic maps depicting the spatial distribution of haplotypes, ii) haplotype networks (minimum spanning trees), and iii) standard indices of genetic diversity such as nucleotide diversity (π), haplotype richness (H), and a measure of spatial genetic structure (GST). High intraspecific genetic diversity and marked spatial structure were observed in the northwestern and southern North America, as well as in proximity to mountain chains. While species generally displayed concordance between genetic diversity and spatial structure, some revealed incongruence between these two metrics. Interestingly, most species falling in this category shared their barcode sequences with one at least other species. Aside from revealing large-scale phylogeographic patterns and shedding light on the processes underlying these patterns, this work also exposed cases of potential synonymy and hybridization.


Assuntos
Borboletas , Animais , Estados Unidos , Borboletas/genética , Filogeografia , DNA Mitocondrial/genética , DNA Mitocondrial/química , Mitocôndrias/genética , Haplótipos , Variação Genética , Código de Barras de DNA Taxonômico , Filogenia
9.
J Evol Biol ; 37(5): 510-525, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567444

RESUMO

Viability indicator traits are expected to be integrated extensively across the genome yet sex-limited to ensure that any benefits are sexually concordant. Understanding how such expectations are accommodated requires elucidating the quantitative genetic architecture of candidate traits in and across the sexes. Here we applied an animal modelling approach to partition the autosomal, allosomal, and direct maternal bases of variation in sexual versus non-sexual dorsal wing colouration in the butterfly Eurema hecabe. The sexual colour trait-coherently scattered ultraviolet that is under strong directional selection due to female choice-is brighter and more expansive in males, and overlays non-sexual pigmentary yellow markings that otherwise dominate both wing surfaces in each sex. Our modelling estimated high and sexually equivalent autosomal variances for ultraviolet reflectance (furnishing h2 ~ 0.58 overall and ~0.75 in males), accompanied by smaller but generally significant Z-linked and maternal components. By contrast, variation in non-sexual yellow was largely attributed to Z-linked sources. Intersexual genetic correlations based upon the major source of variation in each trait were high and not different from 1.0, implying regulation by a pool of genes common to each sex. An expansive autosomal basis for ultraviolet is consistent with its hypothesized role as a genome-wide viability indicator and ensures that both sons and daughters will inherit their father's attractiveness.


Assuntos
Borboletas , Pigmentação , Asas de Animais , Animais , Borboletas/genética , Borboletas/fisiologia , Masculino , Feminino , Pigmentação/genética , Caracteres Sexuais , Herança Materna/genética , Variação Genética
10.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606789

RESUMO

Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.


Assuntos
Borboletas , Camundongos , Humanos , Animais , Ovinos/genética , Borboletas/genética , Cromossomos/genética , Meiose/genética , Centrômero , Translocação Genética/genética , Mamíferos
11.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488057

RESUMO

Our understanding on the interplay between gene functionality and gene arrangement at different chromosome scales relies on a few Diptera and the honeybee, species with quality reference genome assemblies, accurate gene annotations, and abundant transcriptome data. Using recently generated 'omic resources in the monarch butterfly Danaus plexippus, a species with many more and smaller chromosomes relative to Drosophila species and the honeybee, we examined the organization of genes preferentially expressed at broadly defined developmental stages (larva, pupa, adult males, and adult females) at both fine and whole-chromosome scales. We found that developmental stage-regulated genes do not form more clusters, but do form larger clusters, than expected by chance, a pattern consistent across the gene categories examined. Notably, out of the 30 chromosomes in the monarch genome, 12 of them, plus the fraction of the chromosome Z that corresponds to the ancestral Z in other Lepidoptera, were found enriched for developmental stage-regulated genes. These two levels of nonrandom gene organization are not independent as enriched chromosomes for developmental stage-regulated genes tend to harbor disproportionately large clusters of these genes. Further, although paralogous genes were overrepresented in gene clusters, their presence is not enough to explain two-thirds of the documented cases of whole-chromosome enrichment. The composition of the largest clusters often included paralogs from more than one multigene family as well as unrelated single-copy genes. Our results reveal intriguing patterns at the whole-chromosome scale in D. plexippus while shedding light on the interplay between gene expression and chromosome organization beyond Diptera and Hymenoptera.


Assuntos
Borboletas , Animais , Feminino , Masculino , Borboletas/genética , Cromossomos/genética , Genoma , Larva/genética , Transcriptoma
12.
Science ; 383(6689): 1290-1291, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513043

RESUMO

A gene for mate preference has been shared between hybridizing butterfly species.


Assuntos
Borboletas , Preferência de Acasalamento Animal , Animais , Masculino , Borboletas/genética , Reprodução
13.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38505885

RESUMO

We report a high-quality genome draft assembly of the dark-branded bushbrown, Mycalesis mineus, a member of the Satyrinae subfamily of nymphalid butterflies. This species is emerging as a promising model organism for investigating the evolution and development of phenotypic plasticity. Using 45.99 Gb of long-read data (N50 = 11.11 kb), we assembled a genome size of 497.4 Mb for M. mineus. The assembly is highly contiguous and nearly complete (96.8% of Benchmarking Universal Single-Copy Orthologs lepidopteran genes were complete and single copy). The genome comprises 38.71% of repetitive elements and includes 20,967 predicted protein-coding genes. The assembled genome was super-scaffolded into 28 pseudo-chromosomes using a closely related species, Bicyclus anynana, with a chromosomal-level genome as a template. This valuable genomic tool will advance both ongoing and future research focused on this model organism.


Assuntos
Borboletas , Animais , Borboletas/genética , Anotação de Sequência Molecular , Genômica , Sequências Repetitivas de Ácido Nucleico , Tamanho do Genoma , Cromossomos
14.
Science ; 383(6689): 1368-1373, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513020

RESUMO

Visual preferences are important drivers of mate choice and sexual selection, but little is known of how they evolve at the genetic level. In this study, we took advantage of the diversity of bright warning patterns displayed by Heliconius butterflies, which are also used during mate choice. Combining behavioral, population genomic, and expression analyses, we show that two Heliconius species have evolved the same preferences for red patterns by exchanging genetic material through hybridization. Neural expression of regucalcin1 correlates with visual preference across populations, and disruption of regucalcin1 with CRISPR-Cas9 impairs courtship toward conspecific females, providing a direct link between gene and behavior. Our results support a role for hybridization during behavioral evolution and show how visually guided behaviors contributing to adaptation and speciation are encoded within the genome.


Assuntos
Borboletas , Proteínas de Ligação ao Cálcio , Visão de Cores , Genes de Insetos , Introgressão Genética , Preferência de Acasalamento Animal , Seleção Sexual , Animais , Feminino , Borboletas/genética , Borboletas/fisiologia , Proteínas de Ligação ao Cálcio/genética , Visão de Cores/genética , Genoma , Hibridização Genética , Seleção Sexual/genética
15.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38491969

RESUMO

We present the first chromosome-level genome assembly and annotation of the pearly heath Coenonympha arcania, generated with a PacBio HiFi sequencing approach and complemented with Hi-C data. We additionally compare synteny, gene, and repeat content between C. arcania and other Lepidopteran genomes. This reference genome will enable future population genomics studies with Coenonympha butterflies, a species-rich genus that encompasses some of the most highly endangered butterfly taxa in Europe.


Assuntos
Borboletas , Animais , Borboletas/genética , Genoma , Cromossomos/genética , Sintenia , Europa (Continente) , Anotação de Sequência Molecular
16.
Mol Ecol ; 33(7): e17310, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441401

RESUMO

Understanding the processes that underlie the development of population genetic structure is central to the study of evolution. Patterns of genetic structure, in turn, can reveal signatures of isolation by distance (IBD), barriers to gene flow, or even the genesis of speciation. However, it is unclear how severe range restriction might impact the processes that dominate the development of genetic structure. In narrow endemic species, is population structure likely to be adaptive in nature, or rather the result of genetic drift? In this study, we investigated patterns of genetic diversity and structure in the narrow endemic Hayden's ringlet butterfly. Specifically, we asked to what degree genetic structure in the Hayden's ringlet can be explained by IBD, isolation by resistance (IBR) (in the form of geographic or ecological barriers to migration between populations), and isolation by environment (in the form of differences in host plant availability and preference). We employed a genotyping-by-sequencing (GBS) approach coupled with host preference assays, Bayesian modelling, and population genomic analyses to answer these questions. Our results suggest that despite their restricted range, levels of genetic diversity in the Hayden's ringlet are comparable to those seen in more widespread butterfly species. Hayden's ringlets showed a strong preference for feeding on grasses relative to sedges, but neither larval preference nor potential host availability at sampling sites correlated with genetic structure. We conclude that geography, in the form of IBR and simple IBD, was the major driver of contemporary patterns of differentiation in this narrow endemic species.


Assuntos
Borboletas , Variação Genética , Animais , Borboletas/genética , Teorema de Bayes , Deriva Genética , Geografia , Genética Populacional
17.
Science ; 383(6687): 1039-1040, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452086
18.
Pestic Biochem Physiol ; 199: 105787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458687

RESUMO

Pieris rapae is among the most damaging pests globally, and diapause makes it highly resistant to environmental stresses, playing a crucial role in the survival and reproduction of P. rapae while exacerbating the challenges of pest management and control. However, the mechanisms of its diapause regulation remain poorly understood. This research used RNA sequencing to profile the transcriptomes of three diapause phases (induction and preparation, initiation, maintenance) and synchronous nondiapause phases in P. rapae. During each comparison phase, 759, 1045, and 4721 genes were found to be differentially expressed. Among these, seven clock genes and seven pivotal hormone synthesis and metabolism genes were identified as having differential expression patterns in diapause type and nondiapause type. The weighted gene co-expression network analysis (WGCNA) revealed the red and blue modules as pivotal for diapause initiation, while the grey module was identified to be crucial to diapause maintenance. Meanwhile, the hub genes HDAC11, METLL16D, Dyw-like, GST, and so on, were identified within these hub modules. Moreover, an ecdysone downstream nuclear receptor gene, HR3, was found to be a shared transcription factor across all three phases. RNA interference of HR3 resulted in delayed pupal development, indicating its involvement in regulating pupal dipause in P. rapae. The further hormone assays revealed that the 20-hydroxyecdysone (20E) titer in diapause type pupae was lower than that in nondiapause type pupae, which exhibited a similar trend to HR3. When 20E was injected into diapause pupae, the HR3 expression levels were improved, and the pupal diapause were broken. These results indicate that the 20E/HR3 pathway is a critical pathway for the diapause regulation of P. rapae, and perturbing this pathway by ecdysone treatment or RNAi would result in the disruption of diapause. These findings provide initial insights into the molecular mechanisms of P. rapae diapause and suggest the potential use of ecdysone analogs and HR3 RNAi pesticides, which specifically target to diapause, as a means of pest control in P. rapae.


Assuntos
Borboletas , Diapausa , Animais , Transcriptoma , Ecdisona/metabolismo , Borboletas/genética , Regulação da Expressão Gênica , Pupa/genética
19.
Mol Phylogenet Evol ; 194: 108022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325534

RESUMO

The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.


Assuntos
Borboletas , Animais , Filogenia , Borboletas/genética , Nova Guiné , Austrália , Ecossistema
20.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401262

RESUMO

Hypolimnas misippus is a Batesian mimic of the toxic African Queen butterfly (Danaus chrysippus). Female H. misippus butterflies use two major wing patterning loci (M and A) to imitate three color morphs of D. chrysippus found in different regions of Africa. In this study, we examine the evolution of the M locus and identify it as an example of adaptive atavism. This phenomenon involves a morphological reversion to an ancestral character that results in an adaptive phenotype. We show that H. misippus has re-evolved an ancestral wing pattern present in other Hypolimnas species, repurposing it for Batesian mimicry of a D. chrysippus morph. Using haplotagging, a linked-read sequencing technology, and our new analytical tool, Wrath, we discover two large transposable element insertions located at the M locus and establish that these insertions are present in the dominant allele responsible for producing mimetic phenotype. By conducting a comparative analysis involving additional Hypolimnas species, we demonstrate that the dominant allele is derived. This suggests that, in the derived allele, the transposable elements disrupt a cis-regulatory element, leading to the reversion to an ancestral phenotype that is then utilized for Batesian mimicry of a distinct model, a different morph of D. chrysippus. Our findings present a compelling instance of convergent evolution and adaptive atavism, in which the same pattern element has independently evolved multiple times in Hypolimnas butterflies, repeatedly playing a role in Batesian mimicry of diverse model species.


Assuntos
Mimetismo Biológico , Borboletas , Animais , Borboletas/genética , Elementos de DNA Transponíveis , Mimetismo Biológico/genética , Fenótipo , África , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA