Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.592
Filtrar
1.
ACS Chem Neurosci ; 15(11): 2322-2333, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38804618

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channel receptors that contribute to cognition, memory, and motor control in many organisms. The pharmacological targeting of these receptors, using small molecules or peptides, presents an important strategy for the development of drugs that can treat important human diseases, including neurodegenerative disorders. The Aplysia californica acetylcholine binding protein (Ac-AChBP) is a structural surrogate of the nAChR with high homology to the extracellular ligand binding domain of homopentameric nAChRs. In this study, we optimized protein-painting-based mass spectrometry to identify regions of interaction between the Ac-AChBP and several nAChR ligands. Using molecular dyes that adhere to the surface of a solubilized Ac-AChBP complex, we identified amino acid residues that constitute a contact site within the Ac-AChBP for α-bungarotoxin, choline, nicotine, and amyloid-ß 1-42. By integrating innovation in protein painting mass spectrometry with computational structural modeling, we present a new experimental tool for analyzing protein interactions of the nAChR.


Assuntos
Aplysia , Espectrometria de Massas , Receptores Nicotínicos , Animais , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Espectrometria de Massas/métodos , Sítios de Ligação , Ligação Proteica/fisiologia , Proteínas de Transporte/metabolismo , Bungarotoxinas/farmacologia , Bungarotoxinas/metabolismo , Bungarotoxinas/química , Acetilcolina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/química , Modelos Moleculares
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069271

RESUMO

SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in E. coli differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue. sSLURP-1 can be prepared by peptide synthesis and its amino acid sequence is identical to that of the natural protein. In view of recent NMR analysis of the conformational mobility of rSLURP-1 and cryo-electron microscopy structures of complexes of α-bungarotoxin (a three-finger snake venom protein) with Torpedo californica and α7 nAChRs, we compared conformations of sSLURP-1 and rSLURP-1 by Raman spectroscopy and CD-controlled thermal denaturation, analyzed their competition with α-bungarotoxin for binding to the above-mentioned nAChRs, compared the respective receptor complexes with computer modeling and compared their inhibitory potency on the α9α10 nAChR. The CD revealed a higher thermostability of sSLURP-1; some differences between sSLURP-1 and rSLURP-1 were observed in the regions of disulfides and tyrosine residues by Raman spectroscopy, but in binding, computer modeling and electrophysiology, the proteins were similar. Thus, sSLURP-1 and rSLURP-1 with only one additional Met residue appear close in structure and functional characteristics, being appropriate for research on nAChRs.


Assuntos
Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bungarotoxinas/metabolismo , Microscopia Crioeletrônica , Proteínas/metabolismo
3.
Nat Commun ; 13(1): 4543, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927270

RESUMO

Bites by elapid snakes (e.g. cobras) can result in life-threatening paralysis caused by venom neurotoxins blocking neuromuscular nicotinic acetylcholine receptors. Here, we determine the cryo-EM structure of the muscle-type Torpedo receptor in complex with ScNtx, a recombinant short-chain α-neurotoxin. ScNtx is pinched between loop C on the principal subunit and a unique hairpin in loop F on the complementary subunit, thereby blocking access to the neurotransmitter binding site. ScNtx adopts a binding mode that is tilted toward the complementary subunit, forming a wider network of interactions than those seen in the long-chain α-Bungarotoxin complex. Certain mutations in ScNtx at the toxin-receptor interface eliminate inhibition of neuronal α7 nAChRs, but not of human muscle-type receptors. These observations explain why ScNtx binds more tightly to muscle-type receptors than neuronal receptors. Together, these data offer a framework for understanding subtype-specific actions of short-chain α-neurotoxins and inspire strategies for design of new snake antivenoms.


Assuntos
Neurotoxinas , Receptores Nicotínicos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Elapidae , Humanos , Músculos/metabolismo , Neurotoxinas/química , Receptores Nicotínicos/metabolismo
4.
Biomed Res Int ; 2022: 3887072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837378

RESUMO

Background: Bungarus multicinctus is one of the top ten venomous snakes in China. Its venom is mainly neurotoxin-based. Novel antivenom drugs need to be further researched and developed. Objective: This study aimed to explore the molecular mechanism of Cynanchum paniculatum in treating Bungarus multicinctus bites based on network pharmacology. Material and methods. The potential active ingredients of Cynanchum paniculatum were screened and their SDF structures were obtained using the PubChem database and imported into the SwissTargetPrediction database, and targets were obtained for the antitoxin effects of Cynanchum paniculatum in the treatment of Bungarus multicinctus bites. The Cynanchum paniculatum-active compound-potential target network and protein-protein interaction network were constructed by using Cytoscape software, and then biological function analysis and KEGG pathway enrichment analysis were performed using the DAVID. Results: Seven potential active components (cynapanoside C, cynatratoside B, tomentolide A, sitosterol, sarcostin, tomentogenin, and paeonol) and 286 drug targets were obtained, including 30 key targets for the treatment of bungarotoxin toxicity. The active components mainly acted on PIK3CA, MAPK1, MAP2K1, JAK2, FYN, ACHE, CHRNA7, CHRNA4, and CHRNB2, and they antagonized the inhibitory effect of bungarotoxin on the nervous system through cholinergic synapses and the neurotrophin signaling pathway. Conclusions: Cynanchum paniculatum exerts a therapeutic effect on Bungarus multicinctus bites through multiple active components, multiple targets, and multiple pathways. The findings provide a theoretical basis for the extraction of active components of Cynanchum paniculatum and for related antivenom experiments.


Assuntos
Bungarus , Cynanchum , Animais , Antivenenos , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Bungarus/metabolismo , Cynanchum/química , Cynanchum/metabolismo , Neurotoxinas
5.
Artigo em Inglês | MEDLINE | ID: mdl-35717758

RESUMO

The Red-headed Krait (Bungarus flaviceps) is a medically important venomous snake species in Southeast Asia, while there is no specific antivenom available for its envenoming. This study investigated the venom composition through a decomplexation proteomic approach, and examined the immunoreactivity as well as cross-neutralization efficacy of two hetero-specific krait antivenoms, Bungarus candidus Monovalent Antivenom (BcMAV) and Bungarus fasciatus Monovalent Antivenom (BfMAV), against the venom of B. flaviceps from Peninsular Malaysia. A total of 43 non-redundant proteoforms belonging to 10 toxin families were identified in the venom proteome, which is dominated by phospholipases A2 including beta-bungarotoxin lethal subunit (56.20 % of total venom proteins), Kunitz-type serine protease inhibitors (19.40 %), metalloproteinases (12.85 %) and three-finger toxins (7.73 %). The proteome varied in quantitative aspect from the earlier reported Indonesian (Sumatran) sample, suggesting geographical venom variation. BcMAV and BfMAV were immunoreactive toward the B. flaviceps venom, with BcMAV being more efficacious in immunological binding. Both antivenoms cross-neutralized the venom lethality with varying efficacy, where BcMAV was more potent than BfMAV by ~13 times (normalized potency: 38.04 mg/g vs. 2.73 mg/g, defined as the venom amount completely neutralized by one-gram antivenom protein), supporting the potential utility of BcMAV for para-specific neutralization against B. flaviceps venom.


Assuntos
Antivenenos , Bungarus , Animais , Antivenenos/química , Antivenenos/farmacologia , Bungarotoxinas/metabolismo , Bungarotoxinas/toxicidade , Bungarus/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Peçonhas/metabolismo
6.
Elife ; 112022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575460

RESUMO

Drosophila nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that represent a target for insecticides. Peptide neurotoxins are known to block nAChRs by binding to their target subunits, however, a better understanding of this mechanism is needed for effective insecticide design. To facilitate the analysis of nAChRs we used a CRISPR/Cas9 strategy to generate null alleles for all ten nAChR subunit genes in a common genetic background. We studied interactions of nAChR subunits with peptide neurotoxins by larval injections and styrene maleic acid lipid particles (SMALPs) pull-down assays. For the null alleles, we determined the effects of α-Bungarotoxin (α-Btx) and ω-Hexatoxin-Hv1a (Hv1a) administration, identifying potential receptor subunits implicated in the binding of these toxins. We employed pull-down assays to confirm α-Btx interactions with the Drosophila α5 (Dα5), Dα6, Dα7 subunits. Finally, we report the localisation of fluorescent tagged endogenous Dα6 during Drosophila CNS development. Taken together, this study elucidates native Drosophila nAChR subunit interactions with insecticidal peptide toxins and provides a resource for the in vivo analysis of insect nAChRs.


Assuntos
Inseticidas , Receptores Nicotínicos , Animais , Bungarotoxinas/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Inseticidas/toxicidade , Neurotoxinas , Peptídeos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
7.
Cells ; 10(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943798

RESUMO

The perturbation of nicotinic cholinergic receptors is thought to underlie many neurodegenerative and neuropsychiatric disorders, such as Alzheimer's and schizophrenia. We previously identified that the tumor suppressor gene, MEN1, regulates both the expression and synaptic targeting of α7 nAChRs in the mouse hippocampal neurons in vitro. Here we sought to determine whether the α7 nAChRs gene expression reciprocally regulates the expression of menin, the protein encoded by the MEN1 gene, and if this interplay impacts learning and memory. We demonstrate here that α7 nAChRs knockdown (KD) both in in vitro and in vivo, initially upregulated and then subsequently downregulated menin expression. Exogenous expression of menin using an AAV transduction approach rescued α7 nAChRs KD mediated functional and behavioral deficits specifically in hippocampal (CA1) neurons. These effects involved the modulation of the α7 nAChR subunit expression and functional clustering at the synaptic sites. Our data thus demonstrates a novel and important interplay between the MEN1 gene and the α7 nAChRs in regulating hippocampal-dependent learning and memory.


Assuntos
Região CA1 Hipocampal/metabolismo , Memória , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Bungarotoxinas/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese , Especificidade de Órgãos , Fenótipo , Proteínas Proto-Oncogênicas/genética , Sinapses/metabolismo , Sinaptotagmina I/metabolismo
8.
Cell ; 184(8): 2121-2134.e13, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33735609

RESUMO

The α7 nicotinic acetylcholine receptor plays critical roles in the central nervous system and in the cholinergic inflammatory pathway. This ligand-gated ion channel assembles as a homopentamer, is exceptionally permeable to Ca2+, and desensitizes faster than any other Cys-loop receptor. The α7 receptor has served as a prototype for the Cys-loop superfamily yet has proven refractory to structural analysis. We present cryo-EM structures of the human α7 nicotinic receptor in a lipidic environment in resting, activated, and desensitized states, illuminating the principal steps in the gating cycle. The structures also reveal elements that contribute to its function, including a C-terminal latch that is permissive for channel opening, and an anionic ring in the extracellular vestibule that contributes to its high conductance and calcium permeability. Comparisons among the α7 structures provide a foundation for mapping the gating cycle and reveal divergence in gating mechanisms in the Cys-loop receptor superfamily.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Cálcio/metabolismo , Membrana Celular/química , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/genética
9.
J Neurochem ; 158(6): 1223-1235, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32648941

RESUMO

The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.


Assuntos
Bungarotoxinas/química , Bungarotoxinas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Serpentes , Especificidade da Espécie
10.
Sci Rep ; 10(1): 14142, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839510

RESUMO

Venom gland is a highly efficient venom production system to maintain their predatory arsenal. Venom toxins mRNA has been shown to increase abruptly in snake after venom expenditure, while the dynamics of venom accumulation during synthesis are poorly understood. Here, PacBio long-read sequencing, Illumina RNA sequencing (RNA-seq), and label-free proteome quantification were used to investigate the composition landscape and time- and temperature-dependent dynamics changes of the Bungarus multicinctus venom gland system. Transcriptome data (19.5223 Gb) from six adult B. multicinctus tissues were sequenced using PacBio RS II to generate a reference assembly, and average 7.28 Gb of clean RNA-seq data was obtained from venom glands by Illumina sequencing. Differentially expressed genes (DEGs) mainly were protein processing rather than venom toxins. Post-translational modifications provided the evidence of the significantly different proportions of toxins in the venom proteome with the changing of replenishment time and temperature, but constant of venom toxins mRNA in the venom gland transcriptome. Dynamic of toxins and genes involved in venom gland contraction suggesting the formation of the mature venom gland system would take at least 9 days. In addition, 59 toxin processing genes were identified, peptidylprolyl isomerase B of which underwent positive selection in Toxicofera. These results provide a reference for determining the extraction time of venom, production of polyclonal and monoclonal antibody for precise treatment plans of venomous snakebites, and construction of an in vitro synthesis system for snake venom protein.


Assuntos
Bungarotoxinas/genética , Bungarotoxinas/metabolismo , Bungarus/metabolismo , Regulação da Expressão Gênica/genética , Animais , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Peptidilprolil Isomerase/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Temperatura , Transcriptoma/genética
11.
Biochem Biophys Res Commun ; 532(1): 127-133, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32828540

RESUMO

Evidence of a complex formation is a crucial step in the structural studies of ligand-receptor interactions. Here we presented a simple and fast approach for qualitative screening of the complex formation between the chimeric extracellular domain of the nicotinic acetylcholine receptor (α7-ECD) and three-finger proteins. Complex formation of snake toxins α-Bgtx and WTX, as well as of recombinant analogs of human proteins Lynx1 and SLURP-1, with α7-ECD was confirmed using fluorescently labeled ligands and size-exclusion chromatography with simultaneous absorbance and fluorescence detection. WTX/α7-ECD complex formation also was confirmed by cryo-EM. The proposed approach could easily be adopted to study the interaction of other receptors with their ligands.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Bungarotoxinas/química , Bungarotoxinas/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Cromatografia em Gel , Microscopia Crioeletrônica , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Corantes Fluorescentes , Humanos , Ligantes , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Ressonância de Plasmônio de Superfície , Receptor Nicotínico de Acetilcolina alfa7/ultraestrutura
12.
Dokl Biochem Biophys ; 491(1): 81-84, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32483757

RESUMO

Using electrophysiology, the effect of nicotinic acetylcholine receptor (nAChR) ligands on acetylcholine-induced depolarization in the neurons of Helix lucorum snail was studied. It was found that the α-conotoxin PnIA [R9, L10], a selective antagonist of α7 nAChR, and α-cobratoxin (antagonist of α7 and muscle-type nAChR) suppressed neuronal depolarization. Fluorescence microscopy showed staining of the neurons with fluorescently labeled α-bungarotoxin; this staining was reduced by pretreatment with α-cobratoxin. Induced depolarization was also suppressed by α-conotoxin RgIA, a selective inhibitor of α9 nAChR. In contrast to Lymnaea stagnalis nAChR, which are weakly sensitive to neurotoxin II and α-conotoxin GI, antagonists of muscle-type nAChR, H. lucorum receptors were most effectively inhibited by these antagonists. The results obtained, as well as the previously found sensitivity of the receptors studied in this work to muscarinic receptor ligands, indicate an unusual atypical pharmacological profile of H. lucorum nAChR.


Assuntos
Neurônios/metabolismo , Receptores Colinérgicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/metabolismo , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bungarotoxinas/metabolismo , Caracois Helix , Ligantes , Microscopia Confocal , Microscopia de Fluorescência , Neurotoxinas/metabolismo , Piridinas/farmacologia , Transdução de Sinais
13.
Neuron ; 106(6): 952-962.e5, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32275860

RESUMO

The nicotinic acetylcholine receptor, a pentameric ligand-gated ion channel, converts the free energy of binding of the neurotransmitter acetylcholine into opening of its central pore. Here we present the first high-resolution structure of the receptor type found in muscle-endplate membrane and in the muscle-derived electric tissues of fish. The native receptor was purified from Torpedo electric tissue and functionally reconstituted in lipids optimal for cryo-electron microscopy. The receptor was stabilized in a closed state by the binding of α-bungarotoxin. The structure reveals the binding of a toxin molecule at each of two subunit interfaces in a manner that would block the binding of acetylcholine. It also reveals a closed gate in the ion-conducting pore, formed by hydrophobic amino acid side chains, located ∼60 Å from the toxin binding sites. The structure provides a framework for understanding gating in ligand-gated channels and how mutations in the acetylcholine receptor cause congenital myasthenic syndromes.


Assuntos
Bungarotoxinas/metabolismo , Órgão Elétrico/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestrutura , Animais , Sítios de Ligação , Bungarotoxinas/farmacologia , Carbacol/farmacologia , Microscopia Crioeletrônica , Conformação Molecular , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Conformação Proteica , Receptores Nicotínicos/efeitos dos fármacos , Torpedo
14.
Neuropharmacology ; 160: 107660, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31163179

RESUMO

The ten types of nicotinic acetylcholine receptor α-subunits show substantial sequence homology, yet some types confer high affinity for α-bungarotoxin, whereas others confer negligible affinity. Combining sequence alignments with structural data reveals three residues unique to α-toxin-refractory α-subunits that coalesce within the 3D structure of the α4ß2 receptor and are predicted to fit between loops I and II of α-bungarotoxin. Mutating any one of these residues, Lys189, Ile196 or Lys153, to the α-toxin-permissive counterpart fails to confer α-bungarotoxin binding. However, mutating both Lys189 and Ile196 affords α-bungarotoxin binding with an apparent dissociation constant of 104 nM, while combining mutation of Lys153 reduces the dissociation constant to 22 nM. Analogous residue substitutions also confer high affinity α-bungarotoxin binding upon α-toxin-refractory α2 and α3 subunits. α4ß2 receptors engineered to bind α-bungarotoxin exhibit slow rates of α-toxin association and dissociation, and competition by cholinergic ligands typical of muscle nicotinic receptors. Receptors engineered to bind α-bungarotoxin co-sediment with muscle nicotinic receptors on sucrose gradients, and mirror single channel signatures of their α-toxin-refractory counterparts. Thus the inability of α-bungarotoxin to bind to neuronal nicotinic receptors arises from three unique and interdependent residues that coalesce within the receptor's 3D structure.


Assuntos
Bungarotoxinas/metabolismo , Neurônios/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Sítios de Ligação , Bungarotoxinas/química , Células HEK293 , Humanos , Ligantes , Conformação Molecular , Mutação , Receptores Nicotínicos/genética
15.
Biochem J ; 476(8): 1285-1302, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30944155

RESUMO

αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α-δ subunits. Three isoforms (αδ-BgTx-1-3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17-0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve-muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α-δ site as compared with α-ε or α-γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs.


Assuntos
Bungarotoxinas/química , Bungarus , Proteínas de Peixes/química , Proteínas Musculares/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Torpedo
16.
Neurosci Lett ; 690: 126-131, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30308236

RESUMO

INTRODUCTION: CHRFAM7A is a uniquely-human gene that encodes a human-specific variant of the alpha-7 nicotinic acetylcholine receptor (α7nAchR). While the homopentameric α7nAChR consists of 5 equal subunits, previous studies demonstrated that CHRFAM7A expression disrupts the formation of α7nAChR homopentamers. Here we use a rat neuronal cell line expressing CHRFAM7A and a transgenic mouse expressing CHRFAM7A to define the alpha-bungarotoxin (α-BTX) binding in vitro and in vivo. METHODS: Rat PC12 cells were stably transfected with human CHRFAM7A. α-BTX, a protein that irreversibly binds the α7nAchR, was utilized to assess the capacity for CHRFAM7A to interfere with α 7AchR subunits using immunohistochemistry and flow cytometry. To evaluate the effects of CHRFAM7A on α7nAchR at the neuromuscular junction in vivo, transgenic mice were engineered to express the uniquely human gene CHRFAM7A under the control of the EF1-α promoter. Using this model, muscle was harvested and CHRFAM7A and CHRNA7 gene expression evaluated by PCR. Binding of α-BTX to the α7nAchR in muscle was compared in sibling-matched wild-type C57 mice by immunostaining the neuromuscular junction using α-BTX and neurofilament antibodies. RESULTS: Expression of CHRFAM7A in transfected, but not vector cells, was confirmed by PCR and by immunoblotting using an antibody we raised to a peptide sequence unique to CHRFAM7A. CHRFAM7A decreased α-BTX binding as detected by immunohistochemistry and flow cytometry. In vivo, α-BTX co-stained with neurofilament at the neuromuscular junction in wild-type mice, however, α-BTX staining was decreased at the neuromuscular junction of CHRFAM7A transgenic mice. CONCLUSION: CHRFAM7A expression interferes with the binding of α7nAchR to α-BTX. Understanding the contribution of this uniquely human gene to human disease will be important in the identification of potential therapeutic targets.


Assuntos
Bungarotoxinas/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Células Cultivadas , Humanos , Filamentos Intermediários/imunologia , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Ratos , Receptor Nicotínico de Acetilcolina alfa7/biossíntese , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/imunologia
17.
J Proteomics ; 193: 243-254, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30385415

RESUMO

The proteome of the Pakistani B. sindanus venom was investigated with reverse-phase HPLC and nano-ESI-LCMS/MS analysis. At least 36 distinct proteins belonging to 8 toxin protein families were identified. Three-finger toxin (3FTx), phospholipase A2 (including ß-bungarotoxin A-chains) and Kunitz-type serine protease inhibitor (KSPI) were the most abundant, constituting ~95% of total venom proteins. The other toxin proteins of low abundance are snake venom metalloproteinase (SVMP), L-amino acid oxidase (LAAO), acetylcholinesterase (AChE), vespryn and cysteine-rich secretory protein (CRiSP). The venom was highly lethal to mice with LD50 values of 0.04 µg/g (intravenous) and 0.15 µg/g (subcutaneous). The 3FTx proteins are diverse, comprising kappa-neurotoxins, neurotoxin-like protein, non-conventional toxins and muscarinic toxin-like proteins. Kappa-neurotoxins and ß-bungarotoxins represent the major toxins that mediate neurotoxicity in B. sindanus envenoming. Alpha-bungarotoxin, commonly present in the Southeast Asian krait venoms, was undetected. The Indian VINS Polyvalent Antivenom (VPAV) was immunoreactive toward the venom, and it moderately cross-neutralized the venom lethality (potency = 0.25 mg/ml). VPAV was able to reverse the neurotoxicity and prevent death in experimentally envenomed mice, but the recovery time was long. The unique toxin composition of B. sindanus venom may be considered in the formulation of a more effective pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: Bungarus sindanus, an endemic krait species distributed mainly in the Sindh Province of Pakistan is a cause of snake envenomation. Its specific antivenom is, however, lacking. The proteomic study of its venom revealed a substantial presence of κ-bungarotoxins and ß-bungarotoxins. The toxin profile corroborates the potent neurotoxicity and lethality of the venom tested in vivo. The heterologous Indian VINS polyvalent antivenom (VPAV) cross-reacted with B. sindanus venom and cross-neutralized the venom neurotoxicity and lethality in mice, albeit the efficacy was moderate. The findings imply that B. sindanus and the phylogenetically related B. caeruleus of India share certain venom epitopes. Research should be advanced to improve the efficacy spectrum of a pan-regional polyspecific antivenom.


Assuntos
Antivenenos , Bungarotoxinas , Bungarus/metabolismo , Proteoma , Animais , Antivenenos/química , Antivenenos/farmacologia , Bungarotoxinas/antagonistas & inibidores , Bungarotoxinas/metabolismo , Bungarotoxinas/toxicidade , Reações Cruzadas , Camundongos , Paquistão , Proteoma/antagonistas & inibidores , Proteoma/metabolismo , Proteoma/toxicidade
18.
Sci Rep ; 8(1): 17795, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542057

RESUMO

In majority of snakebite cases, the snake responsible for the bite remains unidentified. The traditional snakebite diagnostics method relies upon clinical symptoms and blood coagulation assays that do not provide accurate diagnosis which is important for epidemiological as well as diagnostics point of view. On the other hand, high batch-to-batch variations in antibody performance limit its application for diagnostic assays. In recent years, nucleic acid aptamers have emerged as a strong chemical rival of antibodies due to several obvious advantages, including but not limited to in vitro generation, synthetic nature, ease of functionalization, high stability and adaptability to various diagnostic formats. In the current study, we have rationally truncated an aptamer developed for α-Toxin of Bungarus multicinctus and demonstrated its utility for the detection of venom of Bungarus caeruleus. The truncated aptamer α-Tox-T2 (26mer) is found to have greater affinity than its 40-mer parent counterpart α-Tox-FL. The truncated aptamers are characterized and compared with parent aptamer for their binding, selectivity, affinity, alteration in secondary structure and limit of detection. Altogether, our findings establish the cross-species application of a DNA aptamer generated for α-Toxin of Bungarus multicinctus (a snake found in Taiwan and China) for the reliable detection of venom of Bungarus caeruleus (a snake found in the Indian subcontinent).


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Bungarotoxinas/metabolismo , Bungarus/metabolismo , Venenos Elapídicos/metabolismo , Mordeduras de Serpentes/metabolismo , Animais , Anticorpos/metabolismo , Antivenenos/metabolismo , China , Índia , Taiwan
19.
J Proteome Res ; 17(11): 3959-3975, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30285449

RESUMO

The α7-nicotinic acetylcholine receptor (α7-nAChR) is a ligand-gated ion channel that is expressed widely in vertebrates and is the principal high-affinity α-bungarotoxin (α-bgtx) binding protein in the mammalian CNS. α7-nAChRs associate with proteins that can modulate its properties. The α7-nAChR interactome is the summation of proteins interacting or associating with α7-nAChRs in a protein complex. To identify an α7-nAChR interactome in neural tissue, we isolated α-bgtx-affinity protein complexes from wild-type and α7-nAChR knockout (α7 KO) mouse whole brain tissue homogenates using α-bgtx-affinity beads. Affinity precipitated proteins were trypsinized and analyzed with an Orbitrap Fusion mass spectrometer. Proteins isolated with the α7-nAChR specific ligand, α-bgtx, were determined to be α7-nAChR associated proteins. The α7-nAChR subunit and 120 additional proteins were identified. Additionally, 369 proteins were identified as binding to α-bgtx in the absence of α7-nAChR expression, thereby identifying nonspecific proteins for α7-nAChR investigations using α-bgtx enrichment. These results expand on our previous investigations of α7-nAChR interacting proteins using α-bgtx-affinity bead isolation by controlling for differences between α7-nAChR and α-bgtx-specific proteins, developing an improved protein isolation methodology, and incorporating the latest technology in mass spectrometry. The α7-nAChR interactome identified in this study includes proteins associated with the expression, localization, function, or modulation of α7-nAChRs, and it provides a foundation for future studies to elucidate how these interactions contribute to human disease.


Assuntos
Encéfalo/metabolismo , Bungarotoxinas/química , Mapeamento de Interação de Proteínas/métodos , Subunidades Proteicas/química , Proteoma/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/química , Animais , Encéfalo/citologia , Bungarotoxinas/metabolismo , Cromatografia de Afinidade , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/análise , Ligação Proteica , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Proteólise , Proteoma/genética , Proteômica/métodos , Receptor Nicotínico de Acetilcolina alfa7/deficiência , Receptor Nicotínico de Acetilcolina alfa7/genética
20.
ACS Chem Biol ; 13(9): 2568-2576, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30059207

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that play a central role in neuronal and neuromuscular signal transduction. Here, we have developed FANG ligands, fibronectin antibody-mimetic nicotinic acetylcholine receptor-generated ligands, using mRNA display. We generated a 1 trillion-member primary e10FnIII library to target a stabilized α1 nicotinic subunit (α211). This library yielded 270000 independent potential protein binding ligands. The lead sequence, α1-FANG1, represented 25% of all library sequences, showed the highest-affinity binding, and competed with α-bungarotoxin (α-Btx). To improve this clone, a new library based on α1-FANG1 was subjected to heat, protease, binding, off-rate selective pressures, and point mutations. This resulted in α1-FANG2 and α1-FANG3. These proteins bind α211 with KD values of 3.5 nM and 670 pM, respectively, compete with α-Btx, and show improved subunit specificity. α1-FANG3 is thermostable ( Tm = 62 °C) with a 6 kcal/mol improvement in folding free energy compared with that of the parent α1-FANG1. α1-FANG3 competes directly with the α-Btx binding site of intact neuromuscular heteropentamers [(α1)2ß1γδ] in mammalian culture-derived cellular membranes and in Xenopus laevis oocytes expressing these nAChRs. This work demonstrates that mRNA display against a monomeric ecto-domain of a pentamer has the capability to select ligands that bind that subunit in both a monomeric and a pentameric context. Overall, our work provides a route to creating a new family of stable, well-behaved proteins that specifically target this important receptor family.


Assuntos
Bungarotoxinas/metabolismo , Fibronectinas/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Fibronectinas/genética , Biblioteca Gênica , Humanos , Ligantes , Camundongos , Mutação Puntual , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA