Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.083
Filtrar
1.
J Exp Biol ; 227(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38904077

RESUMO

Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.


Assuntos
Aclimatação , Brânquias , Processos Estocásticos , Animais , Brânquias/fisiologia , Aclimatação/fisiologia , Ciprinodontiformes/fisiologia , Temperatura , Mudança Climática , Organismos Hermafroditas/fisiologia , Temperatura Alta
2.
J Exp Biol ; 227(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38752366

RESUMO

The evolution and utilization of limbs facilitated terrestrial vertebrate movement on land, but little is known about how other lateral structures enhance terrestrial locomotion in amphibian fishes without terrestrialized limb structures. Climbing perch (Anabas testudineus) exhibit sustained terrestrial locomotion using uniaxial rotating gill covers instead of appendages. To investigate the role of such simple lateral structures in terrestrial locomotion and the motion-generating mechanism of the corresponding locomotor structure configuration (gill covers and body undulation), we measured the terrestrial kinematics of climbing perch and quantitatively analysed its motion characteristics. The digitized locomotor kinematics showed a unique body postural adjustment ability that enables the regulation of the posture of the caudal peduncle for converting lateral bending force into propulsion. An analysis of the coordination characteristics demonstrated that the motion of the gill cover is kinematically independent of axial undulation, suggesting that the gill cover functions as an anchored simple support pole while axial undulation actively mediates body posture and produces propulsive force. The two identified feature shapes explained more than 87% of the complex lateral undulation in multistage locomotion. The kinematic characteristics enhance our understanding of the underlying coordinating mechanism corresponding to locomotor configurations. Our work provides quantitative insight into the terrestrial locomotor adaptation of climbing perch and sheds light on terrestrial motion potential of locomotor configurations containing a typical aquatic body and restricted lateral structure.


Assuntos
Locomoção , Percas , Animais , Locomoção/fisiologia , Fenômenos Biomecânicos , Percas/fisiologia , Brânquias/fisiologia
3.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38644758

RESUMO

In bivalves and gastropods, ventricle contraction causes a negative pressure in the auricles and increases venous return from the afferent oblique vein (AOV): the constant-volume (CV) mechanism. The flow in the AOV should be a pulsative flow synchronized with the ventricular contraction. The flow in the heart and adjacent vessels of Mytilus galloprovincialis were measured by magnetic resonance imaging to confirm this hypothesis. Under a regular heartbeat, pulsative flows in the AOV and branchial vessels (BVs) were almost completely synchronized with the flow in the aorta, while filling of the ventricle was in the opposite phase. Flows in the BVs were directed to the posterior direction, and a pair of BVs in the gill axes (the efferent BVs) were connected to the AOV. Based on the images of the whole pathway of the AOV in an oblique slice, we confirmed that haemolymph flow was evoked from the efferent BVs and flow into the ventricle via the auricle was completed in a single heartbeat. Therefore, the walls of the AOV and BVs could resist negative transmural pressure caused by the ventricular contraction. In conclusion, the auricle, the AOV and the BVs, including the gill filaments, act as a suction pump. The pulsative venous return is driven by the negative pressure of the AOV as in the CV mechanism, and the negative pressure in the efferent BVs could draw haemolymph from the sinus via the gill and the afferent BVs. Therefore, Mytilus can start and stop its heartbeat as necessary.


Assuntos
Mytilus , Animais , Mytilus/fisiologia , Coração/fisiologia , Veias/fisiologia , Brânquias/fisiologia , Imageamento por Ressonância Magnética , Região Branquial/fisiologia , Hemolinfa/fisiologia , Fluxo Pulsátil/fisiologia
4.
J Fish Biol ; 104(6): 1888-1898, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506425

RESUMO

Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.


Assuntos
Brânquias , Oxigênio , Rios , Animais , Brânquias/anatomia & histologia , Brânquias/fisiologia , Ontário , Oxigênio/metabolismo , Hipóxia , Perciformes/fisiologia , Perciformes/anatomia & histologia
5.
J Exp Zool A Ecol Integr Physiol ; 339(10): 951-960, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37574887

RESUMO

Milkfish (Chanos chanos) are important euryhaline fish in Southeast Asian countries that can tolerate a wide range of salinity changes. Previous studies have revealed that milkfish have strong ion regulation and survival abilities under osmotic stress. In addition to ion regulation, water homeostasis in euryhaline teleosts is important during environmental salinity shifts. Aquaporins (AQP) are vital water channels in fish, and different AQPs can transport water influx or outflux from the body. AQP3 is one of the AQP channels, and the function of AQP3 in the gills of euryhaline milkfish is still unknown. The aim of this study was to investigate the expression and localization of AQP3 in the gills of euryhaline milkfish to contribute to our understanding of the physiological role and localization of AQP3 in fish. The AQP3 sequence was found in the milkfish next-generation sequencing (NGS) database and is mainly distributed in the gills of freshwater (FW)-acclimated milkfish. Under hypoosmotic and hyperosmotic stress, the osmolality of milkfish immediately shifted, similar to the aqp3 gene expression. Moreover, the abundance of AQP3 protein significantly decreased 3 h after transferring milkfish from FW to seawater (SW). However, there was no change within 7 days when the milkfish experienced hypoosmotic stress. Moreover, double immunofluorescence staining of milkfish gills showed that AQP3 colocalized with Na+ /K+ ATPase at the basolateral membrane of ionocytes. These results combined indicate that milkfish have a strong osmoregulation ability under acute osmotic stress because of the quick shift in the gene and protein expression of AQP3 in their gills.


Assuntos
Aquaporina 3 , Salinidade , Animais , Aquaporina 3/genética , Aquaporina 3/metabolismo , Brânquias/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixes/metabolismo , Água/metabolismo
6.
Mol Ecol ; 32(18): 5089-5109, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526137

RESUMO

Epigenetic modifications, like DNA methylation, generate phenotypic diversity in fish and ultimately lead to adaptive evolutionary processes. Euryhaline marine species that migrate between salinity-contrasted habitats have received little attention regarding the role of salinity on whole-genome DNA methylation. Investigation of salinity-induced DNA methylation in fish will help to better understand the potential role of this process in salinity acclimation. Using whole-genome bisulfite sequencing, we compared DNA methylation patterns in European sea bass (Dicentrarchus labrax) juveniles in seawater and after freshwater transfer. We targeted the gill as a crucial organ involved in plastic responses to environmental changes. To investigate the function of DNA methylation in gills, we performed RNAseq and assessed DNA methylome-transcriptome correlations. We showed a negative correlation between gene expression levels and DNA methylation levels in promoters, first introns and first exons. A significant effect of salinity on DNA methylation dynamics with an overall DNA hypomethylation in freshwater-transferred fish compared to seawater controls was demonstrated. This suggests a role of DNA methylation changes in salinity acclimation. Genes involved in key functions as metabolism, ion transport and transepithelial permeability (junctional complexes) were differentially methylated and expressed between salinity conditions. Expression of genes involved in mitochondrial metabolism (tricarboxylic acid cycle) was increased, whereas the expression of DNA methyltransferases 3a was repressed. This study reveals novel links between DNA methylation, mainly in promoters and first exons/introns, and gene expression patterns following salinity change.


Assuntos
Bass , Salinidade , Animais , Bass/genética , ATPase Trocadora de Sódio-Potássio/genética , Brânquias/fisiologia , Metilação de DNA/genética , Água do Mar , DNA
7.
Physiol Biochem Zool ; 96(3): 233-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278589

RESUMO

AbstractDuring the colonization of freshwater by marine fish, adaptation to hypoosmotic conditions may impact their ability to osmoregulate in seawater. The prickly sculpin (Cottus asper) is a euryhaline fish with marine ancestors that postglacially colonized many freshwater habitats. Previous work on C. asper suggested that isolation in freshwater habitats has resulted in putative adaptations that improve ion regulation in freshwater populations compared with populations with current access to estuaries. To determine whether long-term colonization of freshwater is associated with a reduced ability to ion regulate in seawater, we acclimated C. asper populations from three habitat types that vary in the extent to which they are isolated from marine habitats and compared their seawater osmoregulation. Seawater acclimation revealed that lake populations exhibited a reduced capacity to osmoregulate in seawater compared with coastal river populations with ongoing access to estuaries. In particular, when acclimated to seawater for several weeks, lake populations had lower gill Na+/K+-ATPase activity and lower intestinal H+-ATPase activity than coastal river populations. Lake populations also had a reduced ability to maintain plasma ion concentrations, and they produced lower quantities of intestinal carbonate precipitates in seawater than coastal river populations. Furthermore, there was a positive relationship between the anterior intestinal Na+/K+-ATPase activity and the amount of precipitate produced by the intestine, which suggests that the anterior intestine plays a role in seawater osmoregulation. Our results suggest that the extent of isolation from the sea could, in part, explain the reduced osmoregulation in seawater in postglacial freshwater populations of C. asper.


Assuntos
Osmorregulação , Equilíbrio Hidroeletrolítico , Animais , Equilíbrio Hidroeletrolítico/fisiologia , Aclimatação/fisiologia , Peixes/fisiologia , Água do Mar , Lagos , Ecossistema , Adenosina Trifosfatases/metabolismo , Brânquias/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Salinidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-37088410

RESUMO

Tadpole development is influenced by environmental cues and hypoxia can favor the emergence of the neural networks driving air breathing. Exposing isolated brainstems from pre-metamorphic tadpoles to acute hypoxia (∼0% O2; 15 min) leads to a progressive increase in fictive air breaths (∼3 fold) in the hours that follow stimulation. Here, we first determined whether this effect persists over longer periods (<18 h); we then evaluated maturity of the motor output by comparing the breathing pattern of hypoxia-exposed brainstems to that of preparations from adult bullfrogs under basal conditions. Because progressive withdrawal of GABAB-mediated inhibition contributes to the developmental increase in fictive lung ventilation, we then hypothesised that hypoxia reduces respiratory sensitivity to baclofen (selective GABAB-agonist). Experiments were performed on isolated brainstem preparations from pre-metamorphic tadpoles (TK stages IV to XIV); respiratory-related neural activity was recorded from cranial nerves V/VII and X before and 18 h after exposure to hypoxia (0% O2 + 2% CO2; 25 min). Time-control experiments (no hypoxia) were performed. Exposing pre-metamorphic tadpoles to hypoxia did not affect gill burst frequency, but augmented the frequency of fictive lung bursts and the incidence of episodic breathing levels intermediate between pre-metamorphic and adult preparations. Addition of baclofen to the aCSF (0,2 µM - 20 min) reduced lung burst frequency, but the response of hypoxia-exposed brainstems was greater than controls. We conclude that acute hypoxia facilitates development and maturation of the motor command driving air breathing. We propose that a greater number of active rhythmogenic neurons expressing GABAb receptors contributes to this effect.


Assuntos
Baclofeno , Respiração , Animais , Baclofeno/farmacologia , Larva/fisiologia , Pulmão/fisiologia , Brânquias/fisiologia , Hipóxia , Rana catesbeiana
9.
Acta Histochem ; 124(7): 151954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36174310

RESUMO

We have conducted a morphological and immunohistochemical study of the gills of juvenile specimens of the obligate air-breathing fish Heterotis niloticus. The study has been performed under normoxic and hypoxic conditions. The gills showed a reduced respiratory surface area by development of an interlamellar cellular mass (ILCM). The ILCM persisted without changes under both normoxia and hypoxia. Neuroepithelial cells (NECs), the major oxygen and hypoxia sensing cell type, were located in the distal end of the gill filaments and along the ILCM edges. These cells expressed 5HT, the neuronal isoform of the nitric oxide synthase (nNOS) and the vesicular acetylcholine transporter (VAChT). Furthermore, NECs appeared associated with nitrergic nerve fibres. The O2 levels did not modify the location, number or the immunohistochemical characteristics of NECs. Pavement cells covering the ILCM were also positive to nNOS and VAChT. The mechanisms of O2 sensing in the gills of Heterotis appears to involve several cell populations, the release of multiple neurotransmitters and a diversity of excitatory, inhibitory and modulatory mechanisms.


Assuntos
Peixes , Brânquias , Animais , Biomarcadores , Peixes/metabolismo , Brânquias/fisiologia , Hipóxia , Óxido Nítrico Sintase/metabolismo , Oxigênio/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina
10.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R532-R546, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993559

RESUMO

The sensing of environmental fluctuations and initiation of appropriate physiological responses is crucial to homeostasis. Neuroepithelial cells (NECs) in fishes are putative chemoreceptors, resembling mammalian Type I (glomus) cells, that respond in vitro to changes in O2, CO2, NH3, and pH. Cytosolic carbonic anhydrase (Ca17a) is thought to be involved in CO2 sensing owing to its presence in NECs. Zebrafish (Danio rerio) lacking functional Ca17a were generated via CRISPR/Cas9 technology and used to assess the role of Ca17a in initiating the cardiorespiratory responses to elevated CO2 (hypercapnia). Unfortunately, the homozygous knockout mutants (ca17a-/-) did not survive more than ∼12-14 days postfertilization (dpf), restricting experiments to early developmental stages (4-8 dpf). Changes in ventilation (fV) and cardiac (fH) frequency in response to hypercapnia (1% CO2) in wild-type (ca17a+/+), heterozygous (ca17a+/-) and ca17a-/- fish were used to investigate Ca17a-dependent CO2 sensing and downstream signaling. Wild-type fish exhibited hyperventilation during hypercapnia as indicated by an increase in fV. In the ca17a-/- fish, the hyperventilatory response was attenuated markedly but only at 8 dpf. Hypercapnic tachycardia was observed for all genotypes and did not appear to be influenced by the absence of Ca17a. Interestingly, ca17a-/- fish exhibited a significantly lower resting fH that became more pronounced as the fish aged. The decrease in resting fH was prevented ("rescued") when ca17a-/- embryos were injected with ca17a mRNA. Collectively, the results of this study support a role for Ca17a in promoting hyperventilation during hypercapnia in larval zebrafish and suggest a previously unrecognized role for Ca17a in determining resting heart rate.


Assuntos
Anidrases Carbônicas , Peixe-Zebra , Animais , Dióxido de Carbono , Anidrases Carbônicas/genética , Brânquias/fisiologia , Hipercapnia , Hiperventilação , Mamíferos , RNA Mensageiro , Peixe-Zebra/fisiologia
11.
J Comp Physiol B ; 192(3-4): 473-488, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35441298

RESUMO

The gills are the primary site of exchange in fishes. However, during early life-stages or in amphibious fishes, ionoregulation and gas-exchange may be primarily cutaneous. Given the similarities between larval and amphibious fishes, we hypothesized that cutaneous larval traits are continuously expressed in amphibious fishes across all life-stages to enable the skin to be a major site of exchange on land. Alternatively, we hypothesized that cutaneous larval traits disappear in juvenile stages and are re-expressed in amphibious species in later life-stages. We surveyed six species spanning a range of amphibiousness and characterized cutaneous ionocytes and neuroepithelial cells (NECs) as representative larval skin traits at up to five stages of development. We found that skin ionocyte density remained lower and constant in exclusively water-breathing, relative to amphibious species across development, whereas in amphibious species ionocyte density generally increased. Additionally, adults of the most amphibious species had the highest cutaneous ionocyte densities. Surprisingly, cutaneous NECs were only identified in the skin of one amphibious species (Kryptolebias marmoratus), suggesting that cutaneous NECs are not a ubiquitous larval or amphibious skin trait, at least among the species we studied. Our data broadly supports the continuous-expression hypothesis, as three of four amphibious experimental species expressed cutaneous ionocytes in all examined life-stages. Further, the increasing density of cutaneous ionocytes across development in amphibious species probably facilitates the prolonged occupation of terrestrial habitats.


Assuntos
Fundulidae , Peixes Listrados , Animais , Peixes/fisiologia , Brânquias/fisiologia , Peixes Listrados/fisiologia , Larva , Pele
12.
J Exp Biol ; 225(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35262176

RESUMO

Hagfish represent the oldest extant connection to the ancestral vertebrates, but their physiology is not well understood. Using behavioural (video), physiological (respirometry, flow measurements), classical morphological (dissection, silicone injection) and modern imaging approaches (micro-MRI, DICE micro-CT), we examined the interface between feeding and the unique breathing mechanism (nostril opening, high-frequency velum contraction, low-frequency gill pouch contraction and pharyngo-cutaneous duct contraction) in the Pacific hagfish, Eptatretus stoutii. A video tour via micro-MRI is presented through the breathing and feeding passages. We have reconciled an earlier disagreement as to the position of the velum chamber, which powers inhalation through the nostril, placing it downstream of the merging point of the food and water passage, such that the oronasal septum terminates at the anterior end of the velum chamber. When feeding occurs by engulfment of large chunks by the dental plates, food movement through the chamber may transiently interfere with breathing. Swallowing is accelerated by peristaltic body undulation involving the ventral musculature, and is complete within 5 s. After a large meal (anchovy, 20% body mass), hagfish remain motionless, defaecating bones and scales at 1.7 days and an intestinal peritrophic membrane at 5 days. O2 consumption rate approximately doubles within 1 h of feeding, remaining elevated for 12-24 h. This is achieved by combinations of elevated O2 utilization and ventilatory flow, the latter caused by varying increases in velar contraction frequency and stroke volume. Additional imaging casts light on the reasons for the trend for greater O2 utilization by more posterior pouches and the pharyngo-cutaneous duct in fasted hagfish.


Assuntos
Feiticeiras (Peixe) , Animais , Brânquias/fisiologia , Feiticeiras (Peixe)/fisiologia , Oxigênio , Consumo de Oxigênio , Respiração
13.
Microsc Res Tech ; 85(6): 2113-2122, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35092118

RESUMO

Larval urodeles are provided with external gills involved, along with the skin, in gas exchange and osmoregulation. Gills and skin epithelia are different, each showing a peculiar set of specialized cells but both provided with Leydig cells (LCs). Information on LCs in the gills is lacking as the literature has focused primarily on the epidermis. Contradictory and fragmentary results highlight that LCs origin, fate, and functions remain not fully understood. Here, we investigated the morpho-functional differences of LCs in the skin and gills of Lissotriton italicus larvae for the first time. LCs showed the same morphological and ultrastructural features in both tissues, even if LCs were significantly larger in the epidermis. Despite the uniform morphology within the LCs population, the proliferative ability was different. The putative diversity in the mucus composition was evaluated using a panel of 4 lectins as markers of specific carbohydrate moieties, revealing that sites of specific glycoconjugates were comparable in two tissues. To disclose the involvement of LCs in water storage and transport, immunofluorescence assay for aquaporin-3 has also been performed, demonstrating the expression of this protein only in gills epithelium. By demonstrating that LCs can multiply by cell division in gills, our results will also contribute to the discussion about their proliferative ability. Finally, we found that the LCs cytoplasm is rich in glycoconjugates, which are involved in many diverse and essential functions in vertebrates. RESEARCH HIGHLIGHTS: In gills LCs can multiply by cell division and express aquaporin-3 demonstrating a tissue-specific role of LCs. LCs cytoplasm is rich in glycoconjugates. LCs population show a uniform morphology in both gills and skin.


Assuntos
Aquaporinas , Células Intersticiais do Testículo , Animais , Aquaporinas/metabolismo , Brânquias/fisiologia , Larva/fisiologia , Células Intersticiais do Testículo/metabolismo , Masculino , Pele
14.
Artigo em Inglês | MEDLINE | ID: mdl-34748971

RESUMO

Nitrite stress is a major environmental factor that limits aquatic animal growth, reproduction and survival. Even so, some shrimps still can withstand somewhat high concentrations of nitrite environment. However, few studies have been conducted about the tolerance molecular mechanism of Litopenaeus vannamei in the high concentration nitrite. To identify the genes and pathways involved in the regulation of nitrite tolerance, we performed comparative transcriptomic analysis in the L. vannamei nitrite-tolerant (NT) and nitrite-sensitive (NS) families, and untreated shrimps were used as the control group. After 24 h of nitrite exposure (NaNO2, 112.5 mg/L), a total of 1521 and 868 differentially expressed genes (DEGs) were obtained from NT compared with NS and control group, respectively. Functional enrichment analysis revealed that most of these DEGs were involved in immune defense, energy metabolism processes and endoplasmic reticulum (ER) stress. During nitrite stress, energy metabolism in NT was significantly enhanced by activating the related genes expression of oxidative phosphorylation (OXPHOS) pathway and tricarboxylic acid (TCA) cycle. Meanwhile, some DEGs involved in innate immunity- related genes and pathways, and ER stress responses also were highly expressed in NT. Therefore, we speculate that accelerated energy metabolism, higher expression of immunity and ER related genes might be the important adaptive strategies for NT in relative to NS under nitrite stress. These results will provide new insights on the potential tolerant molecular mechanisms and the breeding of new varieties of nitrite tolerant L. vannamei.


Assuntos
Brânquias/fisiologia , Nitritos/toxicidade , Penaeidae/efeitos dos fármacos , Penaeidae/genética , Estresse Fisiológico/genética , Animais , Ecotoxicologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Penaeidae/fisiologia , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/imunologia , Poluentes Químicos da Água/toxicidade
15.
Cells ; 10(9)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572091

RESUMO

The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.


Assuntos
Proliferação de Células , Doenças dos Peixes/virologia , Proteínas de Peixes/metabolismo , Brânquias/citologia , Brânquias/fisiologia , Perciformes/fisiologia , Animais , Linhagem Celular , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Brânquias/virologia , Novirhabdovirus/fisiologia , Perciformes/classificação , Perciformes/virologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-34500090

RESUMO

The large-scale loach (Paramisgurnus dabryanus) is one of the most commercially important cultured species. Ammonia nitrogen accumulation is one of the key issue which limited production and animal health in aquaculture, but few of information is available on the molecular mechanisms of ammonia detoxification. We performed transcriptomic analyses of the gill and liver of large-scale loach subjected to 48 h of aerial and ammonia exposure. We obtained 47,473,424 to 56,791,496 clean reads from the aerial exposure, ammonia exposure and control groups, assembled and clustered a total of 92,658 unigenes with an average length of 909 bp and N50 of 1787 bp. Totals of 489/145 and 424/140 differentially expressed genes (DEGs) were detected in gill/liver of large-scale loach after aerial and ammonia exposure through comparative transcriptome analyses, respectively. In addition, totals of 43 gene ontology (GO) terms and 266 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified. After aerial and ammonia exposure, amino acid metabolism pathways in liver of large-scale loach were significantly enriched, suggesting that large-scale loach responded to high exogenous and endogenous ammonia stress by enhancing amino acid metabolism. Besides, the expression of several ammonia transporters (i.e., Rhesus glycoproteins and Aquaporins) in gill of large-scale loach were markedly changed after 48 h of aerial exposure, suggesting that large-scale loach responded to high endogenous ammonia stress by regulating the expression of Rh glycoproteins and Aqps related genes in gill. The results provide valuable information on the molecular mechanism of ammonia detoxification of large-scale loach to endogenous and environmental ammonia loading, will facilitate the molecular assisted breeding of ammonia resistant varieties, and will offer beneficial efforts for establishing an environmental-friendly and sustainable aquaculture industry.


Assuntos
Amônia/administração & dosagem , Cipriniformes/genética , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ar/análise , Poluentes Atmosféricos/análise , Amônia/toxicidade , Animais , Cipriniformes/metabolismo , Brânquias/metabolismo , Brânquias/fisiologia , Fígado/metabolismo , Fígado/patologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
17.
Mol Cell Endocrinol ; 538: 111450, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34506867

RESUMO

Euryhaline fishes are capable of maintaining osmotic homeostasis in a wide range of environmental salinities. Several pleiotropic hormones, including prolactin, growth hormone, and thyroid hormones (THs) are mediators of salinity acclimation. It is unclear, however, the extent to which THs and the pituitary-thyroid axis promote the adaptive responses of key osmoregulatory organs to freshwater (FW) environments. In the current study, we characterized circulating thyroxine (T4) and 3-3'-5-triiodothyronine (T3) levels in parallel with the outer ring deiodination (ORD) activities of deiodinases (dios) and mRNA expression of dio1, dio2, and dio3 in gill during the acclimation of Mozambique tilapia (Oreochromis mossambicus) to FW. Tilapia transferred from seawater (SW) to FW exhibited reduced plasma T4 and T3 levels at 6 h. These reductions coincided with an increase in branchial dio2-like activity and decreased branchial dio1 gene expression. To assess whether dios respond to osmotic conditions and/or systemic signals, gill filaments were exposed to osmolalities ranging from 280 to 450 mOsm/kg in an in vitro incubation system. Gene expression of branchial dio1, dio2, and dio3 was not directly affected by extracellular osmotic conditions. Lastly, we observed that dio1 and dio2 expression was stimulated by thyroid-stimulating hormone in hypophysectomized tilapia, suggesting that branchial TH metabolism is regulated by systemic signals. Our collective findings suggest that THs are involved in the FW acclimation of Mozambique tilapia through their interactions with branchial deiodinases that modulate their activities in a key osmoregulatory organ.


Assuntos
Iodeto Peroxidase/genética , Tiroxina/sangue , Tilápia/fisiologia , Tri-Iodotironina/sangue , Aclimatação , Animais , Feminino , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/metabolismo , Brânquias/fisiologia , Masculino , Salinidade
18.
Acta Histochem ; 123(5): 151738, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34091038

RESUMO

Transport epithelia maintain the volume, ion concentration and acid-base balance of blood and extracellular fluids. In teleost fish, mitochondrion-rich cells (MRCs) are specialized ionocytes that perform this role. These cells are found in epithelia of the gills and buccal surface of the operculum (the bony structure covering the gills). Proliferation of MRCs in response to changes in water salinity and other environmental stressors is well documented, but the cellular mechanisms underlying MRC proliferation are poorly understood. Recently, regeneration and epithelial cell replacement in the gill filaments was demonstrated in the model vertebrate, zebrafish (Danio rerio), raising the question of whether MRCs are replaced during regrowth of transport epithelia. We chose two anatomical sites where MRCs are found-the gills and the opercular epithelium-to investigate whether MRCs were replaced following surgical resection of these structures. In live imaging experiments, we observed gradual replacement of the branchiostegal valve, an extension of the operculum, in zebrafish over a period of 21 days post-resection (dpr). In regenerating epithelia of both the operculum and gills, we detected MRCs by immunohistochemical localization of the α subunit of plasma membrane Na+/K+-ATPase. In both tissues, MRCs appeared soon after resection, and as early as 1 dpr in the gill filaments. We report regeneration of the operculum and proliferation of MRCs in regenerating tissue in adult zebrafish. These studies may contribute to our understanding of how MRC populations are regulated during the regenerative process, which may occur following exposure to environmental stressors, chemical toxicity or disease.


Assuntos
Líquido Extracelular/metabolismo , Brânquias/fisiologia , Córtex Insular/fisiologia , Mitocôndrias/metabolismo , Animais , Proliferação de Células , Células Epiteliais/metabolismo , Epitélio/metabolismo , Imuno-Histoquímica , Células Neuroepiteliais/metabolismo , Regeneração , Peixe-Zebra
19.
Artigo em Inglês | MEDLINE | ID: mdl-33974967

RESUMO

Na+/H+ exchangers (NHE) mediate at least part of Na+ entry into gill epithelia via Na+/NH4+ exchange. For homeostasis, Na+ entry into and exit via Na+/K+ ATPase from gill epithelia must balance. Na+/K+ ATPase activity is reduced in cold- compared to warm-acclimated freshwater temperate fish. We hypothesized gill NHE activity is greater in warm- than cold-acclimated fish when measured at acclimation temperatures, and NHE activity displays a temperature dependence similar to Na+/K+ ATPase. Since NHE mRNA expression does not differ, we measured the Na+-dependence of pH-induced Na+ fluxes in gill vesicles from warm- and cold-acclimated fathead minnows at 20o and 7 °C, and calculated maximum transport rates (Vmax) and Na+ K1/2s. We also measured NH4+-induced Na+ fluxes and Na+-induced H+ fluxes. In vesicles from warm-acclimated fish, NHE Vmaxs were 278 ± 33 and 149 ± 23 arbitrary unit/s (au/s) and Na+ K1/2s were 12 ± 4 and 6 ± 4 mmol/l when assayed at 20o and 7 °C (p < 0.004), respectively. In vesicles from cold-acclimated fish, Vmaxs were 288 ± 35 and 141 ± 13 au/s and Na+ K1/2s 17 ± 5 and 7 ± 2 mmol/l when assayed at 20o and 7 °C (p < 0.002), respectively. Na+-induced H+ fluxes were 98 ± 8 and 104 ± 26 au/s in warm- and cold-acclimated fish assayed at 20 °C, respectively. Na+/NH4+ exchange was 120 ± 11 and 158 ± 13 au/s in warm- and cold-acclimated fish, respectively. Conclusions: Gill NHE activity was greater in warm- than cold-acclimated fish assayed at acclimation temperatures. The temperature dependence of NHE activity was similar in both groups, but differed from that reported for Na+/K+ ATPase suggesting complex mechanisms to maintain Na+ homeostasis.


Assuntos
Aclimatação/fisiologia , Cyprinidae/fisiologia , Brânquias/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Compostos de Amônio/química , Animais , Temperatura Baixa , Cyprinidae/metabolismo , Água Doce , Homeostase , Cinética , Concentração Osmolar , Potássio/química , RNA Mensageiro/metabolismo , Sódio/química , Temperatura
20.
Artigo em Inglês | MEDLINE | ID: mdl-33930551

RESUMO

Palaemonid shrimps inhabit osmotic niches from marine to continental waters. They hyper-regulate hemolymph osmolality and ionic concentrations in dilute media, hypo-regulating in concentrated media. Their gill epithelia express ion transporters like the Na+-K+-2Cl- symporter (NKCC) thought to play a role in salt secretion. To examine Cl- hypo-regulatory capability and phylogenetic correlations between gill NKCC mRNA levels and protein expression, we used palaemonids ranging from marine tide pools through estuaries (Palaemon) to coastal and continental fresh waters (Macrobrachium). We established the species' upper critical salinity limits (UL50) and short- (24 h) and long-term (120h) hypo-regulatory abilities at salinities of 80% of their UL50's (80%UL50). The Palaemon species exhibited the highest UL50's and greatest hypo-regulatory capabilities; among the Macrobrachium species, UL50's were higher in the diadromous than in the hololimnetic species. While basal transcript levels of gill NKCC mRNA were highest in P. pandaliformis, levels were unaffected by salinity or exposure time in all species. However, gill NKCC protein abundance increased after 120-h exposure at the 80%UL50 in all Macrobrachium species, except M. potiuna. Unexpectedly, hemolymph hyper-osmoregulatory capability in acclimatization media correlated with gill NKCC protein synthesis, while gill NKCC mRNA expression correlated with hemolymph hyper-Cl- regulation in Macrobrachium. These findings, together with the evolutionary history of osmoregulation in this shrimp clade, suggest a role for the gill NKCC symporter in both salt uptake and secretion. The evolution of NKCC protein expression responsiveness, unlike hemolymph hypo-regulation and NKCC mRNA expression, may have been driven by environmental salinity during niche radiation. SUMMARY STATEMENT: While mRNA expression of the gill Na+-K+-2Cl- symporter is unchanged during acclimation of palaemonid shrimps to saline media, protein expression is up regulated, revealing a role in chloride secretion.


Assuntos
Brânquias/fisiologia , Palaemonidae/genética , Palaemonidae/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Aclimatação , Animais , Evolução Biológica , Ecossistema , Feminino , Água Doce , Hemolinfa/metabolismo , Íons , Cinética , Masculino , Concentração Osmolar , Osmorregulação , Osmose , Filogenia , RNA Mensageiro/metabolismo , Salinidade , Sódio/metabolismo , Especificidade da Espécie , Simportadores/genética , Simportadores/metabolismo , Resultado do Tratamento , Equilíbrio Hidroeletrolítico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA