Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
Exp Physiol ; 109(3): 324-334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968859

RESUMO

The dive response, or the 'master switch of life', is probably the most studied physiological trait in marine mammals and is thought to conserve the available O2 for the heart and brain. Although generally thought to be an autonomic reflex, several studies indicate that the cardiovascular changes during diving are anticipatory and can be conditioned. The respiratory adaptations, where the aquatic breathing pattern resembles intermittent breathing in land mammals, with expiratory flow exceeding 160 litres s-1 has been measured in cetaceans, and where exposure to extreme pressures results in alveolar collapse (atelectasis) and recruitment upon ascent. Cardiorespiratory coupling, where breathing results in changes in heart rate, has been proposed to improve gas exchange. Cardiorespiratory coupling has also been reported in marine mammals, and in the bottlenose dolphin, where it alters both heart rate and stroke volume. When accounting for this respiratory dependence on cardiac function, several studies have reported an absence of a diving-related bradycardia except during dives that exceed the duration that is fuelled by aerobic metabolism. This review summarizes what is known about the respiratory physiology in marine mammals, with a special focus on cetaceans. The cardiorespiratory coupling is reviewed, and the selective gas exchange hypothesis is summarized, which provides a testable mechanism for how breath-hold diving vertebrates may actively prevent uptake of N2 during routine dives, and how stress results in failure of this mechanism, which results in diving-related gas emboli.


Assuntos
Mergulho , Animais , Mergulho/fisiologia , Mamíferos/fisiologia , Bradicardia/metabolismo , Frequência Cardíaca/fisiologia , Respiração
2.
Clin Transl Med ; 12(7): e954, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35872650

RESUMO

BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Animais , Bradicardia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , NAD/metabolismo
3.
Cell Rep ; 38(10): 110468, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263588

RESUMO

As a biological pump, the heart needs to consume a substantial amount of energy to maintain sustained beating. Myocardial energy metabolism was recently reported to be related to the loss of proliferative capacity in cardiomyocytes (CMs). However, the intrinsic relationship between beating rate and proliferation in CMs and whether energy metabolism can regulate this relationship remains unclear. In this study, we find that moderate heart rate reduction (HRR) induces CM proliferation under physiological conditions and promotes cardiac regenerative repair after myocardial injury. Mechanistically, moderate HRR induces G1/S transition and increases the expression of glycolytic enzymes in CMs. Furthermore, moderate HRR induces a metabolic pattern switch, activating glucose metabolism and increasing the relative proportion of ATP production by the glycolytic pathway for biosynthesis of substrates needed for proliferative CMs. These results highlight the potential therapeutic role of HRR in not only acute myocardial protection but also long-term CM restoration.


Assuntos
Coração , Miocárdio , Bradicardia/metabolismo , Metabolismo Energético , Frequência Cardíaca , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
4.
PLoS One ; 17(1): e0262336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34990472

RESUMO

Theophylline is an important drug for treatment of canine chronic bronchitis and bradyarrhythmias, but new products require validation since pharmacokinetics in dogs can vary by formulation. A new, 503B outsourcing facility-produced theophylline product (OFT) is available for veterinary use. Outsourcing facilities have many advantages over traditional compounding sources including current good manufacturing practice compliance. The purpose of this study was to establish the pharmacokinetics of OFT in dogs. Eight healthy dogs received 11 mg/kg intravenous aminophylline and 10 mg/kg oral OFT followed by serial blood sampling in a two-way, randomized, crossover design with 7-day washout. Plasma theophylline concentrations were quantified by liquid chromatography-mass spectrometry. Bioavailability, maximum concentration, time to maximum concentration, half-life and area under the curve were: 97 ± 10%, 7.13 ± 0.71 µg/mL, 10.50 ± 2.07 h, 9.20 ± 2.87 h, and 141 ± 37.6 µg*h/mL, respectively. Steady-state predictions supported twice daily dosing of the OFT, but specific dosage recommendations are hindered by lack of a canine-specific therapeutic range for plasma theophylline concentration. These findings suggest that the OFT is well absorbed and can likely be dosed twice daily in dogs, but future pharmacodynamic and clinical studies are needed to establish a definitive therapeutic range for theophylline in this species.


Assuntos
Teofilina/farmacocinética , Aminofilina/farmacocinética , Aminofilina/farmacologia , Animais , Disponibilidade Biológica , Bradicardia/tratamento farmacológico , Bradicardia/metabolismo , Bradicardia/veterinária , Bronquite Crônica/tratamento farmacológico , Bronquite Crônica/metabolismo , Bronquite Crônica/veterinária , Estudos Cross-Over , Cães , Feminino , Meia-Vida , Injeções Intravenosas/métodos , Masculino , Serviços Terceirizados/métodos , Teofilina/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-33984502

RESUMO

Developmental hypoxia has been shown to result in significant changes in cardiovascular development of American alligators and common snapping turtles. These include similar effects on cardiac mass and aspects of cardiovascular function. However, given the distant phylogenetic relationship between crocodilians and chelonians, we hypothesized that snapping turtles would also exhibit differences in the effects of developmental hypoxia on cardiovascular regulation. This hypothesis was based in part on prior studies that documented differences in plasticity of vagal tone on the heart between alligators and snapping turtles incubated in hypoxic conditions. To test this hypothesis, we investigated how 10% O2 exposure over final 80% of incubation altered the heart rate and blood pressure response to two chemical manipulations of the "chemoreflex" in common snapping turtles at 70% and 90% of incubation. NaCN injections produced a dose dependent bradycardia that was mediated by cholinergic receptor stimulation. This reflex was relatively unaffected by hypoxic incubation conditions in snapping turtle embryos. Injections of the 5-HT3 agonist phenylbiguanide (PBG) caused a pronounced bradycardia that decreased in intensity at 90% of incubation in embryos from the normoxic group while the heart rate response was unchanged in the hypoxic group. This differs from the previously reported diminished heart rate response of embryonic alligators incubated in 10% O2, suggesting plasticity in this chemoreflex response differs between the species. Our data also indicate the cardiovascular response is mediated by a secondary cholinergic receptor stimulation however the inability of ganglionic blockade to inhibit the PBG response leaves the location of the receptors antagonized by PBG in question in embryonic snapping turtles. Primarily, our findings refute the hypothesis that hypoxic incubation decreases the "chemoreflex' response of snapping turtle embryos.


Assuntos
Células Quimiorreceptoras/metabolismo , Hipóxia , Oxigênio/metabolismo , Tartarugas/embriologia , Tartarugas/fisiologia , Animais , Biguanidas/farmacologia , Pressão Sanguínea , Bradicardia/tratamento farmacológico , Bradicardia/metabolismo , Sistema Cardiovascular , Frequência Cardíaca , Fenótipo , Filogenia , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Répteis , Serotonina/metabolismo , Cianeto de Sódio/metabolismo , Cianeto de Sódio/farmacologia , Nervo Vago
6.
J Am Heart Assoc ; 10(4): e017791, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533257

RESUMO

Background Mitogen-activated protein kinase-activated protein kinase-2 (MK2) is a protein serine/threonine kinase activated by p38α/ß. Herein, we examine the cardiac phenotype of pan MK2-null (MK2-/-) mice. Methods and Results Survival curves for male MK2+/+ and MK2-/- mice did not differ (Mantel-Cox test, P=0.580). At 12 weeks of age, MK2-/- mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R-R interval and P-R segment durations were prolonged in MK2-deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2-/- mice. MK2-/- mice had lower body temperature and an age-dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2-/- mice. For equivalent respiration rates, mitochondria from MK2-/- hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2-/- mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2-/- mice. Finally, the pressure overload-induced decrease in systolic function was attenuated in MK2-/- mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.


Assuntos
Pressão Sanguínea/fisiologia , Bradicardia/fisiopatologia , Cardiomiopatia Hipertrófica/fisiopatologia , Frequência Cardíaca/fisiologia , Mitocôndrias Cardíacas/metabolismo , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Animais , Bradicardia/diagnóstico , Bradicardia/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/deficiência
7.
Thyroid ; 31(2): 315-326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32762296

RESUMO

Background: Mutations of thyroid hormone receptor α1 (TRα1) cause resistance to thyroid hormone (RTHα). Patients exhibit growth retardation, delayed bone development, anemia, and bradycardia. By using mouse models of RTHα, much has been learned about the molecular actions of TRα1 mutants that underlie these abnormalities in adults. Using zebrafish models of RTHα that we have recently created, we aimed to understand how TRα1 mutants affect the heart function during this period. Methods: In contrast to human and mice, the thra gene is duplicated, thraa and thrab, in zebrafish. Using CRISPR/Cas9-mediated targeted mutagenesis, we created C-terminal mutations in each of two duplicated thra genes in zebrafish (thraa 8-bp insertion or thrab 1-bp insertion mutations). We recently showed that these mutant fish faithfully recapitulated growth retardation as found in patients and thra mutant mice. In the present study, we used histological analysis, gene expression profiles, confocal fluorescence, and transmission electron microscopy (TEM) to comprehensively analyze the phenotypic characteristics of mutant fish heart during development. Results: We found both a dilated atrium and an abnormally shaped ventricle in adult mutant fish. The retention of red blood cells in the two abnormal heart chambers, and the decreased circulating blood speed and reduced expression of contractile genes indicated weakened contractility in the heart of mutant fish. These abnormalities were detected in mutant fish as early as 35 days postfertilization (juveniles). Furthermore, the expression of genes associated with the sarcomere assembly was suppressed in the heart of mutant fish, resulting in abnormalities of sarcomere organization as revealed by TEM, suggesting that the abnormal sarcomere organization could underlie the bradycardia exhibited in mutant fish. Conclusions: Using a zebrafish model of RTHα, the present study demonstrated for the first time that TRα1 mutants could act to cause abnormal heart structure, weaken contractility, and disrupt sarcomere organization that affect heart functions. These findings provide new insights into the bradycardia found in RTHα patients.


Assuntos
Bradicardia/genética , Cardiopatias Congênitas/genética , Mutação , Receptores alfa dos Hormônios Tireóideos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Bradicardia/metabolismo , Bradicardia/patologia , Bradicardia/fisiopatologia , Predisposição Genética para Doença , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Função Ventricular , Peixe-Zebra/anormalidades , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Heart Rhythm ; 18(5): 801-810, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278629

RESUMO

BACKGROUND: Heart rate follows a diurnal variation, and slow heart rhythms occur primarily at night. OBJECTIVE: The lower heart rate during sleep is assumed to be neural in origin, but here we tested whether a day-night difference in intrinsic pacemaking is involved. METHODS: In vivo and in vitro electrocardiographic recordings, vagotomy, transgenics, quantitative polymerase chain reaction, Western blotting, immunohistochemistry, patch clamp, reporter bioluminescence recordings, and chromatin immunoprecipitation were used. RESULTS: The day-night difference in the average heart rate of mice was independent of fluctuations in average locomotor activity and persisted under pharmacological, surgical, and transgenic interruption of autonomic input to the heart. Spontaneous beating rate of isolated (ie, denervated) sinus node (SN) preparations exhibited a day-night rhythm concomitant with rhythmic messenger RNA expression of ion channels including hyperpolarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4). In vitro studies demonstrated 24-hour rhythms in the human HCN4 promoter and the corresponding funny current. The day-night heart rate difference in mice was abolished by HCN block, both in vivo and in the isolated SN. Rhythmic expression of canonical circadian clock transcription factors, for example, Brain and muscle ARNT-Like 1 (BMAL1) and Cryptochrome (CRY) was identified in the SN and disruption of the local clock (by cardiomyocyte-specific knockout of Bmal1) abolished the day-night difference in Hcn4 and intrinsic heart rate. Chromatin immunoprecipitation revealed specific BMAL1 binding sites on Hcn4, linking the local clock with intrinsic rate control. CONCLUSION: The circadian variation in heart rate involves SN local clock-dependent Hcn4 rhythmicity. Data reveal a novel regulator of heart rate and mechanistic insight into bradycardia during sleep.


Assuntos
Bradicardia/genética , Relógios Circadianos/fisiologia , Eletrocardiografia/métodos , Regulação da Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , RNA/genética , Nó Sinoatrial/fisiopatologia , Animais , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Modelos Animais de Doenças , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Camundongos
9.
Sci Rep ; 10(1): 11831, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678143

RESUMO

A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 µM ivabradine-an open channel blocker of HCNs-for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).


Assuntos
Bradicardia/genética , Frequência Cardíaca/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Contração Miocárdica/fisiologia , Proteínas RGS/genética , Animais , Animais Geneticamente Modificados , Bradicardia/diagnóstico por imagem , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Sistemas CRISPR-Cas , Fármacos Cardiovasculares/farmacologia , Embrião não Mamífero , Genes Reporter , Estudo de Associação Genômica Ampla , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ivabradina/farmacologia , Metanálise como Assunto , Contração Miocárdica/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Imagem Óptica/métodos , Domínios de Homologia à Plecstrina/genética , Proteínas RGS/metabolismo , Peixe-Zebra
10.
Am J Physiol Heart Circ Physiol ; 319(2): H396-H409, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32678707

RESUMO

Myocardial ischemia leads to conduction slowing, cell-to-cell uncoupling, and arrhythmias. We previously demonstrated that varying perfusate sodium (Na+) and calcium (Ca2+) attenuates conduction slowing and arrhythmias during simulated ischemia with continuous perfusion. Cardioprotection was selectively associated with widening of the perinexus, a gap junction adjacent nanodomain important to ephaptic coupling. It is unknown whether perfusate composition affects the perinexus or ischemic conduction during nonsimulated ischemia, when coronary flow is reduced or halted. We hypothesized that altering preischemic perfusate composition could facilitate perinexal expansion and attenuate conduction slowing during global ischemia. To test this hypothesis, ex vivo guinea pig hearts (n = 49) were Langendorff perfused with 145 or 153 mM Na+ and 1.25 or 2.0 mM Ca2+ and optically mapped during 30 min of no-flow ischemia. Altering Na+ and Ca2+ did not substantially affect baseline conduction. Increasing Na+ and decreasing Ca2+ both lowered pacing thresholds, whereas increasing Ca2+ narrowed perinexal width (Wp). A least squares mean estimate revealed that reduced perfusate Na+ and Ca2+ resulted in the most severe conduction slowing during ischemia. Increasing Na+ alone modestly attenuated conduction slowing, yet significantly delayed the median time to conduction block (10 to 16 min). Increasing both Na+ and Ca2+ selectively widened Wp during ischemia (22.7 vs. 15.7 nm) and attenuated conduction slowing to the greatest extent. Neither repolarization nor levels of total or phosphorylated connexin43 correlated with conduction slowing or block. Thus, perfusate-dependent widening of the perinexus preserved ischemic conduction and may be an adaptive response to ischemic stress.NEW & NOTEWORTHY Conduction slowing during acute ischemia creates an arrhythmogenic substrate. We have shown that extracellular ionic concentrations can alter conduction by modulating ephaptic coupling. Here, we demonstrate increased extracellular sodium and calcium significantly attenuate conduction slowing during no-flow ischemia. This effect was associated with selective widening of the perinexus, an intercalated disc nanodomain and putative cardiac ephapse. These findings suggest that acute changes in ephaptic coupling may serve as an adaptive response to ischemic stress.


Assuntos
Bradicardia/prevenção & controle , Cálcio/metabolismo , Bloqueio Cardíaco/prevenção & controle , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Isquemia Miocárdica/metabolismo , Sódio/metabolismo , Potenciais de Ação , Animais , Bradicardia/etiologia , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Circulação Coronária , Modelos Animais de Doenças , Cobaias , Bloqueio Cardíaco/etiologia , Bloqueio Cardíaco/metabolismo , Bloqueio Cardíaco/fisiopatologia , Preparação de Coração Isolado , Masculino , Isquemia Miocárdica/complicações , Isquemia Miocárdica/fisiopatologia , Transdução de Sinais , Fatores de Tempo
11.
Sci Rep ; 10(1): 9835, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555258

RESUMO

Sinus node (SAN) dysfunction (SND) manifests as low heart rate (HR) and is often accompanied by atrial tachycardia or atrioventricular (AV) block. The only currently available therapy for chronic SND is the implantation of an electronic pacemaker. Because of the growing burden of SND in the population, new pharmacological therapies of chronic SND and heart block are desirable. We developed a collection of genetically modified mouse strains recapitulating human primary SND associated with different degrees of AV block. These mice were generated with genetic ablation of L-type Cav1.3 (Cav1.3-/-), T-type Cav3.1 (Cav3.1-/-), or both (Cav1.3-/-/Cav3.1-/-). We also studied mice haplo-insufficient for the Na+ channel Nav1.5 (Nav1.5+/) and mice in which the cAMP-dependent regulation of hyperpolarization-activated f-(HCN4) channels has been abolished (HCN4-CNBD). We analysed, by telemetric ECG recording, whether pharmacological inhibition of the G-protein-activated K+ current (IKACh) by the peptide tertiapin-Q could improve HR and AV conduction in these mouse strains. Tertiapin-Q significantly improved the HR of Cav1.3-/- (19%), Cav1.3-/-/Cav3.1-/- (23%) and HCN4-CNBD (14%) mice. Tertiapin-Q also improved cardiac conduction of Nav1.5+/- mice by 24%. Our data suggest that the development of pharmacological IKACh inhibitors for the management of SND and conduction disease is a viable approach.


Assuntos
Venenos de Abelha/farmacologia , Bradicardia/fisiopatologia , Proteínas de Ligação ao GTP/metabolismo , Sistema de Condução Cardíaco/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Nó Sinoatrial/efeitos dos fármacos , Animais , Bradicardia/metabolismo , Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Nó Sinoatrial/fisiopatologia
13.
Autophagy ; 16(10): 1807-1822, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31884871

RESUMO

Age-related impairment of macroautophagy/autophagy and loss of cardiac tissue homeostasis contribute significantly to cardiovascular diseases later in life. MTOR (mechanistic target of rapamycin kinase) signaling is the most well-known regulator of autophagy, cellular homeostasis, and longevity. The MTOR signaling consists of two structurally and functionally distinct multiprotein complexes, MTORC1 and MTORC2. While MTORC1 is well characterized but the role of MTORC2 in aging and autophagy remains poorly understood. Here we identified TGFB-INHB/activin signaling as a novel upstream regulator of MTORC2 to control autophagy and cardiac health during aging. Using Drosophila heart as a model system, we show that cardiac-specific knockdown of TGFB-INHB/activin-like protein daw induces autophagy and alleviates age-related heart dysfunction, including cardiac arrhythmias and bradycardia. Interestingly, the downregulation of daw activates TORC2 signaling to regulate cardiac autophagy. Activation of TORC2 alone through overexpressing its subunit protein rictor promotes autophagic flux and preserves cardiac function with aging. In contrast, activation of TORC1 does not block autophagy induction in daw knockdown flies. Lastly, either daw knockdown or rictor overexpression in fly hearts prolongs lifespan, suggesting that manipulation of these pathways in the heart has systemic effects on longevity control. Thus, our studies discover the TGFB-INHB/activin-mediated inhibition of TORC2 as a novel mechanism for age-dependent decreases in autophagic activity and cardiac health. Abbreviations: AI: arrhythmia index; BafA1: bafilomycin A1; BMP: bone morphogenetic protein; CQ: chloroquine; CVD: cardiovascular diseases; DI: diastolic interval; ER: endoplasmic reticulum; HP: heart period; HR: heart rate; MTOR: mechanistic target of rapamycin kinase; NGS: normal goat serum; PBST: PBS with 0.1% Triton X-100; PDPK1: 3-phosphoinositide dependent protein kinase 1; RICTOR: RPTOR independent companion of MTOR complex 2; ROI: region of interest; ROUT: robust regression and outlier removal; ROS: reactive oxygen species; R-SMAD: receptor-activated SMAD; SI: systolic interval; SOHA: semi-automatic optical heartbeat analysis; TGFB: transformation growth factor beta; TSC1: TSC complex subunit 1.


Assuntos
Autofagia , Drosophila melanogaster/metabolismo , Coração/fisiologia , Inibinas/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Ativinas/metabolismo , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/metabolismo , Bradicardia/metabolismo , Feminino , Genótipo , Homeostase , Humanos , Ligantes , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos
14.
J Mol Cell Cardiol ; 138: 291-303, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751569

RESUMO

OBJECTIVE: Sick sinus syndrome (SSS) is associated with loss of HCN4 (hyperpolarization-activated cyclic nucleotide-gated potassium channel 4) function in the cardiac conduction system. The underlying mechanism for SSS remains elusive. This study is to investigate how mitochondrial oxidative stress induces HCN4 downregulation associated with in sick sinus syndrome. METHODS AND RESULTS: Trx2lox/lox mice were crossed with α-myosin heavy chain (α-Mhc)-Cre and Hcn4-CreERT2 deleter mice to generate Trx2 deletion mice in the whole heart (Trx2cKO) and in the conduction system (Trx2ccsKO), respectively. Echocardiography was applied to measure hemodynamics and heart rhythm. Histological analyses, gene profiling and chromatin immunoprecipitation were performed to define the mechanism by which thioredoxin-2 (Trx2) regulates HCN4 expression and cardiac function. Trx2cKO mice displayed dilated cardiomyopathy, low heart rate, and atrial ventricular block (AVB) phenotypes. Immunofluorescence revealed that HCN4 expression was specifically reduced within the sinoatrial node in Trx2cKO mice. Interestingly, Trx2ccsKO mice displayed low heart rate and AVB without dilated cardiomyopathy. Both mRNA and protein levels of HCN4 were reduced in the sinoatrial node, suggesting transcriptional HCN4 regulation upon Trx2 deletion. ChIP indicated that the binding of MEF2 to the HCN4 enhancer was not altered by Trx2 deletion; however, histone 3 acetylation at the MEF2 binding site was decreased, and expression of histone deacetylase 4 (HDAC4) was elevated following Trx2 deletion. Moreover, HDAC4 binding to the HCN4 enhancer was mediated by MEF2. Mitochondrial ROS were increased by Trx2 deletion and importantly, mitochondria-specific ROS scavenger MitoTEMPO suppressed HDAC4 elevation, HCN4 reduction, and sinus bradycardia in Trx2ccsKO mice. CONCLUSION: In the conduction system, Trx2 is critical for maintaining HCN4-mediated normal heart rate. Loss of Trx2 reduces HCN4 expression via a mitochondrial ROS-HDAC4-MEF2C pathway and subsequently induces sick sinus syndrome in mice.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo , Síndrome do Nó Sinusal/genética , Síndrome do Nó Sinusal/patologia , Tiorredoxinas/metabolismo , Animais , Bradicardia/complicações , Bradicardia/metabolismo , Bradicardia/patologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Elementos Facilitadores Genéticos/genética , Histona Desacetilases/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos Knockout , Modelos Biológicos , Estresse Oxidativo/genética , Fenótipo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Nó Sinusal/complicações , Nó Sinoatrial/metabolismo , Nó Sinoatrial/patologia
15.
BMC Complement Altern Med ; 19(1): 357, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822281

RESUMO

BACKGROUND: Shenxian-Shengmai (SXSM) Oral Liquid is a CFDA-approved patent Chinese Herbal medicine, which has been clinically used for the treatment of bradycardia. However, its active components and action mechanism remain to be established. The present study aimed to evaluate the efficacy of SXSM on bradycardia and to identify the possible active components and their pharmacological targets for this action. METHODS: A literature-based meta-analysis was performed to evaluate the clinical efficacy of SXSM on bradycardia, which was confirmed by a rat ex vivo cardiac model. Network pharmacology analysis was then conducted to reveal the potential targets of SXSM active components and their anti-arrhythmia mechanisms. Finally, the identified drug-target interaction was confirmed by immunofluorescence assay in cardiomyocyte. RESULTS: Meta-analysis of the available clinical study data shows that Shenxian-Shengmai Oral Liquid has a favorable effect for bradycardia. In an ex vivo bradycardia model of rat heart, SXSM restored heart rate by affecting Heart rate variability (HRV) which is associated with autonomic nervous system activity. A drug-target-pathway network analysis connecting SXSM components with arrhythmia suggested that a prominent anti-arrhythmia mechanisms of SXSM was via ß1-adrenergic signaling pathway, which was subsequently validated by immunofluorescence assay showing that SXSM indeed increased the expression of ADRB1 in cultured cardiomyocytes. CONCLUSION: By combining approaches of clinical evidence mining, experimental model confirmation, network pharmacology analyses and molecular mechanistic validation, we show that SXSM is an effective treatment for bradycardia and it involves multiple component interacting via multiple pathways, among which is the critical ß1-adrenergic receptor upregulation. Our integrative approach could be applied to other multi-component traditional Chinese medicine investigation where ample clinical data are accumulated but advanced mechanistic studies are lacking.


Assuntos
Bradicardia/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Receptores Adrenérgicos beta 1/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular , Eletrocardiografia , Coração/efeitos dos fármacos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
16.
Proc Natl Acad Sci U S A ; 116(51): 25941-25947, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772023

RESUMO

Susceptibility to stress-related psychopathology is associated with reduced expression of the serotonin transporter (5-HTT), particularly in combination with stress exposure. Aberrant physiological and neuronal responses to threat may underlie this increased vulnerability. Here, implementing a cross-species approach, we investigated the association between 5-HTT expression and the neural correlates of fear bradycardia, a defensive response linked to vigilance and action preparation. We tested this during threat anticipation induced by a well-established fear conditioning paradigm applied in both humans and rodents. In humans, we studied the effect of the common 5-HTT-linked polymorphic region (5-HTTLPR) on bradycardia and neural responses to anticipatory threat during functional magnetic resonance imaging scanning in healthy volunteers (n = 104). Compared with homozygous long-allele carriers, the 5-HTTLPR short-allele carriers displayed an exaggerated bradycardic response to threat, overall reduced activation of the medial prefrontal cortex (mPFC), and increased threat-induced connectivity between the amygdala and periaqueductal gray (PAG), which statistically mediated the effect of the 5-HTTLPR genotype on bradycardia. In parallel, 5-HTT knockout (KO) rats also showed exaggerated threat-related bradycardia and behavioral freezing. Immunohistochemistry indicated overall reduced activity of glutamatergic neurons in the mPFC of KO rats and increased activity of central amygdala somatostatin-positive neurons, putatively projecting to the PAG, which-similarly to the human population-mediated the 5-HTT genotype's effect on freezing. Moreover, the ventrolateral PAG of KO rats displayed elevated overall activity and increased relative activation of CaMKII-expressing projection neurons. Our results provide a mechanistic explanation for previously reported associations between 5-HTT gene variance and a stress-sensitive phenotype.


Assuntos
Bradicardia/metabolismo , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina , Estresse Psicológico/metabolismo , Adulto , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiologia , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Ratos , Ratos Transgênicos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
18.
Eur J Pharmacol ; 849: 154-159, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30716310

RESUMO

Previously, we showed that the synthetic nitroderivative trans-4-methyl-ß-nitrostyrene (T4MeN) induced vasorelaxant effects in rat isolated aortic rings. Here, we investigated the mechanisms underlying the cardiovascular effects of T4MeN in normotensive rats. In pentobarbital-anesthetized rats, intravenous (i.v.) injection of T4MeN (0.03-0.5 mg/kg) induced a rapid (onset time of 1-2 s) and dose-dependent bradycardia and hypotension. These cardiovascular responses to T4MeN were abolished by bilateral cervical vagotomy or selective blockade of neural conduction of vagal C-fiber afferents by perineural treatment of both cervical vagus nerves with capsaicin. Hypotension and bradycardia were also recorded when T4MeN was directly injected in the right, but not into the left ventricle. Furthermore, they were significantly reduced by i.v. pretreatment with capsazepine but remained unaltered by ondansetron or suramin. In conscious rats, the dose-dependent hypotension and bradycardia evoked by T4MeN were abolished by i.v. methylatropine pretreatment. In conclusion, bradycardiac and depressor responses induced by T4MeN has a vago-vagal reflex origin resulting from the vagal pulmonary afferents stimulation. The transduction mechanism seems to involve the activation of vanilloid TRPV1, but not purinergic (P2X) or 5-HT3 receptors located on vagal pulmonary sensory nerves.


Assuntos
Bradicardia/induzido quimicamente , Pulmão/inervação , Fibras Nervosas Amielínicas/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Estirenos/farmacologia , Canais de Cátion TRPV/metabolismo , Nervo Vago/efeitos dos fármacos , Animais , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Masculino , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/fisiologia , Ratos , Ratos Wistar
19.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30764634

RESUMO

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Assuntos
Fibrilação Atrial , Bloqueio Atrioventricular , Bradicardia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Doenças Genéticas Inatas , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/metabolismo , Bloqueio Atrioventricular/patologia , Bloqueio Atrioventricular/fisiopatologia , Benzopiranos/farmacologia , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/patologia , Bradicardia/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Doenças Genéticas Inatas/fisiopatologia , Humanos , Masculino , Xenopus laevis , Peixe-Zebra
20.
J Cell Physiol ; 234(2): 1491-1501, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30078191

RESUMO

Hyperoxia (>90% oxygen) is commonly implemented in mechanically ventilated patients. Reports suggest that hyperoxia is directly associated with in-hospital mortality in ventilated patients. Certain studies also show that mortality in women undergoing mechanical ventilation is significantly higher than that in men. Additionally, females are predisposed to certain cardiac electrophysiological risks, including QTc prolongation. In this study, we assessed the impact of hyperoxia in male and female mice (C57BL/6J) at age 8-10 weeks. On completion of either hyperoxia or normoxia exposures, physical, hemodynamic, biochemical, functional, electrophysiological, and molecular assessments were conducted. Hyperoxia-exposed mice lost a significant amount of body mass, compared with normoxia controls, in both sexes. However, while both genders developed brady-arrhythmia after hyperoxia exposure, female mice exhibited significantly reduced heart rates compared with males, with significantly elevated RR intervals. Additionally, 50% mortality was observed in females, whereas no mortality was reported in males. Furthermore, unlike in male mice, we observed no hypertrophy upon hyperoxia exposure in female mice. We reported that both hyperoxia-treated male and female mice exhibit significant hyperdynamic left ventricular ejection fraction, which is marked by % ejection fraction > 70 compared with the normoxia controls. We also noted significant reductions in stroke volume and cardiac output in both mice with hyperoxia. Surface ECG also demonstrated that hyperoxia exposure significantly augments RR, PR, QRS, QTc, and JT intervals in both sexes. Molecular analysis of left ventricular tissue demonstrated dysregulation of potassium ion channels in hyperoxia-treated males and females. In summary, we determined that sex differences are present with 72 hr hyperoxia exposure.


Assuntos
Bradicardia/etiologia , Hiperóxia/complicações , Disfunção Ventricular Esquerda/etiologia , Animais , Bradicardia/genética , Bradicardia/metabolismo , Bradicardia/fisiopatologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Frequência Cardíaca , Hiperóxia/genética , Hiperóxia/metabolismo , Hiperóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Canais de Potássio/genética , Canais de Potássio/metabolismo , Fatores de Risco , Fatores Sexuais , Volume Sistólico , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA