Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Stem Cell Reports ; 17(11): 2548-2564, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36306780

RESUMO

3D embryonic stem cell (ESC) aggregates self-organize into embryo-like structures named gastruloids that recapitulate the axial organization of post-implantation embryos. Crucial in this process is the symmetry-breaking event that leads to the emergence of asymmetry and spatially ordered structures from homogeneous cell aggregates. Here, we show that budesonide, a glucocorticoid drug widely used to treat asthma, prevents ESC aggregates to break symmetry. Mechanistically, the effect of budesonide is glucocorticoid receptor independent. RNA sequencing and lineage fate analysis reveal that budesonide counteracts exit from pluripotency and modifies the expression of a large set of genes associated with cell migration, A-P axis formation, and WNT signaling. This correlates with reduced phenotypic and molecular cell heterogeneity, persistence of E-CADHERIN at the cell-cell interface, and cell aggregate compaction. Our findings reveal that cell-cell adhesion properties control symmetry breaking and cell fate transition in 3D gastruloids and suggest a potential adverse effect of budesonide on embryo development.


Assuntos
Embrião de Mamíferos , Células-Tronco Embrionárias , Adesão Celular , Células-Tronco Embrionárias/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Budesonida/farmacologia , Budesonida/metabolismo
2.
Respir Res ; 23(1): 193, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902923

RESUMO

BACKGROUND: CCAAT/Enhancer Binding Protein D (CEBPD), a pleiotropic glucocorticoid-responsive transcription factor, modulates inflammatory responses. Of relevance to asthma, expression of CEBPD in airway smooth muscle (ASM) increases with glucocorticoid exposure. We sought to characterize CEBPD-mediated transcriptomic responses to glucocorticoid exposure in ASM by measuring changes observed after knockdown of CEBPD and its impact on asthma-related ASM function. METHODS: Primary ASM cells derived from four donors were transfected with CEBPD or non-targeting (NT) siRNA and exposed to vehicle control, budesonide (100 nM, 18 h), TNFα (10 ng/ml, 18 h), or both budesonide and TNFα. Subsequently, RNA-Seq was used to measure gene expression levels, and pairwise differential expression results were obtained for exposures versus vehicle and knockdown versus control conditions. Weighted gene co-expression analysis was performed to identify groups of genes with similar expression patterns across the various experimental conditions (i.e., CEBPD knockdown status, exposures). RESULTS: CEBPD knockdown altered expression of 3037 genes under at least one exposure (q-value < 0.05). Co-expression analysis identified sets of 197, 152 and 290 genes that were correlated with CEBPD knockdown status, TNFα exposure status, and both, respectively. JAK-STAT signaling pathway genes, including IL6R and SOCS3, were among those influenced by both TNFα and CEBPD knockdown. Immunoblot assays revealed that budesonide-induced IL-6R protein expression and augmented IL-6-induced STAT3 phosphorylation levels were attenuated by CEBPD knockdown in ASM. CONCLUSIONS: CEBPD modulates glucocorticoid responses in ASM, in part via modulation of IL-6 receptor signaling.


Assuntos
Asma , Glucocorticoides , Budesonida/metabolismo , Budesonida/farmacologia , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Glucocorticoides/farmacologia , Humanos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
J Med Chem ; 64(16): 11958-11971, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34378927

RESUMO

Glucocorticoids (GCs) are widely used to treat a variety of autoimmune and inflammatory diseases; however, systemic delivery of GCs is associated with side effects that affect essentially every organ system, reflecting the nearly ubiquitous expression of the glucocorticoid receptor (GR). Targeted delivery of GCs to diseased tissues using antibody-glucocorticoid conjugates (GC-ADCs) offers a therapeutic alternative to overcome these adverse effects. Herein, we describe novel classes of GCs that exhibited greater potency than dexamethasone and budesonide, a 100-fold selectivity toward the GR over other nuclear receptors, and no in vitro safety liability in pharmacology assays (hERG, AMES) and that demonstrated a substantial reduction in tumor necrosis factor-α (TNF-α) release in mice challenged with lipopolysaccharide (LPS). The site-specific conjugated GC-ADCs via cathepsin-cleavable linkers were highly stable in plasma and specifically released GCs in antigen-positive cells, suggesting that these novel GCs can serve as ADC payloads to treat autoimmune and inflammatory diseases.


Assuntos
Budesonida/análogos & derivados , Budesonida/uso terapêutico , Glucocorticoides/uso terapêutico , Imunoconjugados/uso terapêutico , Inflamação/tratamento farmacológico , Animais , Budesonida/metabolismo , Budesonida/farmacocinética , Catepsina B/metabolismo , Glucocorticoides/síntese química , Glucocorticoides/metabolismo , Glucocorticoides/farmacocinética , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Receptores de Glucocorticoides/metabolismo , Receptores da Prolactina/imunologia , Relação Estrutura-Atividade
4.
Pharm Res ; 38(9): 1601-1613, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34463937

RESUMO

PURPOSE: To develop an in vitro method to rapidly evaluate regional lung doses delivered by pharmaceutical inhalers. Currently, cascade impactor measurements are used, but these are resource intensive and require significant post processing of in vitro data to arrive at regional deposition estimates. METHODS: We present a specialized filter apparatus that mimics tracheobronchial (TB) deposition of pharmaceutical aerosols emitted by commercially available dry powder inhalers (DPIs). The filter housing includes an electrostatic neutralizer to eliminate artificial electrostatic filtration effects. Regional deposition (tracheobronchial and alveolar) for four DPIs (Onbrez Breezhaler, Flovent Diskus, Pulmicort Turbuhaler, and Asmanex Twisthaler) was estimated using cascade impactor measurements and an in silico regional deposition model. These estimates were compared to direct measurements of regional deposition as provided by the TB filter mimic and an absolute filter placed downstream of the TB filter housing, representing the alveolar dose. RESULTS: The two methods were shown to provide similar estimates of extrathoracic, tracheobronchial, and alveolar deposition, as well as total recovery of active pharmaceutical ingredients. CONCLUSIONS: Because of its design, the TB filter apparatus makes it possible to estimate regional deposition with inhalers directly using variable inhalation profiles without any additional equipment or changes to the experimental configuration. This method may be useful to expedite development of both innovative and generic drug products as it provides regional respiratory tract deposition estimates using fewer resources than exisiting methods.


Assuntos
Broncodilatadores/metabolismo , Pulmão/metabolismo , Pós/metabolismo , Administração por Inalação , Aerossóis/metabolismo , Budesonida/metabolismo , Simulação por Computador , Inaladores de Pó Seco/métodos , Desenho de Equipamento/métodos , Fluticasona/metabolismo , Humanos , Faringe/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-34225244

RESUMO

Knowledge of the metabolic profile is essential for doping control analysis in sport since most drugs are excreted after an elaborate biotransformation process. Currently, Zebrafish Water Tank (ZWT) model has been applied to investigate the metabolism of different doping agents. Nevertheless, the class of glucocorticoids has not been subjected to this model for metabolism studies. In the present work, budesonide (BUD) was applied as a pilot to investigate the metabolic pathways of glucocorticoids in the ZWT model. The BUD biotransformation in ZWT model was compared to the described metabolism in humans. Samples from ZWT experiments were collected after BUD administration and analyzed by Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS). Following the identification and characterization of all significant metabolites described for humans, it was observed that the ZWT was able to produce in a relevant amount the main target for doping control purposes: the 6ß-hydroxy BUD. In addition, prior knowledge about the lack of butyrylcholinesterase activity in the zebrafish organism was considered for the evaluation for the formation of the 16α-hydroxy prednisolone, the most intense BUD metabolite in human urine. Biotransformation of BUD by ZWT focused on metabolites with the acetal fraction preserved, including the intermediate metabolite for the 16α-hydroxy prednisolone pathway. However,analternative metabolic pathway for the complete biotransformation of the 16α-hydroxy prednisolone intermediate was not observed, leading to the absence of the major human metabolite in the ZWT model. The findings reported in this study elucidate for the first time the application and limitations of the ZWT model to evaluate the metabolism of other glucocorticoids.


Assuntos
Budesonida/metabolismo , Glucocorticoides/metabolismo , Modelos Biológicos , Animais , Biotransformação , Cromatografia Líquida/métodos , Dopagem Esportivo , Humanos , Espectrometria de Massas em Tandem , Peixe-Zebra
6.
Artigo em Inglês | MEDLINE | ID: mdl-33454440

RESUMO

A simple and sensitive HPLC method for the quantification of budesonide in skin layers was developed and validated. Budesonide was extracted from stratum corneum, epidermis and dermis by means of a mixture of acetonitrile:water (recovery > 90%). Budesonide quantification was performed with a RP-C18 column using methanol and water mixture (69:31, v/v) as mobile phase, pumped at 0.8 ml/min. The absorbance was monitored at 254 nm. The method resulted to be selective, linear in the range 0.05-5 or 10 µg/ml, precise and accurate. LLOQ resulted to be 0.05 µg/ml. The developed method appeared to be appropriate for the quantification of budesonide in skin layers at the end of in vitro permeation experiments since the recovery of the applied dose was 97 ± 1%, in line with requirement of the OECD guideline for the testing of the chemicals (Skin absorption: in vitro method).


Assuntos
Budesonida/análise , Cromatografia Líquida de Alta Pressão/métodos , Pele/química , Animais , Budesonida/química , Budesonida/metabolismo , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Pele/metabolismo , Absorção Cutânea , Suínos
7.
Dig Dis Sci ; 66(6): 1989-1997, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32654085

RESUMO

BACKGROUND: Non-responsive celiac disease (NRCD) has many aetiologies, including gluten exposure. Budesonide may be used for refractory celiac disease (RCD) and celiac crisis. AIMS: We reviewed the effectiveness of budesonide to induce clinical and histologic response in NRCD with villous atrophy (VA). METHODS: Case series of adult cases with NRCD and VA prescribed budesonide at two celiac centers. Clinical variables and mucosal recovery (i.e., normal villous architecture within 1 year of treatment) were evaluated. RESULTS: Forty-two cases [77% female, median age 45.0 (IQR 28.3-60.0) years] were included. Most common symptoms were diarrhea (64%) and abdominal pain (62%). Budesonide was initiated at 9 mg (83%) for a median duration of 16.0 weeks (IQR 6.8-25.0 weeks). In total, 57% exhibited a clinical response, positively associated with diarrhea (adjusted OR 6.08 95% CI 1.04-35.47) and negatively with fatigue (adjusted OR 0.18 95% CI 0.03-0.98). Clinical response was higher among those with dietitian counseling prior to budesonide (n = 29, 70 vs. 23%, p < 0.01). Mucosal recovery was observed in 11/24 with follow-up duodenal biopsies. There was no association between clinical response and mucosal recovery, and 79% of clinical responders had a symptomatic relapse. RCD (48%) and chronic gluten exposure (24%) were the main suspected aetiologies of NRCD. Most individuals without a clinical response subsequently received an IBS-related diagnosis. CONCLUSIONS: Budesonide may be effective to induce clinical response in NRCD presenting with diarrhea and VA, but clinical recurrence and lack of mucosal recovery are frequent after tapering. Other diagnoses, including coexisting IBS, may be considered in non-responders to budesonide therapy.


Assuntos
Anti-Inflamatórios/administração & dosagem , Budesonida/administração & dosagem , Doença Celíaca/diagnóstico , Doença Celíaca/tratamento farmacológico , Gerenciamento Clínico , Adulto , Anti-Inflamatórios/metabolismo , Budesonida/metabolismo , Doença Celíaca/metabolismo , Estudos de Coortes , Dieta Livre de Glúten/métodos , Dieta Livre de Glúten/tendências , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Seguimentos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
8.
Molecules ; 25(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105741

RESUMO

Synthetic glucocorticoids such as budesonide (BUD) are potent anti-inflammatory drugs commonly used to treat patients suffering from chronic inflammatory diseases. A previous animal study reported a higher anti-inflammatory activity with a 2-hydroxypropyl-ß-cyclodextrin (HPßCD)-based formulation of BUD (BUD:HPßCD). This study investigated, on cellular models (A549 and A-THP-1), the effect of BUD:HPßD in comparison with BUD and HPßCD on the effects induced by oxidative and inflammatory stress as well as the role of cholesterol. We demonstrated the protective effect afforded by BUD:HPßCD against cytotoxicity and ROS generation induced by oxidative and inflammatory stress. The effect observed for BUD:HPßCD was comparable to that observed with HPßCD with no major effect of cholesterol content. We also demonstrated (i) the involvement of the canonical molecular pathway including ROS generation, a decrease in PI3K/Akt activation, and decrease in phosphorylated/unphosphorylated HDAC2 in the effect induced by BUD:HPßCD, (ii) the maintenance of IL-8 decrease with BUD:HPßCD, and (iii) the absence of improvement in glucocorticoid insensitivity with BUD:HPßCD in comparison with BUD, in conditions where HDAC2 was inhibited. Resulting from HPßCD antioxidant and anticytotoxic potential and protective capacity against ROS-induced PI3K/Akt signaling and HDAC2 inhibition, BUD:HPßCD might be more beneficial than BUD alone in a context of concomitant oxidative and inflammatory stress.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Anti-Inflamatórios/química , Budesonida/química , Inibidores Enzimáticos/química , Interleucina-8/metabolismo , Oxidantes/química , Espécies Reativas de Oxigênio/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Células A549 , Anti-Inflamatórios/metabolismo , Budesonida/metabolismo , Morte Celular/efeitos dos fármacos , Colesterol/química , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Quimioterapia Combinada , Inibidores Enzimáticos/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Oxidantes/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células THP-1
9.
Eur J Pharm Biopharm ; 155: 12-21, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32717388

RESUMO

Besides deposition, pulmonary bioavailability is determined by dissolution of particles in the scarce epithelial fluid and by cellular API uptake. In the present work, we have developed an experimental in vitro model, which is combining the state-of-the-art next generation impactor (NGI), used for aerodynamic performance assessment of inhalation products, with a culture of human alveolar A549 epithelial cells to study the fate of inhaled drugs following lung deposition. The goal was to investigate five previously developed nano-milled and spray-dried budesonide formulations and to examine the suitability of the in vitro test model. The NGI dissolution cups of stages 3, 4, and 5 were transformed to accommodate cell culture inserts while assuring minimal interference with the air flow. A549 cells were cultivated at the air-liquid interface on Corning® Matrigel® -coated inserts. After deposition of aerodynamically classified powders on the cell cultures, budesonide amount was determined on the cell surface, in the interior of the cell monolayer, and in the basal solution for four to eight hours. Significant differences in the total deposited drug amount and the amount remaining on the cell surface at the end of the experiment were found between different formulations and NGI stages. Roughly 50% of budesonide was taken up by the cells and converted to a large extent to its metabolic conjugate with oleic acid for all formulations and stages. Prolonged time required for complete drug dissolution and cell uptake in case of large deposited powder amounts suggested initial drug saturation of the surfactant layer of the cell surface. Discrimination between formulations with respect to time scale of dissolution and cell uptake was possible with the present test model providing useful insights into the biopharmaceutical performance of developed formulations that may be relevant for predicting local bioavailability. The absolute quantitative result of cell uptake and permeation into the systemic compartment is unreliable, though, because of partly compromised cell membrane integrity due to particle impaction and professed leakiness of A549 monolayer tight junctions, respectively.


Assuntos
Broncodilatadores/metabolismo , Budesonida/metabolismo , Colágeno/metabolismo , Composição de Medicamentos/métodos , Laminina/metabolismo , Proteoglicanas/metabolismo , Mucosa Respiratória/metabolismo , Células A549 , Broncodilatadores/administração & dosagem , Budesonida/administração & dosagem , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colágeno/administração & dosagem , Combinação de Medicamentos , Humanos , Laminina/administração & dosagem , Proteoglicanas/administração & dosagem , Mucosa Respiratória/efeitos dos fármacos , Solubilidade
10.
AAPS PharmSciTech ; 21(3): 97, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32128636

RESUMO

Budesonide is a glucocorticoid for the treatment of ulcerative colitis (UC). The current study aims to develop a thermosensitive in situ and adhesive gel for rectal delivery of budesonide. HPMC K4M was selected as the adhesive agent based on the adhesive force and the effect on gel performance. The formulation of gel was optimized by using the central composite design-response surface methodology (CCD-RSM); a mathematical model was successfully developed to predict desired formulations as well as to analyze relationships between the amount of Pluronic F-127, Pluronic F-68, and HPMC K4M and the performances of gel. Based on CCD-RSM, a thermosensitive in situ and adhesive gel consisting of 0.002% budesonide, 0.74% HPMC, 4.87% F-68, and 19.0% F-127 was developed. Furthermore, the in vivo behavior of gel was evaluated in Sprague-Dawley rats. In comparison with budesonide solution, rectal administration of budesonide gel at 0.1 mg/kg in rats showed relative bioavailability of 230% with significant increase in rectum uptake.


Assuntos
Adesivos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Budesonida/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Adesivos/metabolismo , Administração Retal , Animais , Anti-Inflamatórios/metabolismo , Disponibilidade Biológica , Budesonida/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Géis , Masculino , Poloxâmero/administração & dosagem , Poloxâmero/metabolismo , Ratos , Ratos Sprague-Dawley , Reto/efeitos dos fármacos , Reto/metabolismo
11.
Rev Esp Enferm Dig ; 112(1): 53-58, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31880163

RESUMO

Microscopic colitis is a common cause of chronic watery diarrhea with a great impact on patient quality of life. Microscopic colitis includes two histological subtypes: collagenous colitis and lymphocytic colitis. Due to the increasing incidence and awareness of this disease over the last decades, several international guidelines have been recently published. However, there is still significant heterogeneity in the management of these patients, and treatments without solid scientific evidence support are often used in clinical practice. This article reviews the therapeutic role of budesonide in microscopic colitis and summarizes the current evidence regarding other treatments available for this disease, especially for the management of refractory patients. Finally, an updated treatment algorithm is proposed.


Assuntos
Anti-Inflamatórios/uso terapêutico , Budesonida/uso terapêutico , Colite Colagenosa/tratamento farmacológico , Colite Linfocítica/tratamento farmacológico , Corticosteroides/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/metabolismo , Antidiarreicos/uso terapêutico , Antimetabólitos/uso terapêutico , Azatioprina/uso terapêutico , Produtos Biológicos/efeitos adversos , Produtos Biológicos/uso terapêutico , Budesonida/efeitos adversos , Budesonida/metabolismo , Colite Colagenosa/patologia , Colite Linfocítica/patologia , Colite Microscópica/tratamento farmacológico , Colite Microscópica/patologia , Diarreia/etiologia , Humanos , Loperamida/uso terapêutico , Síndromes de Malabsorção/tratamento farmacológico , Mesalamina/uso terapêutico , Metotrexato/uso terapêutico , Prednisolona/uso terapêutico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Recidiva , Indução de Remissão , Fatores de Tempo
12.
Drug Deliv ; 26(1): 604-611, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31204848

RESUMO

Intra-tracheal instillation of budesonide using surfactant as a vehicle significantly decreased the incidence of bronchopulmonary dysplasia or death in preterm infants. The formularity of surfactant supplemented with budesonide and biophysical and chemical stability of the suspension has not been well reported. The aims are to investigate the biophysical and chemical stability of two surfactant preparations, Survanta and Curosurf, supplemented with budesonide. Biophysical property of the surface tension of Survanta and Survanta/budesonide suspension and of Curosurf and Curosurf/budesonide suspension was conducted by a pulsating bubble surfactometer and by a drop shape tensiometer. Chemical stability of Survanta/budesonide and of Curosurf/budesonide suspensions was tested by high-performance liquid chromatography analysis (HPLC). Pulmonary distribution of Survanta/18F-budesonide suspension was examined by a Nano/PET digital scan in rats. The Marangoni effect of Survanta, Curosurf, and budesonide was tested by digital high speed photography. For Survanta supplemented with budesonide, with a concentration ratio of ≥50, the surface tension-lowering activity was minimally affected. Similarly, the surface tension-lowering activity of Curosurf was not significantly affected by addition of budesonide, if the concentration ratio was ≥160. With these concentration ratios of both suspensions, HPLC analysis revealed no new compounds identified. Curosurf as compared to Survanta exhibited a significantly higher Marangoni effect. We conclude that with current dosage recommended for Survanta and Curosurf, both surfactant/budesonide suspensions are biophysically and chemically stable. Both surfactants can act as an effective vehicle for budesonide delivery.


Assuntos
Budesonida/química , Budesonida/metabolismo , Pulmão/metabolismo , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Animais , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Injeção Intratimpânica/métodos , Masculino , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Tensão Superficial/efeitos dos fármacos
13.
Am J Respir Cell Mol Biol ; 55(5): 623-632, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27281349

RESUMO

Lung inflammation in premature infants contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without the apparent adverse effects that occur with systemic dexamethasone therapy. Our objective was to determine budesonide potency, stability, and antiinflammatory effects in human fetal lung. We cultured explants of second-trimester fetal lung with budesonide or dexamethasone and used microscopy, immunoassays, RNA sequencing, liquid chromatography/tandem mass spectrometry, and pulsating bubble surfactometry. Budesonide suppressed secreted chemokines IL-8 and CCL2 (MCP-1) within 4 hours, reaching a 90% decrease at 12 hours, which was fully reversed 72 hours after removal of the steroid. Half-maximal effects occurred at 0.04-0.05 nM, representing a fivefold greater potency than for dexamethasone. Budesonide significantly induced 3.6% and repressed 2.8% of 14,500 sequenced mRNAs by 1.6- to 95-fold, including 119 genes that contribute to the glucocorticoid inflammatory transcriptome; some are known targets of nuclear factor-κB. By global proteomics, 22 secreted inflammatory proteins were hormonally regulated. Two glucocorticoid-regulated genes of interest because of their association with lung disease are CHI3L1 and IL1RL1. Budesonide retained activity in the presence of surfactant and did not alter its surface properties. There was some formation of palmitate-budesonide in lung tissue but no detectable metabolism to inactive 16α-hydroxy prednisolone. We concluded that budesonide is a potent and stable antiinflammatory glucocorticoid in human fetal lung in vitro, supporting a beneficial antiinflammatory response to lung-targeted budesonide:surfactant treatment of infants for the prevention of BPD.


Assuntos
Anti-Inflamatórios/farmacologia , Budesonida/farmacologia , Feto/efeitos dos fármacos , Pulmão/embriologia , Anti-Inflamatórios/metabolismo , Budesonida/metabolismo , Quimiocinas/metabolismo , Dexametasona/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pneumonia/genética , Pneumonia/patologia , Tensão Superficial/efeitos dos fármacos , Fatores de Tempo
14.
Expert Opin Pharmacother ; 17(11): 1549-59, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27157244

RESUMO

INTRODUCTION: Budesonide is a synthetic corticosteroid characterized by enhanced topical potency and limited systemic bioavailability. Its use in ulcerative colitis (UC) was limited to rectal preparations until recently when the new oral budesonide formulation incorporating the multi-matrix system technology was introduced. The purpose of this review is to evaluate the current role of oral and rectal budesonide in managing UC patients Areas covered: In this paper, we described the chemical structure and pharmacologic characteristics of the different oral and rectal budesonide preparations, provided a summary of the published trials that evaluated the efficacy and safety of budesonide in UC, and discussed the current status of its use in this population Expert opinion: Budesonide is effective in inducing remission in a subset of patients with mild-moderate UC. Nevertheless, the current evidence suggests inferiority of oral budesonide to 5-aminosalisylates (5-ASA) and systemic steroids, whereas rectal applications are comparable to other rectal steroid preparations, but still inferior to rectal 5-ASA. In clinical practice, several issues need clarification including, its exact position in the line of induction agents; the role of combining budesonide and 5-ASAs; the role of combining oral and rectal budesonide; and the role of budesonide in maintenance therapy.


Assuntos
Anti-Inflamatórios/administração & dosagem , Budesonida/administração & dosagem , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Administração Oral , Administração Retal , Animais , Anti-Inflamatórios/metabolismo , Disponibilidade Biológica , Budesonida/metabolismo , Química Farmacêutica , Colite Ulcerativa/metabolismo , Humanos , Mesalamina/administração & dosagem , Mesalamina/metabolismo , Indução de Remissão , Esteroides/administração & dosagem , Esteroides/metabolismo , Resultado do Tratamento
15.
J Aerosol Med Pulm Drug Deliv ; 29(6): 461-481, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27082824

RESUMO

BACKGROUND: The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. METHODS: The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. RESULTS: It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. CONCLUSIONS: The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.


Assuntos
Broncodilatadores/administração & dosagem , Budesonida/administração & dosagem , Simulação por Computador , Inaladores de Pó Seco , Glucocorticoides/administração & dosagem , Modelos Anatômicos , Sistema Respiratório/metabolismo , Administração por Inalação , Adulto , Aerossóis , Broncodilatadores/química , Broncodilatadores/metabolismo , Budesonida/química , Budesonida/metabolismo , Composição de Medicamentos , Glucocorticoides/química , Glucocorticoides/metabolismo , Humanos , Tamanho da Partícula , Reprodutibilidade dos Testes , Respiração , Sistema Respiratório/anatomia & histologia , Processos Estocásticos , Distribuição Tecidual
16.
Acta Pol Pharm ; 73(1): 229-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27008817

RESUMO

According to the World Anti-Doping Agency (WADA) Prohibited List, glucocorticosteroids are prohibited in competition and only when administered by oral, intravenous, intramuscular or rectal routes. Up to now, in order to differentiate whether glucocorticosteroids were administered by one of the prohibited routes or not, a specific reporting limit for urinary concentrations of parent compounds and their metabolites was established at 30 ng/mL. Additionally, the new specific regulation starting from 1 September 2014 for budesonide have been introduced that the 6ß-hydroxybudesonide shall be targeted. Budesonide is a glucocorticosteroid used mainly by inhalation for asthma management. Interestingly, anti-doping laboratory statistics show that budesonide adverse analytical findings (AAF) constitute almost 50% of all reported glucocorticosteroid AAFs, even though budesonide possesses a very low systemic activity which may cause performance enhance effects. This work presents the results of five studies of controlled budesonide administration carried out on professional athletes. The samples were analyzed by using a quantitative HPLC/MS/MS method for 16α-hydroxy-prednisolone, the most abundant budesonide metabolite in urine. Our data clearly show that inhalation of budesonide at least 12 h before a competition at therapeutic doses leads to appearance of the main budesonide metabolite in concentrations exceeding prior reporting limit for this compound. Therefore, our work strongly supports recent WADA decision not to target the main budesonide metabolite using the same reporting limit as for other glucocorticosteroids.


Assuntos
Budesonida/metabolismo , Dopagem Esportivo , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas em Tandem
17.
Pediatr Res ; 77(2): 340-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25360829

RESUMO

BACKGROUND: Pulmonary surfactant provides an alveolar surface-active film that is critical for normal lung function. Our objective was to determine in vitro film formation properties of therapeutic and infant surfactants and the influence of surfactant protein (SP)-B content. METHODS: We used a multiwell fluorescent assay measuring maximum phospholipid surface accumulation (Max), phospholipid concentration required for half-maximal film formation (½Max), and time for maximal accumulation (tMax). RESULTS: Among five therapeutic surfactants, calfactant (highest SP-B content) had film formation values similar to natural surfactant, and addition of SP-B to beractant (lowest SP-B) normalized its Max value. Addition of budesonide to calfactant did not adversely affect film formation. In tracheal aspirates of preterm infants with evolving chronic lung disease, SP-B content correlated with ½Max and tMax values, and SP-B supplementation of SP-B-deficient infant surfactant restored normal film formation. Reconstitution of normal surfactant indicated a role for both SP-B and SP-C in film formation. CONCLUSION: Film formation in vitro differs among therapeutic surfactants and is highly dependent on SP-B content in infant surfactant. The results support a critical role of SP-B for promoting surface film formation.


Assuntos
Fosfolipídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/prevenção & controle , Produtos Biológicos/metabolismo , Budesonida/metabolismo , Fluorescência , Humanos , Técnicas In Vitro , Recém-Nascido , Fosfolipídeos/uso terapêutico , Surfactantes Pulmonares/uso terapêutico
18.
Eur J Pharm Sci ; 57: 200-6, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514453

RESUMO

The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (p<0.05) longer in rat caecum content (50±11min) and dog faeces (126±17min). The in vitro method is in vivo relevant both qualitatively as all the model drugs that undergoes colonic degradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the method would either require an extension of the correlation, which most likely will require more human regional absorption studies, or by including colonic degradation rate as an input in a physiological mechanistic absorption model and evaluate if the prediction of the plasma exposure after colonic administration of the present model drugs is improved.


Assuntos
Bactérias/metabolismo , Colo/microbiologia , Fezes/microbiologia , Absorção Intestinal , Preparações Farmacêuticas/metabolismo , Administração Oral , Animais , Azetidinas/metabolismo , Benzilaminas/metabolismo , Budesonida/metabolismo , Cães , Meia-Vida , Humanos , Masculino , Metoprolol/metabolismo , Permeabilidade , Preparações Farmacêuticas/administração & dosagem , Propanolaminas/metabolismo , Ratos
19.
Nat Commun ; 4: 2965, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24351982

RESUMO

Smoothened (Smo) is a member of the Frizzled (FzD) class of G-protein-coupled receptors (GPCRs), and functions as the key transducer in the Hedgehog (Hh) signalling pathway. Smo has an extracellular cysteine-rich domain (CRD), indispensable for its function and downstream Hh signalling. Despite its essential role, the functional contribution of the CRD to Smo signalling has not been clearly elucidated. However, given that the FzD CRD binds to the endogenous Wnt ligand, it has been proposed that the Smo CRD may bind its own endogenous ligand. Here we present the NMR solution structure of the Drosophila Smo CRD, and describe interactions between the glucocorticoid budesonide (Bud) and the Smo CRDs from both Drosophila and human. Our results highlight a function of the Smo CRD, demonstrating its role in binding to small-molecule modulators.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Budesonida/metabolismo , Drosophila melanogaster , Receptores Frizzled/metabolismo , Glucocorticoides/metabolismo , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos , Receptor Smoothened , Especificidade da Espécie
20.
Int J Pharm ; 457(1): 268-74, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24055438

RESUMO

The aim of this study was to investigate the stability of four corticosteroids in the presence of human colonic bacteria to understand better their luminal behaviour when delivered orally in the treatment of inflammatory bowel disease. The stability of prednisolone, budesonide, beclometasone (17, 21) dipropionate (BDP) and its active metabolite, beclometasone-17-monopropionate (17-BMP), were investigated at three different concentrations following incubation in a mixed faecal inoculum (simulated human colonic fluid) under anaerobic conditions. Prednisolone, at all three concentrations, was completely degraded within 3 h. The degradation of budesonide progressed at a slower rate, with complete degradation occurring within 7h; the degradation of the S epimer of budesonide was faster than the R epimer. BDP degraded completely within 2 h while its active metabolite 17-BMP was comparatively stable. In contrast to the results in the faecal inoculum, all molecules were stable in the simulated colonic fluid in the absence of human faeces (control). This study demonstrates that prednisolone, BDP and budesonide are completely metabolized in simulated human colonic fluid and confirms the role of colonic bacteria in the metabolism of corticosteroids.


Assuntos
Bactérias/metabolismo , Beclometasona/metabolismo , Budesonida/metabolismo , Colo/microbiologia , Prednisolona/metabolismo , Beclometasona/análogos & derivados , Fezes/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA