Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
EMBO J ; 43(18): 4092-4109, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39090438

RESUMO

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.


Assuntos
Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Marchantia/genética , Marchantia/metabolismo , Ácidos Cumáricos/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Transcinamato 4-Mono-Oxigenase/genética , Anthocerotophyta/genética , Anthocerotophyta/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/crescimento & desenvolvimento , Bryopsida/enzimologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Filogenia , Embriófitas/genética , Embriófitas/metabolismo , Propionatos/metabolismo , Propanóis/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas
2.
New Phytol ; 244(1): 46-50, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160666

RESUMO

Synthetic genomics involves the design, assembly, and transfer of artificially synthesized DNA fragments into target hosts to replace the native genome and construct viable forms of life. With advances in DNA synthesis and assembly techniques, the application of synthetic genomics in viruses, bacteria, and yeast has improved our knowledge of genome organization and function. Multicellular eukaryotic organisms are characterized by larger genomes, more complex epigenetic regulation, and widespread transposable elements, making genome synthesis challenging. Recently, the first synthetic multicellular eukaryotic organism was generated in the model plant Physcomitrium patens with a partially synthetic chromosome arm. Here, we introduce the design and assembly principles of moss genome synthesis. We also discuss the remaining technical barriers in the application of synthetic genomics in seed plants.


Assuntos
Genoma de Planta , Biologia Sintética , Biologia Sintética/métodos , Genômica/métodos , Bryopsida/genética
3.
Cell Rep ; 43(8): 114524, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39046878

RESUMO

The transition from two-dimensional (2D) to 3D growth likely facilitated plants to colonize land, but its heterogeneity is not well understood. In this study, we utilized single-cell RNA sequencing to analyze the moss Physcomitrium patens, whose morphogenesis involves a transition from 2D to 3D growth. We profiled over 17,000 single cells covering all major vegetative tissues, including 2D filaments (chloronema and caulonema) and 3D structures (bud and gametophore). Pseudotime analyses revealed larger numbers of candidate genes that determine cell fates for 2D tip elongation or 3D bud differentiation. Using weighted gene co-expression network analysis, we identified a module that connects ß-type carbonic anhydrases (ßCAs) with auxin. We further validated the cellular expression patterns of ßCAs and demonstrated their roles in 3D gametophore development. Overall, our study provides insights into cellular heterogeneity in a moss and identifies molecular signatures that underpin the 2D-to-3D growth transition at single-cell resolution.


Assuntos
Bryopsida , Regulação da Expressão Gênica de Plantas , Análise de Célula Única , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Análise de Sequência de RNA/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética
4.
New Phytol ; 243(6): 2175-2186, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073122

RESUMO

Plants rely on solar energy to synthesize ATP and NADPH for photosynthetic carbon fixation and all cellular need. Mitochondrial respiration is essential in plants, but this may be due to heterotrophic bottlenecks during plant development or because it is also necessary in photosynthetically active cells. In this study, we examined in vivo changes of cytosolic ATP concentration in response to light, employing a biosensing strategy in the moss Physcomitrium patens and revealing increased cytosolic ATP concentration caused by photosynthetic activity. Plants depleted of respiratory Complex I showed decreased cytosolic ATP accumulation, highlighting a critical role of mitochondrial respiration in light-dependent ATP supply of the cytosol. Consistently, targeting mitochondrial ATP production directly, through the construction of mutants deficient in mitochondrial ATPase (complex V), led to drastic growth reduction, despite only minor alterations in photosynthetic electron transport activity. Since P. patens is photoautotrophic throughout its development, we conclude that heterotrophic bottlenecks cannot account for the indispensable role of mitochondrial respiration in plants. Instead, our results support that mitochondrial respiration is essential for ATP provision to the cytosol in photosynthesizing cells. Mitochondrial respiration provides metabolic integration, ensuring supply of cytosolic ATP essential for supporting plant growth and development.


Assuntos
Trifosfato de Adenosina , Bryopsida , Respiração Celular , Citosol , Mitocôndrias , Fotossíntese , Trifosfato de Adenosina/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Luz
5.
Plant Signal Behav ; 19(1): 2386502, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082799

RESUMO

The CLAVATA pathway plays a key role in the regulation of multicellular shoot and root meristems in flowering plants. In Arabidopsis, CLAVATA 3-like signaling peptides (CLEs) act via receptor-like kinases CLAVATA 1 and CRINKLY 4 (CR4). In the moss Physcomitrium patens, PpCLAVATA and PpCR4 were previously studied independently and shown to play conserved roles in the regulation of cell proliferation and differentiation. The plant calpain DEFECTIVE KERNEL 1 (DEK1) has been identified as another key regulator of cell division and cell fate in vascular plants and bryophytes. The functional interaction between CLAVATA, CR4, and DEK1 remains unknown. Here, we show that P. patens crinkly4 and dek1 mutants respond differently to CLE peptide treatments suggesting their distinct roles in the CLAVATA pathway. Reduced CLAVATA-mediated suppression of leafy shoot growth in Δcr4 mutants indicates that PpCR4 is involved in CLV3p perception, most likely as a receptor. The CLV3p strongly suppressed leaf vein development in Δcr4 mutants, suggesting that other receptors are involved in these processes and indicating a potential role of PpCR4 in organ sensitization to CLEs.


Assuntos
Bryopsida , Proteínas de Plantas , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/metabolismo
7.
Curr Opin Plant Biol ; 81: 102565, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38824880

RESUMO

The study of moss calyptra form and function began almost 250 years ago, but calyptra research has remained a niche endeavor focusing on only a small number of species. Recent advances have focused on calyptra cuticular waxes, which function in dehydration protection of the immature sporophyte apex. The physical presence of the calyptra also plays a role in sporophyte development, potentially via its influence on auxin transport. Progress developing genomic resources for mosses beyond the model Physcomitrium patens, specifically for species with larger calyptrae and taller sporophytes, in combination with advances in CRISPR-Cas9 genome editing will enable the influence of the calyptra on gene expression and the production of RNAs and proteins that coordinate sporophyte development to be explored.


Assuntos
Bryopsida , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/metabolismo , Regulação da Expressão Gênica de Plantas , Briófitas/crescimento & desenvolvimento , Briófitas/genética , Briófitas/metabolismo
8.
Plant J ; 119(3): 1481-1493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858852

RESUMO

Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.


Assuntos
Bryopsida , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromossomos de Plantas/genética , Ligação Proteica
9.
Curr Opin Plant Biol ; 81: 102595, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38943829

RESUMO

Studying morphological novelties offers special insights into developmental biology and evolution. The inflated calyx syndrome (ICS) is a largely unrecognized but fascinating feature of flower development, where sepals form balloon-like husks that encapsulate fruits. Despite its independent emergence in many lineages of flowering plants, the genetic and molecular mechanisms of ICS remain unknown. Early studies in the Solanaceae genus Physalis put forth key roles of MADS-box genes in ICS. However, recent work suggests these classical floral identity transcription factors were false leads. With newfound capabilities that allow rapid development of genetic systems through genomics and genome editing, Physalis has re-emerged as the most tractable model species for dissecting ICS. This review revisits current understanding of ICS and highlights how recent advancements enable a reset in the search for genetic and molecular mechanisms using unbiased, systematic approaches.


Assuntos
Flores , Flores/crescimento & desenvolvimento , Flores/genética , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
10.
Front Immunol ; 15: 1383123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799460

RESUMO

Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.


Assuntos
Fator H do Complemento , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/genética , Animais , Camundongos , Meia-Vida , Polissacarídeos/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Glicosilação , Proteínas Recombinantes , Camundongos Knockout , Camundongos Endogâmicos C57BL , Masculino
11.
J Plant Physiol ; 297: 154253, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703549

RESUMO

Moss plants appear in the early stages of land colonization and possess varying degrees of dehydration tolerance. In this study, a protein called PpFAS1.3 was identified, which contains a fasciclin 1-like domain and is essential for the moss Physcomitrium patens' response to short-term rapid dehydration. When the FAS1.3 protein was knocked out, leafyshoots showed a significant decrease in tolerance to rapid dehydration, resulting in accelerated water loss and increased membrane leakage. Phylogenetic analysis suggests that PpFAS1.3 and its homologous proteins may have originated from bacteria and are specifically found in non-vascular plants like mosses and liverworts. As a dehydration-related protein, FAS1.3 plays a significant role in regulating lipid metabolism, particularly in the synthesis of free fatty acids (FFA) and the metabolism of two phospholipids, PC and PA. This discovery highlights the close connection between PpFAS1.3 and lipid metabolism, providing new insights into the molecular mechanisms underlying plant adaptation to stresses.


Assuntos
Bryopsida , Metabolismo dos Lipídeos , Filogenia , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/metabolismo , Bryopsida/genética , Desidratação , Regulação da Expressão Gênica de Plantas , Sequência de Aminoácidos
12.
Plant J ; 119(2): 895-915, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38753873

RESUMO

Plant mitochondrial and chloroplast transcripts are subject to numerous events of specific cytidine-to-uridine (C-to-U) RNA editing to correct genetic information. Key protein factors for this process are specific RNA-binding pentatricopeptide repeat (PPR) proteins, which are encoded in the nucleus and post-translationally imported into the two endosymbiotic organelles. Despite hundreds of C-to-U editing sites in the plant organelles, no comparable editing has been found for nucleo-cytosolic mRNAs raising the question why plant RNA editing is restricted to chloroplasts and mitochondria. Here, we addressed this issue in the model moss Physcomitrium patens, where all PPR-type RNA editing factors comprise specific RNA-binding and cytidine deamination functionalities in single proteins. To explore whether organelle-type RNA editing can principally also take place in the plant cytosol, we expressed PPR56, PPR65 and PPR78, three editing factors recently shown to also function in a bacterial setup, together with cytosolic co-transcribed native targets in Physcomitrium. While we obtained unsatisfying results upon their constitutive expression, we found strong cytosolic RNA editing under hormone-inducible expression. Moreover, RNA-Seq analyses revealed varying numbers of up to more than 900 off-targets in other cytosolic transcripts. We conclude that PPR-mediated C-to-U RNA editing is not per se incompatible with the plant cytosol but that its limited target specificity has restricted its occurrence to the much less complex transcriptomes of mitochondria and chloroplast in the course of evolution.


Assuntos
Bryopsida , Cloroplastos , Citosol , Mitocôndrias , Edição de RNA , RNA de Plantas , Cloroplastos/metabolismo , Cloroplastos/genética , Citosol/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Citidina/metabolismo , Citidina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Regulação da Expressão Gênica de Plantas , Uridina/metabolismo , Uridina/genética
13.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38781445

RESUMO

The first chromosome-scale reference genome of the rare narrow-endemic African moss Physcomitrellopsis africana (P. africana) is presented here. Assembled from 73 × Oxford Nanopore Technologies (ONT) long reads and 163 × Beijing Genomics Institute (BGI)-seq short reads, the 414 Mb reference comprises 26 chromosomes and 22,925 protein-coding genes [Benchmarking Universal Single-Copy Ortholog (BUSCO) scores: C:94.8% (D:13.9%)]. This genome holds 2 genes that withstood rigorous filtration of microbial contaminants, have no homolog in other land plants, and are thus interpreted as resulting from 2 unique horizontal gene transfers (HGTs) from microbes. Further, P. africana shares 176 of the 273 published HGT candidates identified in Physcomitrium patens (P. patens), but lacks 98 of these, highlighting that perhaps as many as 91 genes were acquired in P. patens in the last 40 million years following its divergence from its common ancestor with P. africana. These observations suggest rather continuous gene gains via HGT followed by potential losses during the diversification of the Funariaceae. Our findings showcase both dynamic flux in plant HGTs over evolutionarily "short" timescales, alongside enduring impacts of successful integrations, like those still functionally maintained in extant P. africana. Furthermore, this study describes the informatic processes employed to distinguish contaminants from candidate HGT events.


Assuntos
Bryopsida , Transferência Genética Horizontal , Genoma de Planta , Filogenia , Bryopsida/genética , Genômica/métodos , Anotação de Sequência Molecular
14.
Plant J ; 119(2): 1091-1111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642374

RESUMO

Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell repeatedly executes nuclear division without cytokinesis, resulting in the development of a thallus (>100 mm) with characteristic morphology called coenocyte. Bryopsis is a representative coenocytic alga that has exceptionally high regeneration ability: extruded cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts. However, the genetic basis of the unique cell biology of Bryopsis remains poorly understood. Here, we present a high-quality assembly and annotation of the nuclear genome of Bryopsis sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14 034 protein-coding genes). Comparative genomic analyses indicate that the genes encoding BPL-1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in Bryopsis, whereas homologous genes are absent in other ulvophyceans, suggesting the basis of regeneration capability of Bryopsis. Bryopsis sp. possesses >30 kinesins but only a single myosin, which differs from other green algae that have multiple types of myosin genes. Consistent with this biased motor toolkit, we observed that the bidirectional motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in Bryopsis sp. Most genes required for cytokinesis in plants are present in Bryopsis, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion. The present genome sequence lays the foundation for experimental biology in coenocytic macroalgae.


Assuntos
Genoma de Planta , Genoma de Planta/genética , Filogenia , Clorófitas/genética , Clorófitas/fisiologia , Regeneração/genética , Bryopsida/genética , Bryopsida/fisiologia , Bryopsida/citologia , Cinesinas/genética , Cinesinas/metabolismo , Miosinas/genética , Miosinas/metabolismo
15.
Transgenic Res ; 33(1-2): 67-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573428

RESUMO

Genome editing via CRISPR/Cas has enabled targeted genetic modifications in various species, including plants. The requirement for specific protospacer-adjacent motifs (PAMs) near the target gene, as seen with Cas nucleases like SpCas9, limits its application. PAMless SpCas9 variants, designed with a relaxed PAM requirement, have widened targeting options. However, these so-call PAMless SpCas9 still show variation of editing efficiency depending on the PAM and their efficiency lags behind the native SpCas9. Here we assess the potential of a PAMless SpCas9 variant for genome editing in the model plant Physcomitrium patens. For this purpose, we developed a SpRYCas9i variant, where expression was optimized, and tested its editing efficiency using the APT as a reporter gene. We show that the near PAMless SpRYCas9i effectively recognizes specific PAMs in P. patens that are not or poorly recognized by the native SpCas9. Pattern of mutations found using the SpRYCas9i are similar to the ones found with the SpCas9 and we could not detect off-target activity for the sgRNAs tested in this study. These findings contribute to advancing versatile genome editing techniques in plants.


Assuntos
Bryopsida , Edição de Genes , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Mutação , Bryopsida/genética , Genoma de Planta/genética
16.
New Phytol ; 242(5): 1996-2010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38571393

RESUMO

The conquest of land by plants was concomitant with, and possibly enabled by, the evolution of three-dimensional (3D) growth. The moss Physcomitrium patens provides a model system for elucidating molecular mechanisms in the initiation of 3D growth. Here, we investigate whether the phytohormone ethylene, which is believed to have been a signal before land plant emergence, plays a role in 3D growth regulation in P. patens. We report ethylene controls 3D gametophore formation, based on results from exogenously applied ethylene and genetic manipulation of PpEIN2, which is a central component in the ethylene signaling pathway. Overexpression (OE) of PpEIN2 activates ethylene responses and leads to earlier formation of gametophores with fewer gametophores produced thereafter, phenocopying ethylene-treated wild-type. Conversely, Ppein2 knockout mutants, which are ethylene insensitive, show initially delayed gametophore formation with more gametophores produced later. Furthermore, pharmacological and biochemical analyses reveal auxin levels are decreased in the OE lines but increased in the knockout mutants. Our results suggest that evolutionarily, ethylene and auxin molecular networks were recruited to build the plant body plan in ancestral land plants. This might have played a role in enabling ancient plants to acclimate to the continental surfaces of the planet.


Assuntos
Bryopsida , Etilenos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Bryopsida/crescimento & desenvolvimento , Bryopsida/genética , Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Células Germinativas Vegetais/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/efeitos dos fármacos , Mutação/genética
17.
Microb Ecol ; 87(1): 49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427046

RESUMO

Moss-cyanobacteria symbioses were proposed to be based on nutrient exchange, with hosts providing C and S while bacteria provide N, but we still lack understanding of the underlying molecular mechanisms of their interactions. We investigated how contact between the ubiquitous moss Hylocomium splendens and its cyanobiont affects nutrient-related gene expression of both partners. We isolated a cyanobacterium from H. splendens and co-incubated it with washed H. splendens shoots. Cyanobacterium and moss were also incubated separately. After 1 week, we performed acetylene reduction assays to estimate N2 fixation and RNAseq to evaluate metatranscriptomes. Genes related to N2 fixation and the biosynthesis of several amino acids were up-regulated in the cyanobiont when hosted by the moss. However, S-uptake and the biosynthesis of the S-containing amino acids methionine and cysteine were down-regulated in the cyanobiont while the degradation of selenocysteine was up-regulated. In contrast, the number of differentially expressed genes in the moss was much lower, and almost no transcripts related to nutrient metabolism were affected. It is possible that, at least during the early stage of this symbiosis, the cyanobiont receives few if any nutrients from the host in return for N, suggesting that moss-cyanobacteria symbioses encompass relationships that are more plastic than a constant mutualist flow of nutrients.


Assuntos
Briófitas , Bryopsida , Cianobactérias , Simbiose , Fixação de Nitrogênio , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/microbiologia , Cianobactérias/metabolismo , Aminoácidos/metabolismo
18.
New Phytol ; 242(5): 2251-2269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501480

RESUMO

The plant cuticle is a hydrophobic barrier, which seals the epidermal surface of most aboveground organs. While the cuticle biosynthesis of angiosperms has been intensively studied, knowledge about its existence and composition in nonvascular plants is scarce. Here, we identified and characterized homologs of Arabidopsis thaliana fatty acyl-CoA reductase (FAR) ECERIFERUM 4 (AtCER4) and bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase 1 (AtWSD1) in the liverwort Marchantia polymorpha (MpFAR2 and MpWSD1) and the moss Physcomitrium patens (PpFAR2A, PpFAR2B, and PpWSD1). Although bryophyte harbor similar compound classes as described for angiosperm cuticles, their biosynthesis may not be fully conserved between the bryophytes M. polymorpha and P. patens or between these bryophytes and angiosperms. While PpFAR2A and PpFAR2B contribute to the production of primary alcohols in P. patens, loss of MpFAR2 function does not affect the wax profile of M. polymorpha. By contrast, MpWSD1 acts as the major wax ester-producing enzyme in M. polymorpha, whereas mutations of PpWSD1 do not affect the wax ester levels of P. patens. Our results suggest that the biosynthetic enzymes involved in primary alcohol and wax ester formation in land plants have either evolved multiple times independently or undergone pronounced radiation followed by the formation of lineage-specific toolkits.


Assuntos
Ceras , Ceras/metabolismo , Álcoois/metabolismo , Filogenia , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Bryopsida/genética , Bryopsida/metabolismo , Briófitas/genética , Briófitas/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Vias Biossintéticas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Aciltransferases/metabolismo , Aciltransferases/genética , Evolução Biológica , Arabidopsis/genética , Arabidopsis/metabolismo , Mutação/genética
19.
Nucleic Acids Res ; 52(8): 4276-4294, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366760

RESUMO

The bZIP60, XBP1 and HAC1 mRNAs encode transcription factors that mediate the unfolded protein response (UPR) in plants, animals and yeasts, respectively. Upon UPR, these mRNAs undergo unconventional cytoplasmic splicing on the endoplasmic reticulum (ER) to produce active transcription factors. Although cytoplasmic splicing is conserved, the ER targeting mechanism differs between XBP1 and HAC1. The ER targeting of HAC1 mRNA occurs before translation, whereas that of XBP1 mRNA involves a ribosome-nascent chain complex that is stalled when a hydrophobic peptide emerges from the ribosome; the corresponding mechanism is unknown for bZIP60. Here, we analyzed ribosome stalling on bZIP60 orthologs of plants. Using a cell-free translation system, we detected nascent peptide-mediated ribosome stalling during the translation elongation of the mRNAs of Arabidopsis, rice and Physcomitrium (moss) orthologs, and the termination-step stalling in the Selaginella (lycopod) ortholog, all of which occurred ∼50 amino acids downstream of a hydrophobic region. Transfection experiments showed that ribosome stalling contributes to cytoplasmic splicing in bZIP60u orthologs of Arabidopsis and Selaginella. In contrast, ribosome stalling was undetectable for liverwort, Klebsormidium (basal land plant), and green algae orthologs. This study highlights the evolutionary diversity of ribosome stalling and its contribution to ER targeting in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Filogenia , RNA Mensageiro , Ribossomos , Resposta a Proteínas não Dobradas , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Resposta a Proteínas não Dobradas/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Oryza/genética , Oryza/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Splicing de RNA , Bryopsida/genética , Bryopsida/metabolismo , Biossíntese de Proteínas
20.
New Phytol ; 243(3): 981-996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38415863

RESUMO

Water scarcity, resulting from climate change, poses a significant threat to ecosystems. Syntrichia ruralis, a dryland desiccation-tolerant moss, provides valuable insights into survival of water-limited conditions. We sequenced the genome of S. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relative S. caninervis. We took a genetic approach to characterize the role of an S. ruralis transcription factor, identified in transcriptomic analyses, in Arabidopsis thaliana. The genome was assembled into 12 chromosomes encompassing 21 169 protein-coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation-associated gene families, and highlighted genome-level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)-responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of the S. ruralis ortholog of ABA-insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized in Arabidopsis, acts as a negative regulator of an ABA-dependent stress response in Arabidopsis. The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.


Assuntos
Arabidopsis , Dessecação , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Filogenia , Sequência Conservada/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Bryopsida/genética , Bryopsida/fisiologia , Genes de Plantas , Estresse Fisiológico/genética , Modelos Biológicos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA