Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.007
Filtrar
1.
Sci Rep ; 14(1): 10870, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740776

RESUMO

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Assuntos
Carvão Vegetal , Pisum sativum , Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Solo/química , Fotossíntese/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Salinidade , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
2.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615445

RESUMO

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Assuntos
Arsênio , Arsenitos , Oryza , Proteínas de Plantas , Raízes de Plantas , Brotos de Planta , Plantas Geneticamente Modificadas , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Arsênio/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
3.
Funct Plant Biol ; 512024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648371

RESUMO

Lead (Pb) induces oxidative stress in plants, which results in different responses, including the production of antioxidants and changes in the profile of secondary metabolites. In this study, the responses of Scrophularia striata exposed to 250mgL-1 Pb (NO3 )2 in a hydroponic environment were determined. Growth parameters, oxidative and antioxidative responses, redox status, and the concentration of Pb were analysed in roots and shoots. Malondialdehyde and hydrogen peroxide (H2 O2 ) levels in the roots were significantly increased and reached their highest value at 72h after Pb treatment. Superoxide dismutase, catalase, and peroxidase, as an enzymatic antioxidant system, were responsible for reactive oxygen species scavenging, where their activities were increased in the shoot and root of Pb-treated plants. Enzymatic antioxidant activities were probably not enough to remove a significant H2 O2 content in response to Pb treatment. Therefore, other defence responses were activated. The results stated that the flavonoid components of S. striata progressed towards the increase of isoflavone, flavanol, and stilbenoid contents under Pb treatment. In general, S. striata stimulates the enzymatic defence system and activates the non-enzymatic system by modulating the profile of flavonoids toward the production of flavonoids with high antioxidant activity, such as quercetin and myricetin in response to Pb stress.


Assuntos
Antioxidantes , Flavonoides , Peróxido de Hidrogênio , Chumbo , Estresse Oxidativo , Raízes de Plantas , Scrophularia , Antioxidantes/metabolismo , Chumbo/metabolismo , Chumbo/toxicidade , Flavonoides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Scrophularia/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo
4.
Plant Physiol ; 195(1): 518-533, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38365203

RESUMO

Shoot branching is an important biological trait affecting alfalfa (Medicago sativa L.) production, but its development is complicated and the mechanism is not fully clear. In the present study, pectin acetylesterase 12 (MsPAE12) and NAM/ATAF/CUC-domain transcription factor gene (MsNAC73) were isolated from alfalfa. MsPAE12 was highly expressed in shoot apexes, and MsNAC73 was found to be a key transcriptional repressor of MsPAE12 by directly binding to salicylic acid (SA) and jasmonic acid (JA) elements in the MsPAE12 promoter. The biological functions of MsPAE12 and MsNAC73 were studied through overexpression (OE) and down-expression (RNAi) of the 2 genes in alfalfa. The numbers of shoot branches increased in MsPAE12-OE lines but decreased in MsPAE12-RNAi and MsNAC73-OE plants, which was negatively related to their indole-3-acetic acid (IAA) accumulation in shoot apexes. Furthermore, the contents of acetic acid (AA) in shoot apexes decreased in MsPAE12-OE plants but increased in MsPAE12-RNAi and MsNAC73-OE plants. The changes of AA contents were positively related to the expression of TRYPTOPHAN AMINOTRANSFERASE 1 (MsTAA1), TRYPTOPHAN AMINOTRANSFERASE-RELATED 2 (MsTAR2), and YUCCA flavin monooxygenase (MsYUCC4) and the contents of tryptophan (Trp), indole-3-pyruvic acid (IPA), and IAA in shoot apexes of MsPAE12-OE, MsPAE12-RNAi, and MsNAC73-OE plants. Exogenous application of AA to wild type (WT) and MsPAE12-OE plants increased Trp, IPA, and IAA contents and decreased branch number. Exogenous IAA suppressed shoot branching in MsPAE12-OE plants, but exogenous IAA inhibitors increased shoot branching in MsPAE12-RNAi plants. These results indicate that the MsNAC73-MsPAE12 module regulates auxin-modulated shoot branching via affecting AA accumulation in shoot apexes of alfalfa.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Medicago sativa , Proteínas de Plantas , Brotos de Planta , Ácidos Indolacéticos/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Acético/metabolismo , Plantas Geneticamente Modificadas , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Regiões Promotoras Genéticas/genética , Ácido Salicílico/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia
5.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163497

RESUMO

In order to understand the effects of low nitrogen (LN) stress on the growth and development in different genotypes of Chinese cabbage, the L40 genotype with high nitrogen utilization and the L14 genotype with LN utilization were selected as experimental materials. Field experiments and indoor hydroponic methods were used to study the different responses of two Chinese cabbage genotypes to low nitrogen levels. In this study, we also analyzed the genome-wide gene expression profiles of L40 and L14 in response to LN stress by high-throughput RNA sequencing technology. The results reveal that the L40 root system responds better to LN compared with L14. After LN stress, L40 can effectively absorb and transport NO3- and store it in the ground. It is precisely because of this characteristic of the L40 genotype that LN treatment did not have a significant effect on the chlorophyll (Chl) content and net photosynthetic rate (Pn) of the L40 Chinese cabbage compared with the L14 Chinese cabbage. These two different Chinese cabbage genotypes were shown to have differently expressed genes related to nitrate transport, auxin synthesis, and glutamate dehydrogenase synthesis. These genes function in the nitrogen pathway, which are important candidates for understanding the molecular host-response mechanisms to LN stress.


Assuntos
Brassica/genética , Nitrogênio/metabolismo , Estresse Fisiológico/genética , Clorofila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , Ontologia Genética , Genótipo , Hidroponia , Nitrato Redutase/metabolismo , Nitrogênio/farmacologia , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos
6.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163530

RESUMO

Harvested water bamboo shoots can be stored for only a few days before they lose weight and become soft. Nitrogen oxide (NO) and modified atmosphere packaging (MAP) have previously been used to prolong horticultural crop storage. In the present study, we analyzed the joint effect of these two methods on extending the postharvest quality of water bamboo shoots. Water bamboo shoots were treated with (1) 30 µL L-1 NO, (2) MAP, and (3) a combination of NO and MAP. The NO treatment delayed the softness and weight loss through maintaining the integrity of the mitochondrial ultrastructure and enhancing the ATP level by activating the expressions and activities of succinic dehydrogenase, malic acid dehydrogenase, and cytochrome oxidase. MAP improved the effect of NO on the mitochondrial energy metabolism. These results indicate that NO and MAP treatments are effective at suppressing the quality deterioration of water bamboo shoots, MAP improves the effect of NO in extending postharvest life, and NO may be the main effective factor in the combination of NO and MAP.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/farmacologia , Poaceae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Succinato Desidrogenase/metabolismo
7.
PLoS One ; 17(1): e0262099, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995297

RESUMO

Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.


Assuntos
Antioxidantes/farmacologia , Beta vulgaris/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Putrescina/farmacologia , Estresse Fisiológico , Beta vulgaris/efeitos dos fármacos , Beta vulgaris/genética , Estresse Oxidativo , Fotossíntese , Proteínas de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Biomed Res Int ; 2021: 6829806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912896

RESUMO

Biogenic nanoparticles have potential roles in the growth and development of plants and animals as they are ecofriendly and free of chemical contaminants. In this study, we assessed the effects of phytomediated zinc oxide nanoparticles (ZnONPs) on shoot growth, biochemical markers, and antioxidant system response in Ochradenus arabicus, which is a medicinal plant. The shoot length and fresh and dry weights were found to be higher in groups with 5 and 10 mg/L ZnONPs than in the control. At high concentrations of ZnONPs (50, 100, and 300 mg/L), biomass was decreased in a concentration-dependent manner. The shoot number was observed to be highest at 50 mg/L among all applied concentrations of ZnONPs. The levels of the stress markers proline and TBARS were found to be higher in shoots treated with 100 and 300 mg/L ZnONPs than in the control as well as NP-treated shoots. The levels of antioxidant enzymes were significantly increased at high concentrations of nanoparticles compared with the control. Thus, synthesized phytomediated ZnONPs from shoots of O. arabicus and their application to the same organ of O. arabicus in vitro were found to be effective as a low concentration of nanoparticles promoted shoot growth, resulting in high biomass accumulation. Thus, using green nanotechnology, such endemic plants could be conserved in vitro and multiple shoots could be produced by reducing the phytohormone concentration for multiple uses, such as the production of potential secondary metabolites.


Assuntos
Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Resedaceae/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Biomassa , Nanotecnologia/métodos , Oxirredução/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/metabolismo , Prolina/metabolismo , Resedaceae/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/farmacologia
9.
Sci Rep ; 11(1): 24408, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949763

RESUMO

Some forest trees have been polyploidized to improve their traits and to supply new germplasms for breeding programs. As trees have a long juvenile stage, the early characterization of the chromosome set doubling effects is crucial for previous selection. Thus, we aimed to characterize the chemical variability of essential oils from diploid and autotetraploid germplasms (autotetraploid A and B) of Eucalyptus benthamii, as well as to evaluate their larvicidal and allelopathic effects. Autotetraploid A showed a higher essential oil yield than diploid and autotetraploid B, which did not differ quantitatively. Aromadendrene, viridiflorol and α-pinene were the major compounds in the diploid essential oil. In contrast, compounds were present in autotetraploids, such as 1,8-cineole, limonene, α-terpineol, and α-terpinyl-acetate. Essential oils from the diploid at 50-200 ppm were twice as larvicidal than those from autotetraploids against Aedes aegypti larvae. Considering the phytotoxicity bioassays using Lactuca sativa, essential oils from both ploidy levels affected root growth. Moreover, the essential oils inhibited shoot growth at all concentrations tested (187.5; 375; 750; 1500; and 3000 ppm). Autotetraploid A and B had the same effect on shoot growth as glyphosate. The essential oils had no cytogenotoxic effect on root meristematic cells of L. sativa, whereas phytotoxic potential was identified mainly in shoot growth. This work demonstrated a dramatic change in secondary metabolism (terpene composition) related to an increase in the ploidy level in Eucalyptus germplasms. In addition, we report the novelty of the chemical composition of essential oils among germplasms and their potential use as larvicidal and post-emergence weed control agents.


Assuntos
Óleo de Eucalipto/química , Óleo de Eucalipto/farmacologia , Eucalyptus/química , Eucalyptus/genética , Herbicidas , Inseticidas , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Tetraploidia , Aedes/efeitos dos fármacos , Alelopatia/efeitos dos fármacos , Animais , Bioensaio , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Melhoramento Vegetal , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento
10.
PLoS One ; 16(12): e0259585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882694

RESUMO

Optimum water availability at different growth stages is one the major prerequisites of best growth and yield production of plants. Exogenous application of plant growth regulators considered effective for normal functioning of plants under water-deficit conditions. A study was conducted to examine the influence of exogenously applied L-methionine on sunflower (Helianthus annuus L.) plants grown under water-deficit conditions. Twenty-five-day old seedlings of four sunflower cultivars, FH331, FH572, FH652 and FH623 were exposed to control (100% F.C.) and drought stress (60% F.C.) conditions. After 30-day of drought stress, L-methionine (Met; 20 mg/L) was applied as a foliar spray to control and drought stressed plants. Water deficit stress significantly reduced shoot fresh and dry weights shoot and root lengths, and chlorophyll a content in all four cultivars. While a significant increase was observed due to water deficiency in relative membrane permeability (RMP), malondialdehyde (MDA), total soluble proteins (TSP), total soluble sugars (TSS), ascorbic acid (AsA) and activity of peroxidase (POD). Although, exogenously applied Met was effective in decreasing RMP, MDA and H2O2 contents, it increased the shoot fresh weight, shoot length, chlorophyll a, chlorophyll a/b ratio, proline contents and the activities of SOD, POD and CAT enzymes in all four cultivars under water deficit stress. No change in AsA and total phenolics was observed due to foliar-applied Met under water stress conditions. Of all sunflower cultivars, cv. FH-572 was the highest and cv. FH-652 the lowest of all four cultivars in shoot fresh and dry weights as well as shoot length under drought stress conditions. Overall, foliar applied L-methionine was effective in improving the drought stress tolerance of sunflower plants that was found to be positively associated with Met induced improved growth attributes and reduced RMP, MDA and H2O2 contents under water deficit conditions.


Assuntos
Helianthus/crescimento & desenvolvimento , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Betaína/metabolismo , Clorofila A/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Helianthus/efeitos dos fármacos , Helianthus/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído , Peroxidase/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
11.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830230

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3'H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B.


Assuntos
Antocianinas/biossíntese , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Complexo do Signalossomo COP9/genética , Regulação da Expressão Gênica de Plantas , Glycine max/efeitos dos fármacos , Fósforo/farmacologia , Folhas de Planta/efeitos dos fármacos , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo do Signalossomo COP9/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Teste de Complementação Genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Fósforo/deficiência , Folhas de Planta/genética , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transgenes
12.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831328

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.


Assuntos
Cério/farmacologia , Nanopartículas Metálicas/química , Nutrientes , Fotossíntese , Pisum sativum/fisiologia , Óxido de Zinco/farmacologia , Cério/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Ribulosefosfatos/metabolismo , Zinco/metabolismo
13.
Plant Sci ; 313: 111054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763852

RESUMO

Consumption of rice grains contaminated with high concentrations of cadmium (Cd) can cause serious long-term health problems. Moreover, even low Cd concentrations present in the soil can result in the abatement of plant performance, leading to lower grain yield. Studies examining the molecular basis of plant defense against Cd-induced oxidative stress could pave the way in creating superior rice varieties that display an optimal antioxidative defense system to cope with Cd toxicity. In this study, we showed that after one day of Cd exposure, hydroponically grown rice plants exhibited adverse shoot biomass and leaf growth effects. Cadmium accumulates especially in the roots and the leaf meristematic region, leading to a disturbance of manganese homeostasis in both the roots and leaves. The leaf growth zone showed an increased amount of lipid peroxidation indicating that Cd exposure disturbed the oxidative balance. We propose that an increased expression of genes related to the glutathione metabolism such as glutathione synthetase 2, glutathione reductase and phytochelatin synthase 2, rather than genes encoding for antioxidant enzymes, is important in combating early Cd toxicity within the leaves of rice plants. Furthermore, the upregulation of two RESPIRATORY BURST OXIDASE HOMOLOG genes together with a Cd concentration-dependent increase of abscisic acid might cause stomatal closure or cell wall modification, potentially leading to the observed leaf growth reduction. Whereas abscisic acid was also elevated at long term exposure, a decrease of the growth hormone auxin might further contribute to growth inhibition and concomitantly, an increase in salicylic acid might stimulate the activity of antioxidative enzymes after a longer period of Cd exposure. In conclusion, a clear interplay between phytohormones and the oxidative challenge affect plant growth and acclimation during exposure to Cd stress.


Assuntos
Transporte Biológico/fisiologia , Cádmio/toxicidade , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Transporte Biológico/genética , Produção Agrícola/estatística & dados numéricos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Manganês/metabolismo , Oryza/efeitos dos fármacos , Folhas de Planta/genética , Brotos de Planta/genética , Poluentes do Solo/metabolismo
14.
Biomolecules ; 11(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34680145

RESUMO

Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2-13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.


Assuntos
Citocininas/farmacologia , Plantas Medicinais/crescimento & desenvolvimento , Salvia/química , Técnicas de Cultura de Tecidos , Compostos de Benzil/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Medicina Tradicional Chinesa , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química , Purinas/farmacologia , Regeneração/efeitos dos fármacos , Salvia/crescimento & desenvolvimento
15.
PLoS One ; 16(10): e0258253, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34634063

RESUMO

Current knowledge on responses of aquatic clonal plants to resource availability is largely based on studies manipulating limited resource levels, which may have failed to capture the "big picture" for aquatic clonal plants in response to resource availability. In a greenhouse experiment, we grew the floating clonal plant Spirodela polyrhiza under ten nutrient levels (i.e., 1/64×, 1/32×, 1/16×, 1/8×, 1/4×, 1/2×, 1×, 2×, 4× and 8×full-strength Hoagland solution) and examined their responses in terms of clonal growth, morphology and biomass allocations. The responses of total biomass and number of ramets to nutrient availability were unimodal. A similar pattern was found for frond mass, frond length and frond width, even though area per frond and specific frond area fluctuated greatly in response to nutrient availability. In contrast, the responses of root mass and root length to nutrient availability were U-shaped. Moreover, S. polyrhiza invested more to roots under lower nutrient concentrations. These results suggest that nutrient availability may have distinct influences on roots and fronds of the aquatic clonal plant S. polyrhiza, resulting in a great influence on the whole S. polyrhiza population.


Assuntos
Araceae/fisiologia , Nutrientes/farmacologia , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Araceae/anatomia & histologia , Araceae/efeitos dos fármacos , Araceae/crescimento & desenvolvimento , Biomassa , Células Clonais , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia
16.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684759

RESUMO

Traditionally, the supplement of organic manure in tea plantations has been a common approach to improving soil fertility and promoting terroir compounds, as manifested by the coordinated increase in yield and quality for the resulting teas. However, information regarding the effect of organic manure in the metabolome of tea plants is still inadequate. The metabolite profiles of tea shoots applied with cow manure, urea or no fertilizer were studied using gas chromatography-mass spectrometry (GC-MS). In total, 73 metabolites were detected, and the modulated metabolites included mainly amino acids, organic acids and fatty acids. In particular, glutamine, quinic acid and proline accumulated more in tea shoots in soils treated with cow manure, but octadecanoic acid, hexadecanoic acid and eicosanoic acid were drastically reduced. Pearson correlation analysis indicated that organic acids and amino acids in tea shoots were the two major metabolite groups among the three treatments. The analysis of metabolic pathways demonstrated that the cow manure treatment significantly changed the enrichment of pathways related to amino acids, sugars and fatty acids. Sensory evaluation showed that the quality of green teas was higher when the plants used to make the tea were grown in soil treated with cow manure rather than urea during spring and late summer. The results indicated that the application of cow manure in soils changed the metabolic characteristics of tea shoots and improved the qualities of the resulting teas.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Esterco/análise , Animais , Camellia sinensis/química , Bovinos , China , Fertilizantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Folhas de Planta/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Solo , Chá/química
17.
PLoS One ; 16(9): e0257172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34492083

RESUMO

As an essential element, zinc (Zn) can improve or inhibit the growth of plants depending on its concentrations. In this study, the effects of 24-Epibrassinolide (EBR), one well-known steroid phytohormone regulating plant growth and alleviating abiotic stress damage, on morphological parameters and antioxidant capacities of Sedum lineare were investigated under different Zn doses. Compared to plants only exposed to Zn, simultaneously foliar application of 0.75 µM EBR significantly improved multiple morphological characteristics and such growth-improving effects were more significant at high Zn concentrations. At a detrimental 800 µM Zn, EBR benefitted plant growth most prominently, as shown by that the stem length, fresh weight and internode length were increased by 111%, 85% and 157%, respectively; than Zn solely treated plants. EBR spray also enhanced both the activities of antioxidant enzymes such as peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR), and the contents of antioxidative agents including ascorbic acid (AsA) and glutathione (GSH), which in turn decreased the accumulation of reactive oxygen species (ROS) and alleviated the lipid peroxidation in plants. Thus, by demonstrating that EBR could help S. lineare resist high-zinc stress through strengthening the antioxidant system, this work provided a new idea for expanding the planting range of Crassulaceae plants in heavy metal contaminated soil for phytoremediation purpose in the future.


Assuntos
Antioxidantes/farmacologia , Brassinosteroides/farmacologia , Sedum/crescimento & desenvolvimento , Esteroides Heterocíclicos/farmacologia , Estresse Fisiológico , Zinco/toxicidade , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Sedum/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Superóxidos/metabolismo
18.
Plant Cell Rep ; 40(12): 2397-2407, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524480

RESUMO

KEY MESSAGE: Glycinebetaine alleviates the detrimental effects of aluminium stress by regulating aluminium uptake and translocation, maintaining PSII activity, and activating the oxidative defence, thereby maintaining the growth and development of rice. Aluminium (Al) toxicity is one of the primary growth-limiting factors that limits plant growth and crop productivity in acidic soils. Rice (Oryza sativa L.) plants are susceptible to Al stress and do not naturally accumulate glycinebetaine (GB), one of the most effective protectants. Therefore, the objective of this study was to investigate whether exogenous GB can ameliorate the detrimental effects of Al stress on rice plants. Our results showed that the growth, development and biomass of rice were clearly inhibited under Al stress. However, exogenous GB application increased rice shoot growth and photosynthetic pigments contents, maintained photosystem II (PSII) activity, and activated the antioxidant defence system under Al stress. More importantly, GB may mediate the expression of Al uptake- and translocation-related genes, including OsALS1, OsNrat1, OsSTAR1 and OsSTAR2, and the galacturonic acid contents in rice roots under Al stress. Therefore, our findings highlight exogenous GB application is a valid approach to effectively combat Al toxicity by regulating physiological and biochemical processes in crops.


Assuntos
Alumínio/toxicidade , Betaína/farmacologia , Oryza/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Alumínio/farmacocinética , Antioxidantes/metabolismo , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Hexurônicos/metabolismo , Malondialdeído/metabolismo , Oryza/genética , Oryza/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Prolina/metabolismo , Substâncias Protetoras/farmacologia , Plântula/efeitos dos fármacos , Plântula/fisiologia , Estresse Fisiológico/fisiologia
19.
Molecules ; 26(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34577004

RESUMO

The present work was aimed at studying the potential of elicitation on the accumulation of phenolic compounds in in vitro shoot cultures of Eryngium alpinum L., a protected plant from the Apiaceae family. The study examined the influence of (+)-usnic acid on the biomass growth as well as on the biosynthesis of the desired flavonoids and phenolic acids in the cultured microshoots. The phenolic compound content was determined by HPLC-DAD. The flavonoid of the highest concentration was isoquercetin, and the phenolic acids of the highest amount were rosmarinic acid, caffeic acid and 3,4-dihydroxyphenylacetic acid, both in the non-elicited and elicited biomass. Isoquercetin accumulation was efficiently increased by a longer elicitation with a lower concentration of lichenic compound (107.17 ± 4.67 mg/100 g DW) or a shorter elicitation with a higher concentration of acid (127.54 ± 11.34 and 108.37 ± 12.1 mg/100 g DW). Rosmarinic acid production generally remained high in all elicited and non-elicited microshoots. The highest content of this acid was recorded at 24 h of elicitation with 3.125 µM usnic acid (512.69 ± 4.89 mg/100 g DW). The process of elicitation with (+)-usnic acid, a well-known lichenic compound with allelopathic nature, may therefore be an effective technique of enhancing phenolic compound accumulation in alpine eryngo microshoot biomass.


Assuntos
Benzofuranos/farmacologia , Eryngium/química , Flavonoides/metabolismo , Hidroxibenzoatos/metabolismo , Brotos de Planta/química , Ácido 3,4-Di-Hidroxifenilacético/análise , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Biomassa , Ácidos Cafeicos/análise , Ácidos Cafeicos/metabolismo , Cromatografia Líquida de Alta Pressão , Cinamatos/análise , Cinamatos/metabolismo , Depsídeos/análise , Depsídeos/metabolismo , Eryngium/efeitos dos fármacos , Eryngium/crescimento & desenvolvimento , Eryngium/metabolismo , Flavonoides/análise , Hidroxibenzoatos/análise , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Quercetina/análogos & derivados , Quercetina/análise , Quercetina/metabolismo , Ácido Rosmarínico
20.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361755

RESUMO

Zinc (Zn) is an essential micronutrient for plant growth, and Zn deficiency is a global issue, especially in tropical soils. This study aimed to investigate the effects of humic acid (HA) and the Zn addition (Zn sulfate + HA) on the growth of maize and brachiaria in two contrasting Oxisols. The potential complexation of Zn sulfate by HA was evaluated by Fourier-transform infrared (FTIR) spectroscopy analysis. Zinc content and its availability in solution and the shoot and root biomass of maize and brachiaria were determined. FTIR spectroscopy revealed the complexation of Zn sulfate by HA through its S and C functional groups. In both Oxisols, solution Zn increased due to the combined use of Zn and HA. In a soil type-dependent manner, maize biomass and Zn in its shoots were affected only by the exclusive use of Zn fertilization. In the Yellow Oxisol, brachiaria growth and Zn accumulated in its shoot were positively affected by the combined use of Zn fertilization with HA. In the Oxisol with lower organic matter content, HA can assure adequate supplying of residual Zn, while increasing growth of brachiaria cultivated in sequence to maize.


Assuntos
Brachiaria/efeitos dos fármacos , Substâncias Húmicas/análise , Solo/química , Zea mays/efeitos dos fármacos , Sulfato de Zinco/farmacologia , Brachiaria/crescimento & desenvolvimento , Brasil , Fertilizantes/análise , Concentração de Íons de Hidrogênio , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Análise de Componente Principal , Espectroscopia de Infravermelho com Transformada de Fourier , Zea mays/crescimento & desenvolvimento , Sulfato de Zinco/análise , Sulfato de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA