Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 50(3-4): 152-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353894

RESUMO

Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.


Assuntos
Herbivoria , Metaboloma , Taraxacum , Animais , Taraxacum/química , Taraxacum/metabolismo , Larva/virologia , Larva/fisiologia , Plantago/química , Plantago/fisiologia , Hemolinfa/metabolismo , Hemolinfa/química , Monofenol Mono-Oxigenase/metabolismo , Borboletas/fisiologia , Borboletas/virologia , Borboletas/imunologia
2.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089871

RESUMO

An important goal of disease ecology is to understand trophic interactions influencing the host-pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Parvovirididae: Densovirinae, Lepidopteran Potoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars' response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.


Assuntos
Borboletas/virologia , Densovirus , Dieta , Monofenol Mono-Oxigenase/metabolismo , Animais , Borboletas/imunologia , Borboletas/metabolismo , Densovirus/patogenicidade , Interações entre Hospedeiro e Microrganismos , Imunidade/fisiologia , Larva/imunologia , Larva/metabolismo , Larva/virologia , Plantas , Análise de Sobrevida , Carga Viral , Viroses/imunologia
3.
Viruses ; 11(7)2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277203

RESUMO

Baculoviruses are capable of infecting a wide diversity of insect pests. In the 1990s, the Dione juno nucleopolyhedrovirus (DijuNPV) was isolated from larvae of the major passionfruit defoliator pest Dione juno juno (Nymphalidae) and described at ultrastructural and pathological levels. In this study, the complete genome sequence of DijuNPV was determined and analyzed. The circular genome presents 122,075 bp with a G + C content of 50.9%. DijuNPV is the first alphabaculovirus completely sequenced that was isolated from a nymphalid host and may represent a divergent species. It appeared closely related to Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) and other Choristoneura-isolated group I alphabaculoviruses. We annotated 153 open reading frames (ORFs), including a set of 38 core genes, 26 ORFs identified as present in lepidopteran baculoviruses, 17 ORFs unique in baculovirus, and several auxiliary genes (e.g., bro, cathepsin, chitinase, iap-1, iap-2, and thymidylate kinase). The thymidylate kinase (tmk) gene was present fused to a dUTPase (dut) gene in other baculovirus genomes. DijuNPV likely lost the dut portion together with the iap-3 homolog. Overall, the genome sequencing of novel alphabaculoviruses enables a wide understanding of baculovirus evolution.


Assuntos
Borboletas/virologia , Nucleopoliedrovírus/classificação , Nucleopoliedrovírus/isolamento & purificação , Passiflora , Filogenia , Animais , Baculoviridae/classificação , Baculoviridae/genética , Composição de Bases , Sequência de Bases , Evolução Biológica , Mapeamento Cromossômico , Genoma Viral , Larva/virologia , Mariposas/virologia , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/ultraestrutura , Fases de Leitura Aberta , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
4.
BMC Genomics ; 20(1): 419, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133070

RESUMO

BACKGROUND: The golden birdwing butterfly (Troides aeacus formosanus) is a rarely observed species in Taiwan. Recently, a typical symptom of nuclear polyhedrosis was found in reared T. aeacus larvae. From the previous Kimura-2 parameter (K-2-P) analysis based on the nucleotide sequence of three genes in this isolate, polh, lef-8 and lef-9, the underlying virus did not belong to any known nucleopolyhedrovirus (NPV) species. Therefore, this NPV was provisionally named "TraeNPV". To understand this NPV, the nucleotide sequence of the whole TraeNPV genome was determined using next-generation sequencing (NGS) technology. RESULTS: The genome of TraeNPV is 125,477 bp in length with 144 putative open reading frames (ORFs) and its GC content is 40.45%. A phylogenetic analysis based on the 37 baculoviral core genes suggested that TraeNPV is a Group I NPV that is closely related to Autographa californica nucleopolyhedrovirus (AcMNPV). A genome-wide analysis showed that TraeNPV has some different features in its genome compared with other NPVs. Two novel ORFs (Ta75 and Ta139), three truncated ORFs (pcna, he65 and bro) and one duplicated ORF (38.7 K) were found in the TraeNPV genome; moreover, there are fewer homologous regions (hrs) than there are in AcMNPV, which shares eight hrs within the TraeNPV genome. TraeNPV shares similar genomic features with AcMNPV, including the gene content, gene arrangement and gene/genome identity, but TraeNPV lacks 15 homologous ORFs from AcMNPV in its genome, such as ctx, host cell-specific factor 1 (hcf-1), PNK/PNL, vp15, and apsup, which are involved in the auxiliary functions of alphabaculoviruses. CONCLUSIONS: Based on these data, TraeNPV would be clarified as a new NPV species with defective AcMNPV genomic features. The precise relationship between TraeNPV and other closely related NPV species were further investigated. This report could provide comprehensive information on TraeNPV for evolutionary insights into butterfly-infected NPV.


Assuntos
Baculoviridae/genética , Borboletas/virologia , Genoma Viral , Animais , Baculoviridae/classificação , Baculoviridae/isolamento & purificação , Borboletas/crescimento & desenvolvimento , Replicação do DNA , DNA Viral/química , Genes Duplicados , Genes Virais , Genômica , Especificidade de Hospedeiro/genética , Larva/virologia , Fases de Leitura Aberta , Filogenia , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica , Proteínas Estruturais Virais/genética
5.
Arch Virol ; 164(3): 839-845, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30506470

RESUMO

DNA polymerase (DNApol) is highly conserved in all baculoviruses and plays an essential role in viral DNA replication. Previous results showed that the DNApol of the betabaculovirus Pieris rapae granulovirus (PiraGV) can localize in the nucleus. However, it is not clear how the DNApol is transported into the nucleus. Bioinformatic and GFP localization analysis showed that PiraGV DNApol contains a nuclear localization signal (NLS) at aa 4-25 (LFKRKLDEPPTDHTLVKAIKLS) of the N-terminus that does not match either the classical monopartite or the bipartite NLS consensus sequence. Multiple-point-substitution analysis confirmed that the NLS is required for transport of PiraGV DNApol into the nucleus. We also substituted the NLS of the PiraGV DNApol for that of the alphabaculovirus Spodoptera litura nuclear polyhedrosis virus (SpltNPV) DNApol. A viral growth curve and quantitative real-time PCR revealed that the substitution impaired viral DNA replication and resulted in a reduction in virus production. Together, our results show that PiraGV contains a novel NLS and that the NLS cannot efficiently replace that of SpltNPV DNApol for viral DNA synthesis and virus production.


Assuntos
DNA Polimerase Dirigida por DNA/química , Granulovirus/enzimologia , Sinais de Localização Nuclear , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Borboletas/virologia , Núcleo Celular/virologia , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Granulovirus/química , Granulovirus/classificação , Granulovirus/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Proteínas Virais/química , Proteínas Virais/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(20): 5205-5210, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712841

RESUMO

Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.


Assuntos
Borboletas/parasitologia , Interações Hospedeiro-Parasita , Larva/parasitologia , Plantas/metabolismo , Polydnaviridae/fisiologia , Peçonhas/administração & dosagem , Vespas/parasitologia , Animais , Borboletas/fisiologia , Borboletas/virologia , Ecossistema , Regulação da Expressão Gênica de Plantas , Larva/fisiologia , Larva/virologia , Plantas/parasitologia , Plantas/virologia , Simbiose , Vespas/fisiologia , Vespas/virologia
7.
J Insect Physiol ; 107: 136-143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29627352

RESUMO

Infections represent a constant threat for organisms and can lead to substantial fitness losses. Understanding how individuals, especially from natural populations, respond towards infections is thus of great importance. Little is known about immunity in the Glanville fritillary butterfly (Melitaea cinxia). As the larvae live gregariously in family groups, vertical and horizontal transmission of infections could have tremendous effects on individuals and consequently impact population dynamics in nature. We used the Alphabaculovirus type strain Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and demonstrated that positive concentration-dependent baculovirus exposure leads to prolonged developmental time and decreased survival during larval and pupal development, with no sex specific differences. Viral exposure did not influence relative thorax mass or wing morphometric traits often related to flight ability, yet melanisation of the wings increased with viral exposure, potentially influencing disease resistance or flight capacity via thermal regulation. Further research is needed to explore effects under sub-optimal conditions, determine effects on fitness-related traits, and investigate a potential adaptive response of increased melanisation in the wings due to baculovirus exposure.


Assuntos
Borboletas/virologia , Voo Animal , Características de História de Vida , Nucleopoliedrovírus/fisiologia , Pigmentação , Animais , Borboletas/crescimento & desenvolvimento , Borboletas/fisiologia , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/virologia , Masculino , Fenótipo , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Pupa/virologia , Fatores Sexuais , Asas de Animais/fisiologia
8.
J Invertebr Pathol ; 151: 102-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126966

RESUMO

Understanding the interaction between host plant chemistry, the immune response, and insect pathogens can shed light on host plant use by insect herbivores. In this study, we focused on how interactions between the insect immune response and plant secondary metabolites affect the response to a viral pathogen. Based upon prior research, we asked whether the buckeye caterpillar, Junonia coenia (Nymphalidae), which specializes on plants containing iridoid glycosides (IGs), is less able to resist the pathogenic effects of a densovirus infection when feeding on plants with high concentrations of IGs. In a fully factorial design, individuals were randomly assigned to three treatments, each of which had two levels: (1) exposed to the densovirus versus control, (2) placed on a plant species with high concentrations of IGs (Plantago lanceolata, Plantaginaceae) versus low concentrations of IGs (P. major), and (3) control versus surface sterilized to exclude surface microbes that may contribute to viral resistance. We measured phenoloxidase (PO) activity, hemocyte counts, and gut bacterial diversity (16S ribosomal RNA) during the fourth larval instar, as well as development time, pupal weight, and survival to adult. Individuals infected with the virus were immune-suppressed (as measured by PO response and hemocyte count) and developed significantly faster than virus-free individuals. Contrary to our predictions,mortality was significantly less for virus challengedindividuals reared on the high IG plant compared to the low IG plant.This suggests that plant secondary metabolites can influence survival from viral infection and may be associated with activation of PO. Removing egg microbes did not affect the immune response or survival of the larvae. In summary, these results suggest that plant secondary metabolites are important for survival against a viral pathogen. Even though the PO response was better on the high IG plant, the extent to which this result contributes to survival against the virus needs further investigation.


Assuntos
Borboletas/imunologia , Borboletas/virologia , Densovirus/fisiologia , Interações Hospedeiro-Parasita/imunologia , Plantago/parasitologia , Animais , Larva/imunologia , Larva/virologia
9.
J Invertebr Pathol ; 150: 106-113, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28988030

RESUMO

This study investigated the interactive effects of growth on drought stressed host plants and pathogen challenge with the baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV) on survival and fitness-related traits using the Speckled Wood butterfly, Pararge aegeria (L.). Exposure to AcMNPV significantly reduced survival to pupation. For surviving larvae, sub-lethal infection significantly decreased daily mass acquisition rates and pupal mass. Growth on drought stressed plants increased daily mass acquisition rates resulting in heavier pupae, and increased resource allocation to adult reproduction. The interaction between host plant drought and viral exposure resulted in different resource allocation strategies, and thus different growth trajectories, between larvae. This in turn resulted in significantly different allometric relationships between larval mass (at inoculation) and both development time and investment in flight muscles. For larvae with relatively lighter masses there was a cost of resisting infection when growth occurred on drought stressed host plants, both within the larval stage (i.e. longer larval development times) and in the adult stage (i.e. lower investment in flight muscle mass). This multi-factor study highlights several potential mechanisms by which the complex interplay between low host plant nutritional quality due to drought, and pathogen exposure, may differentially influence the performance of P. aegeria individuals across multiple life stages.


Assuntos
Baculoviridae , Borboletas/virologia , Secas , Plantas , Estresse Fisiológico/fisiologia , Animais , Borboletas/crescimento & desenvolvimento , Alocação de Recursos
10.
Proc Biol Sci ; 284(1847)2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28100819

RESUMO

A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Insetos/virologia , Rhabdoviridae , Animais , Borboletas/virologia , Ceratitis capitata/virologia , Drosophila/virologia
11.
J Invertebr Pathol ; 113(1): 7-17, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23295682

RESUMO

Pieris rapae granulovirus (PiraGV) is highly pathogenic to the cabbage butterfly (P. rapae), an important pest of cultivated cabbages and mustard crops. It therefore holds significant promise towards exploitation as a potent bio-control agent in the field controlling the pest population. Whole-genome elucidation of the Korean isolate of the granulovirus (PiraGV-K), reported the presence of a granulin gene corresponding to ORF 1 in its genome. Comprehensive studies towards functional characterization of the gene, established that it is composed of 744 nucleotides and encodes a peptide of 247 amino acid residues. It possessed significant homology with AoGV and ClanGV with 87% identity at amino acid level. Multiple alignment data suggests that the C-terminus region of the gene had three different conserved regions. Time-course studies conducted in PiraGV-K infected P. rapae larvae revealed a significant upsurge of the transcript (134-fold) at 4 days post infection followed by a significant decline at the most advanced stages of infection. Anti-PiraGV-K granulin antibody was produced and western blot conducted with the infected larvae further confirmed the induction pattern with a protein of 30 kDa. Immunofluorescent staining showed a granulin-specific signal in fat body and integument of the infected larvae. Granulin-specific signals were noticed 2 days post infection with the eventual systemic spread of infection to the associated tracheal matrix witnessed at 4 days post infection. Immunogold labeling and electron microscopic studies further proved the cytopathological effects as the presence of numerous membrane-bound vesicles with nucleocapsids and abruption of intercellular junctions in fat body and hypertrophied cells in the integument.


Assuntos
Genoma Viral , Granulovirus/genética , Proteínas Estruturais Virais , Animais , Borboletas/virologia , Corpo Adiposo/virologia , Granulovirus/isolamento & purificação , Imuno-Histoquímica , Larva/virologia , Dados de Sequência Molecular , Proteínas de Matriz de Corpos de Inclusão , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína
12.
PLoS One ; 8(12): e84183, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391907

RESUMO

BACKGROUND: Most traditional genome sequencing projects involving viruses include the culture and purification of the virus particles. However, purification of virions may yield insufficient material for traditional sequencing. The electrophoretic method described here provides a strategy whereby the genomic DNA of the Korean isolate of Pieris rapae granulovirus (PiraGV-K) could be recovered in sufficient amounts for sequencing by purifying it directly from total host DNA by pulse-field gel electrophoresis (PFGE). METHODOLOGY/PRINCIPAL FINDINGS: The total genomic DNA of infected P. rapae was embedded in agarose plugs, treated with restriction nuclease and methylase, and then PFGE was used to separate PiraGV-K DNA from the DNA of P. rapae, followed by mapping of fosmid clones of the purified viral DNA. The double-stranded circular genome of PiraGV-K was found to encode 120 open reading frames (ORFs), which covered 92% of the sequence. BLAST and ORF arrangement showed the presence of 78 homologs to other genes in the database. The mean overall amino acid identity of PiraGV-K ORFs was highest with the Chinese isolate of PiraGV (~99%), followed up with Choristoneura occidentalis ORFs at 58%. PiraGV-K ORFs were grouped, according to function, into 10 genes involved in transcription, 11 involved in replication, 25 structural protein genes, and 15 auxiliary genes. Genes for Chitinase (ORF 10) and cathepsin (ORF 11), involved in the liquefaction of the host, were found in the genome. CONCLUSIONS/SIGNIFICANCE: The recovery of PiraGV-K DNA genome by pulse-field electrophoretic separation from host genomic DNA had several advantages, compared with its isolation from particles harvested as virions or inclusions from the P. rapae host. We have sequenced and analyzed the 108,658 bp PiraGV-K genome purified by the electrophoretic method. The method appears to be generally applicable to the analysis of genomes of large viruses.


Assuntos
Borboletas/virologia , DNA Viral/isolamento & purificação , Eletroforese em Gel de Campo Pulsado/métodos , Granulovirus/genética , Animais , Sequência de Bases , Fracionamento Celular , Primers do DNA/genética , Dados de Sequência Molecular , República da Coreia , Análise de Sequência de DNA
13.
J Virol ; 86(17): 9534-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22879608

RESUMO

The genome of Papilio polyxenes densovirus was cloned and sequenced and contained 5,053 nucleotides (nt), including inverted terminal repeats (ITRs) of 271 nt with terminal hairpins of 175 nt. Its DNA sequence and monosense organization with 3 open reading frames (ORFs) are typical of the genus Iteravirus in the subfamily Densovirinae of the Parvoviridae.


Assuntos
Borboletas/virologia , Densovirus/genética , Genoma Viral , Vírus de Insetos/genética , Animais , Sequência de Bases , Densovirus/classificação , Densovirus/isolamento & purificação , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura Aberta
14.
J Virol ; 86(17): 9544, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22879615

RESUMO

Pieris rapae granulovirus (PrGV) can infect and kill larvae of Pieris rapae, a worldwide and important pest of mustard family crops. The PrGV genome consists of 108,592 bp, is AT rich (66.8%), and is most structurally and organizationally similar to the Choristoneura occidentalis granulovirus genome. Of the predicted 120 open reading frames (ORFs), 32 genes specifically occurred in GVs, including four genes unique to PrGV (Pr9, Pr32, Pr53, and Pr117).


Assuntos
Borboletas/virologia , Genoma Viral , Granulovirus/genética , Vírus de Insetos/genética , Animais , Sequência de Bases , Granulovirus/classificação , Granulovirus/isolamento & purificação , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia
15.
Tissue Cell ; 44(3): 137-42, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22386749

RESUMO

The cell line RIRI-PX1 was established from neonate larval tissues of Papilio xuthus by performing primary cultures in the modified Grace medium that was supplemented with 20% fetal bovine serum (FBS). The cell line primarily consisted of spindle-shaped and spherical cells which attached themselves to the flask. The population-doubling times (PDTs) at the 50th and 60th passage were 42.5 h and 42.1 h respectively. The average chromosome numbers of RIRI-PX1 cell line from passage 5 to passage 50 ranged from 103 to 199. It was confirmed that RIRI-PX1 cell line was derived from P. xuthus by comparing the mitochondrial cytochrome c oxidase subunit I gene (COI) of RIRI-PX1 cells and P. xuthus eggs. This cell line was susceptible to the Autographa californica nucleopolyhedrovirus (AcNPV) and produced high yield of polyhedral occlusion bodies (43.9OBs/cell) after 10 days of infection by AcNPV. The virus titer of AcNPV infected RIRI-PX1 cells was 3.25×107 TCID50/ml. We concluded that the RIRI-PX1 cell line is established from the neonate larvae tissues successfully and the cells of the cell line are sensitive to AcNPV.


Assuntos
Borboletas/citologia , Linhagem Celular , Nucleopoliedrovírus/patogenicidade , Cultura Primária de Células/métodos , Animais , Sequência de Bases , Borboletas/genética , Borboletas/crescimento & desenvolvimento , Borboletas/virologia , Cromossomos de Insetos/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Larva/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Mitocôndrias/genética , Dados de Sequência Molecular , Nucleopoliedrovírus/crescimento & desenvolvimento , Fatores de Tempo , Carga Viral
16.
J Invertebr Pathol ; 109(1): 165-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064244

RESUMO

This study investigated the sub-lethal effects of larval exposure to baculovirus on host life history and wing morphological traits using a model system, the speckled wood butterfly Pararge aegeria (L.) and the virus Autographa californica nucleopolyhedrovirus. Males and females showed similar responses to the viral infection. Infection significantly reduced larval growth rate, whilst an increase in development time allowed the critical mass for pupation to be attained. There was no direct effect of viral infection on the wing morphological traits examined. There was, however, an indirect effect of resisting infection; larvae that took longer to develop had reduced resource investment in adult flight muscle mass.


Assuntos
Borboletas/virologia , Infecções por Vírus de DNA , Nucleopoliedrovírus/fisiologia , Animais , Borboletas/anatomia & histologia , Borboletas/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/virologia , Longevidade , Masculino , Controle Biológico de Vetores
17.
J Proteome Res ; 10(6): 2817-27, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21517121

RESUMO

Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses, NPV) and Betabaculovirus (granuloviruses, GV) are two main genera of the family Baculoviridae. The virion proteomes of Alphabaculovirus have been well studied; however, the Betabaculovirus virion compositions remain unclear. Pieris rapae granulovirus (PrGV) can kill larvae of P. rapae, a worldwide and important pest of mustard family crops. In this study, the occlusion-derived virus (ODV)-associated proteins of PrGV were identified using three mass spectrometry (MS) approaches. The MS analyses demonstrated that 47 proteins were present in PrGV-ODV. Of the 47 PrGV-ODV proteins, 33 have homologues identified previously in other baculovirus ODV/BVs, whereas 14 (P10, Pr21, Pr29, Pr35, Pr42, Pr54, P45/48, Pr83, Pr84, Pr89, Pr92, Pr111, Pr114 and FGF3) were newly identified ODV proteins. Seven of the 14 newly identified ODV proteins are specific to Betabaculovirus, including Pr35, Pr42, Pr54, Pr83, Pr84, Pr111 and Pr114. Furthermore, the data derived from these MS approaches were validated by immunoblotting analysis using antisera prepared from 11 randomly selected recombinant PrGV-ODV proteins (including 5 Betabaculovirus-unique proteins). Comparison analyses revealed the similar and different compositions between Betabaculovirus and Alphabaculovirus virions, which deepen our understanding of the baculovirus virion structure and provide helpful information on Betabaculovirus--host interaction studies.


Assuntos
Borboletas/virologia , Granulovirus/metabolismo , Corpos de Inclusão Viral/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Sequência Conservada , Granulovirus/genética , Granulovirus/ultraestrutura , Soros Imunes , Corpos de Inclusão Viral/ultraestrutura , Peso Molecular , Controle Biológico de Vetores , Proteoma/genética , Proteoma/metabolismo , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas Virais/genética
18.
J Invertebr Pathol ; 106(2): 255-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21047512

RESUMO

Dione juno and Agraulis vanillae are very common butterflies in natural gardens in South America, and also bred worldwide. In addition, larvae of these butterflies are considered as pests in crops of Passiflora spp. For these reasons, it is important to identify and describe pathogens of these species, both for preservation purposes and for use in pest control. Baculoviridae is a family of insect viruses that predominantly infect species of Lepidoptera and are used as bioinsecticides. Larvae of D. juno and A. vanillae exhibiting symptoms of baculovirus infection were examined for the presence of baculoviruses by PCR and transmission electron microscopy. Degenerate primers were designed and used to amplify partial sequences from the baculovirus p74, cathepsin, and chitinase genes, along with previously designed primers for amplification of lef-8, lef-9, and polh. Sequence data from these six loci, along with ultrastructural observations on occlusion bodies isolated from the larvae, confirmed that the larvae were infected with nucleopolyhedroviruses from genus Alphabaculovirus. The NPVs from the two different larval hosts appear to be variants of the same, previously undescribed baculovirus species. Phylogenetic analysis of the sequence data placed these NPVs in Alphabaculovirus group I/clade 1b.


Assuntos
Borboletas/virologia , Nucleopoliedrovírus/isolamento & purificação , Animais , DNA Viral/genética , Corpos de Inclusão/virologia , Larva/virologia , Nucleopoliedrovírus/genética , Controle Biológico de Vetores , América do Sul
19.
Insect Mol Biol ; 16(5): 623-33, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17714462

RESUMO

Transcriptional activity of the Junonia coenia densovirus (JcDNV) P9 promoter depends on a 557-bp sequence located within the overlapping 3' sequences for viral capsid and nonstructural genes. Utilizing a somatic transformation assay to assess JcDNV promoter activity in Drosophila melanogaster and Plodia interpunctella, viral sequences were subjected to deletional analysis. Removal of a 685-bp fragment reduced P9-driven expression to background levels. Inclusion of a second expression cassette demonstrated vector persistence and confirmed somatic transformation. P9 promoter-driven expression was restored by insertion of a 557-bp JcDNV fragment or by inclusion of a heterologous baculovirus hr5 enhancer. Consensus polycomb transcriptional factor binding sites were identified within the 557-bp fragment, which suggests a potential role in regulating densoviral transcription.


Assuntos
Borboletas/virologia , Densovirus/genética , Regulação Viral da Expressão Gênica , Genes Virais , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Vetores Genéticos , Dados de Sequência Molecular , Plasmídeos , Deleção de Sequência , Transformação Genética , Proteínas não Estruturais Virais/genética
20.
Virus Genes ; 35(2): 443-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17354063

RESUMO

Pieris rapae granulovirus (PiraGV) is a baculovirus pathogenic to the insect P. rapae (Pieridae, Lepidoptera). Though being known for decades, information on the genetic organization of this virus remains limited. In an effort to characterize this virus, an 11.8 kb BamHI restriction fragment that harbors the inhibitor of apoptosis gene (iap-5) was sequenced. Our results indicate that this region contains important genes such as dnapol, lef-3, lef-9, and dnaligase that are involved in transcription and replication of the virus. The gene content and synteny in this region are highly conserved among granulovirus genomes. Phylogenetic analysis showed that PiraGV genes are more closely related to the Choristoneura occidentalis granulovirus (ChocGV) than other characterized granulovirus (GVs).


Assuntos
Borboletas/virologia , Ordem dos Genes , Granulovirus/genética , Proteínas Inibidoras de Apoptose/genética , Análise de Sequência de DNA , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA