Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biochemistry ; 63(13): 1663-1673, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885634

RESUMO

The mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from Ideonella sakaiensis carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants. Using consensus design, we generated several improved variants that exhibit over 10-fold greater whole-cell activity than wild-type (WT) MHETase. This is revealed to be largely due to increased soluble expression, which biochemical and structural analysis indicates is due to improved protein folding.


Assuntos
Burkholderiales , Burkholderiales/enzimologia , Burkholderiales/genética , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Hidrolases/metabolismo , Hidrolases/genética , Hidrolases/química , Solubilidade , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Engenharia de Proteínas/métodos , Dobramento de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Modelos Moleculares
2.
Biochemistry ; 63(13): 1599-1607, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38907702

RESUMO

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors. In this work, we further expand the capabilities of the Chi.Bio system by enabling continuous pH monitoring and control through hardware and software modifications. For hardware modifications, we sourced low-cost, commercial pH circuits and made straightforward modifications to the Chi.Bio head plate to enable continuous pH monitoring. For software integration, we introduced closed-loop feedback control of the pH measured inside the Chi.Bio reactors and integrated a pH-control module into the existing Chi.Bio user interface. We demonstrated the utility of pH control through the small-scale depolymerization of the synthetic polyester, poly(ethylene terephthalate) (PET), using a benchmark cutinase enzyme, and compared this to 250 mL bioreactor hydrolysis reactions. The results in terms of PET conversion and rate, measured both by base addition and product release profiles, are statistically equivalent, with the Chi.Bio system allowing for a 20-fold reduction of purified enzyme required relative to the 250 mL bioreactor setup. Through inexpensive modifications, the ability to conduct pH control in Chi.Bio reactors widens the potential slate of biochemical reactions and biological cultivations for study in this system, and may also be adapted for use in other bioreactor platforms.


Assuntos
Reatores Biológicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Burkholderiales/enzimologia , Burkholderiales/metabolismo , Software
3.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696960

RESUMO

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Assuntos
Biodegradação Ambiental , Hidrolases de Éster Carboxílico , Poliuretanos , Reciclagem , Poliuretanos/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Burkholderiales/enzimologia , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Plásticos/química , Plásticos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Poliésteres
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366029

RESUMO

Wildfires affect soils in multiple ways, leading to numerous challenges for colonizing microorganisms. Although it is thought that fire-adapted microorganisms lie at the forefront of postfire ecosystem recovery, the specific strategies that these organisms use to thrive in burned soils remain largely unknown. Through bioactivity screening of bacterial isolates from burned soils, we discovered that several Paraburkholderia spp. isolates produced a set of unusual rhamnolipid surfactants with a natural methyl ester modification. These rhamnolipid methyl esters (RLMEs) exhibited enhanced antimicrobial activity against other postfire microbial isolates, including pyrophilous Pyronema fungi and Amycolatopsis bacteria, compared to the typical rhamnolipids made by organisms such as Pseudomonas spp. RLMEs also showed enhanced surfactant properties and facilitated bacterial motility on agar surfaces. In vitro assays further demonstrated that RLMEs improved aqueous solubilization of polycyclic aromatic hydrocarbons, which are potential carbon sources found in char. Identification of the rhamnolipid biosynthesis genes in the postfire isolate, Paraburkholderia kirstenboschensis str. F3, led to the discovery of rhlM, whose gene product is responsible for the unique methylation of rhamnolipid substrates. RhlM is the first characterized bacterial representative of a large class of integral membrane methyltransferases that are widespread in bacteria. These results indicate multiple roles for RLMEs in the postfire lifestyle of Paraburkholderia isolates, including enhanced dispersal, solubilization of potential nutrients, and inhibition of competitors. Our findings shed new light on the chemical adaptations that bacteria employ to navigate, grow, and outcompete other soil community members in postfire environments.


Assuntos
Antibacterianos , Incêndios , Glicolipídeos , Microbiologia do Solo , Tensoativos , Tensoativos/metabolismo , Glicolipídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Burkholderiales/metabolismo , Burkholderiales/genética , Adaptação Fisiológica , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
5.
J Proteomics ; 279: 104888, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965770

RESUMO

Synthetic plastics, like polyethylene terephthalate (PET), have become an essential part of modern life. Many of these products are remarkably persistent in the environment, and the accumulation in the environment is recognised as a major threat. Therefore, an increasing interest has been focusing on the screening for organisms able to degrade and assimilate the plastic. Ideonella sakaiensis originally isolated from a plastisphere has been reported as a bacterium that was solely thriving on the degradation on PET films. The processes affected by the presence of PET and its monomeric substances terephthalic acid, ethylene glycol, ethyl glycolate, and sodium glyoxylate monohydrate were elucidated by analysis of differential protein expression. The exposure of PET and its monomers induced the MHETase and affect two major pathways: the TCA cycle and the ß-oxidation pathway. The increased expression of proteins directly or indirectly involved in these pathways suggests their underlying importance in the degradation of PET by I. sakaiensis since these proteins are mechanistically supporting the enzymes involved in the degradation of PET and its monomers.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Proteômica , Burkholderiales/metabolismo , Hidrolases/metabolismo
6.
Commun Biol ; 6(1): 39, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639437

RESUMO

The large-scale preparation of Polyehylene terephthalate (PET) hydrolysing enzymes in low-cost is critical for the biodegradation of PET in industry. In the present study, we demonstrate that the post-translational glycosylation of Pichia pastoris makes it a remarkable host for the heterologous expression of PETase from Ideonella sakaiensis 201-F6 (IsPETase). Taking advantage of the abundant N- and O-linked glycosylation sites in IsPETase and the efficient post-translational modification in endoplasmic reticulum, IsPETase is heavily glycosylated during secretory expression with P. pastoris, which improves the specific activity and thermostability of the enzyme dramatically. Moreover, the specific activity of IsPETase increased further after the bulky N-linked polysaccharide chains were eliminated by Endo-ß-N-acetylglucosaminidase H (Endo H). Importantly, the partially deglycosylated IsPETase still maintained high thermostability because of the remaining mono- and oligo-saccharide residues on the protein molecules. Consequently, the partially deglycosylated IsPETase was able to be applied at 50 °C and depolymerized raw, untreated PET flakes completely in 2 to 3 days. This platform was also applied for the preparation of a famous variant of IsPETase, Fast-PETase, and the same result was achieved. Partially deglycosylated Fast-PETase demonstrates elevated efficiency in degrading postconsumer-PET trays under 55 °C than 50 °C, the reported optimal temperature of Fast-PETase. The present study provides a strategy to modulate thermostable IsPETase through glycosylation engineering and paves the way for promoting PET biodegradation from laboratories to factories.


Assuntos
Burkholderiales , Hidrolases , Hidrolases/química , Burkholderiales/metabolismo , Processamento de Proteína Pós-Traducional , Polissacarídeos
7.
Biochemistry ; 62(2): 437-450, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35951410

RESUMO

The improved production, recycling, and removal of plastic waste, such as polyethylene terephthalate (PET), are pressing environmental and economic issues for society. Biocatalytic (enzymatic) PET depolymerization is potentially a sustainable, low-energy solution to PET recycling, especially when compared with current disposal methods such as landfills, incineration, or gasification. IsPETase has been extensively studied for its use in PET depolymerization; however, its evolution from cutinases is not fully understood, and most engineering studies have neglected the majority of the available sequence space remote from the active site. In this study, ancestral protein reconstruction (ASR) has been used to trace the evolutionary trajectory from ancient serine hydrolases to IsPETase, while ASR and the related design approach, protein repair one-stop shop, were used to identify enzyme variants with improved activity and stability. Kinetic and structural characterization of these variants reveals new insights into the evolution of PETase activity and the role of second-shell mutations around the active site. Among the designed and reconstructed variants, we identified several with melting points 20 °C higher than that of IsPETase and two variants with significantly higher catalytic activity.


Assuntos
Burkholderiales , Hidrolases , Hidrolases/química , Burkholderiales/genética , Burkholderiales/metabolismo , Domínio Catalítico , Mutação , Polietilenotereftalatos/metabolismo
8.
Arch Microbiol ; 204(12): 711, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385587

RESUMO

The accumulation of macro-, micro- and nano-plastic wastes in the environment is a major global concern, as these materials are resilient to degradation processes. However, microorganisms have evolved their own biological means to metabolize these petroleum-derived polymers, e.g., Ideonella sakaiensis has recently been found to be capable of utilizing polyethylene terephthalate (PET) as its sole carbon source. This study aims to prove its potential capacity to biodegrade two commercial PET materials, obtained from food packaging containers. Plastic pieces of different crystallinity were simultaneously introduced to Ideonella sakaiensis during a seven-week lasting investigation. Loss in weight, appearance of plastics, as well as growth of Ideonella sakaiensis-through quantitative real-time PCR-were determined. Both plastics were found enzymatically attacked in a two-stage degradation process, reaching biodegradation capacities of up to 96%. Interestingly, the transparent, high crystallinity PET was almost fully degraded first, followed by the colored low-crystallinity PET. Results of quantitative real-time PCR-based gene copy numbers were found in line with experimental results, thus underlining its potential of this method to be applied in future studies with Ideonella sakaiensis.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Embalagem de Alimentos , Burkholderiales/genética , Burkholderiales/metabolismo , Biodegradação Ambiental
9.
Environ Res ; 212(Pt D): 113472, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577005

RESUMO

Ideonella sakaiensis PET hydrolase (IsPETase) is a well-characterized enzyme for effective PET biodegradation. However, the low soluble expression level of the enzyme hampers its practical implementation in the biodegradation of PET. Herein, the expression of IsPETaseMut, one of the most active mutants of IsPETase obtained so far, was systematically explored in E. coli by adopting a series of strategies. A notable improvement of soluble IsPETaseMut was observed by using chaperon co-expression and fusion expression systems. Under the optimized conditions, GroEL/ES co-expression system yielded 75 ± 3.4 mg·L-1 purified soluble IsPETaseMut (GroEL/ES), and NusA fusion expression system yielded 80 ± 3.7 mg·L-1 purified soluble NusA-IsPETaseMut, which are 12.5- and 4.6-fold, respectively, higher than its commonly expression in E. coli. The two purified enzymes were further characterized. The results showed that IsPETaseMut (GroEL/ES) displayed the same catalytic behavior as IsPETaseMut, while the fusion of NusA conferred new enzymatic properties to IsPETaseMut. Although NusA-IsPETaseMut displayed a lower initial hydrolysis capacity than IsPETaseMut, it showed a 1.4-fold higher adsorption constant toward PET. Moreover, the product inhibition effect of terephthalic acid (TPA) on IsPETase was reduced with NusA-IsPETaseMut. Taken together, the latter two catalytic properties of NusA-IsPETaseMut are more likely to contribute to the enhanced product release by NusA-IsPETaseMut PET degradation for two weeks.


Assuntos
Burkholderiales , Proteínas de Escherichia coli , Burkholderiales/genética , Burkholderiales/metabolismo , Escherichia coli/genética , Cinética , Polietilenotereftalatos/metabolismo , Fatores de Elongação da Transcrição/metabolismo
10.
J Proteomics ; 260: 104569, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354086

RESUMO

Anoxygenic phototrophic bacteria display phenomenal metabolic plasticity leading to distinct phenotypes. Extracellular elevated glucose levels limit photosynthesis in photosynthetic organisms; diversely, cause oxidative stress with ROS generation and "diabetic" like situation in non-photosynthetic organisms. In this study, longer incubations of externally provided glucose (22 mM) inhibited photosynthetic machinery in a phototrophic bacterium, Rubrivivax benzoatilyticus. Data analysis at three time points- exponential, early and late stationary phase, uncovered dynamic protein and metabolite abundance implying metabolic rewiring led non-cultivable state in response to glucose. Protein dynamics datum suggested that proteins related to primary metabolism down-regulated prior to those of secondary metabolism. Numerous proteins for metabolism and energy generation were highly expressed during exponential phase whereas those for membrane transport/translocation and DNA repair accumulated at early and late stationary phase respectively, suggesting a programmed knock-off of phototrophic growth mode and a switch to non-cultivable state. Overall, the omics analyses explicated the metabolic adjustment associated with glucose grown cells of R. benzoatilyticus. Further, our investigation unravelled creation of oxidative stress suggesting physiological stress (oxygen limitation) might be a key player leading to a non-cultivable state in this phototrophic organism. The study, emphasizing microbial glucose intolerance, unlocks the doorway to perceive microorganisms with new perspective. SIGNIFICANCE: Anoxygenic photosynthetic bacteria (APB), thriving under diverse habitat, exhibits magnificent metabolic flexibility. Generally, phototrophy is the preferred growth mode and energy generating route for APB. But, our analyses implicated that the glucose, under phototrophic growth conditions, triggered photobleaching in an APB member, Rubrivivax benzoatilyticus. However, retention of growth along with pigmentation under chemotrophic growth mode supports that glucose gradually knocked off the phototrophic growth mode of R. benzoatilyticus and switched to an alternate energy driving route or less energy demanding non-cultivabile state. Thus, the change in lifestyle i.e. photoheterotrophic growth instead of chemotrophic perhaps, might be the prime culprit and key player in inducing the said state of non-cultivability, akin to diabetes. The study, shedding light on the plausible regulation of cultivability, unveils the programmed regulated switching between different growth modes of the organism and illuminates the importance of glucose intolerance by microorganisms. Through this investigation, we appeal that the studies on 'glucose intolerance in microorganisms' also need due attention that will perhaps change our outlook to perceive micro-organisms in relation to their physiological life style.


Assuntos
Burkholderiales , Metaboloma , Processos Fototróficos , Burkholderiales/metabolismo , Glucose/metabolismo , Fotossíntese
11.
Environ Pollut ; 302: 119079, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245623

RESUMO

The excessive proliferation of Microcystis aeruginosa can lead to ecological damage, economic losses, and threaten animal and human health. For controlling Microcystis blooms, microorganism-based methods have attracted much attention from researchers because of their eco-friendliness and species-specificity. Herein, we first found that a Paucibacter strain exhibits algicidal activity against M. aeruginosa and microcystin degradation capability. The algicidal activity of DH15 (2.1 × 104 CFU/ml) against M. aeruginosa (2 × 106 cells/ml) was 94.9% within 36 h of exposure. DH15 also degraded microcystin (1.6 mg/L) up to 62.5% after 72 h. We demonstrated that the algicidal activity of DH15 against M. aeruginosa can be mediated by physical attachment and indirect attack: (1) Both washed cells and cell-free supernatant could kill M. aeruginosa efficiently; (2) Treatment with DH15 cell-free supernatants caused oxidative stress, altered the fatty acid profile, and damaged photosynthetic system, carbohydrate, and protein metabolism in M. aeruginosa. The combination of direct and indirect attacks supported that strain DH15 exerts high algicidal activity against M. aeruginosa. The expression of most key genes responsible for photosynthesis, antioxidant activity, microcystin synthesis, and other metabolic pathways in M. aeruginosa was downregulated. Strain DH15, with its microcystin degradation capacity, can overcome the trade-off between controlling Microcystis blooms and increasing microcystin concentration. Our findings suggest that strain DH15 possesses great potential to control outbreaks of Microcystis blooms.


Assuntos
Agentes de Controle Biológico , Burkholderiales , Microcystis , Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/farmacologia , Burkholderiales/metabolismo , Herbicidas/metabolismo , Microcistinas/metabolismo , Microcystis/metabolismo , Fotossíntese
12.
J Hazard Mater ; 429: 128267, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091192

RESUMO

Biodegradation of polyethylene terephthalate (PET) is one of fundamental ways to solve plastic pollution. As various microbial hydrolases have an extra domain unlike PETase from Ideonella sakaiensis (IsPETase), research on the role of these extra domain in PET hydrolysis is crucial for the identification and selection of a novel PET hydrolase. Here, we report that a PET hydrolase from Burkholderiales bacterium RIFCSPLOWO2_02_FULL_57_36 (BbPETase) with an additional N-terminal domain (BbPETaseAND) shows a similar hydrolysis activity toward microcrystalline PET and a higher thermal stability than IsPETase. Based on detailed structural comparisons between BbPETase and IsPETase, we generated the BbPETaseS335N/T338I/M363I/N365G variant with an enhanced PET-degrading activity and thermal stability. We further revealed that BbPETaseAND contributes to the thermal stability of the enzyme through close contact with the core domain, but the domain might hinder the adhesion of enzyme to PET substrate. We suggest that BbPETase is an enzyme in the evolution of efficient PET degradation and molecular insight into a novel PET hydrolase provides a novel strategy for the development of biodegradation of PET.


Assuntos
Burkholderiales , Hidrolases , Burkholderiales/metabolismo , Hidrolases/metabolismo , Hidrólise , Polietilenotereftalatos/química , Polietilenotereftalatos/metabolismo
13.
Appl Environ Microbiol ; 87(18): e0002021, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34260304

RESUMO

Poly(ethylene terephthalate) (PET) is a commonly used synthetic plastic; however, its nonbiodegradability results in a large amount of waste accumulation that has a negative impact on the environment. Recently, a PET-degrading bacterium, Ideonella sakaiensis 201-F6 strain, was isolated, and the enzymes involved in PET digestion, PET hydrolase (PETase), and mono(2-hydroxyethyl) terephthalic acid (MHET) hydrolase (MHETase) were identified. Despite the great potentials of I. sakaiensis in bioremediation and biorecycling, approaches to studying this bacterium remain limited. In this study, to enable the functional analysis of PETase and MHETase genes in vivo, we have developed a gene disruption system in I. sakaiensis. The pT18mobsacB-based disruption vector harboring directly connected 5'- and 3'-flanking regions of the target gene for homologous recombination was introduced into I. sakaiensis cells via conjugation. First, we deleted the orotidine 5'-phosphate decarboxylase gene (pyrF) from the genome of the wild-type strain, producing the ΔpyrF strain with 5-fluoroorotic acid (5-FOA) resistance. Next, using the ΔpyrF strain as a parent strain and pyrF as a counterselection marker, we disrupted the genes for PETase and MHETase. The growth of both Δpetase and Δmhetase strains on terephthalic acid (TPA; one of the PET hydrolytic products) was comparable to that of the parent strain. However, these mutant strains dramatically decreased the growth level on PET to that on a no-carbon source. Moreover, the Δpetase strain completely abolished PET degradation capacity. These results demonstrate that PETase and MHETase are essential for I. sakaiensis metabolism of PET. IMPORTANCE The poly(ethylene terephthalate) (PET)-degrading bacterium Ideonella sakaiensis possesses two unique enzymes able to serve in PET hydrolysis. PET hydrolase (PETase) hydrolyzes PET into mono(2-hydroxyethyl) terephthalic acid (MHET), and MHET hydrolase (MHETase) hydrolyzes MHET into terephthalic acid (TPA) and ethylene glycol (EG). These enzymes have attracted global attention, as they have potential to be used for bioconversion of PET. Compared to many in vitro studies, including biochemical and crystal structure analyses, few in vivo studies have been reported. Here, we developed a targeted gene disruption system in I. sakaiensis, which was then applied for constructing Δpetase and Δmhetase strains. Growth of these disruptants revealed that PETase is the sole enzyme responsible for PET degradation in I. sakaiensis, while PETase and MHETase play essential roles in its PET assimilation.


Assuntos
Proteínas de Bactérias/genética , Burkholderiales/genética , Burkholderiales/metabolismo , Hidrolases/genética , Polietilenotereftalatos/metabolismo , Proteínas de Bactérias/metabolismo , Etilenoglicol/metabolismo , Genes Bacterianos , Hidrolases/metabolismo , Hidrólise , Engenharia Metabólica , Ácidos Ftálicos/metabolismo , Reciclagem
14.
Sci Rep ; 11(1): 13745, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215802

RESUMO

Tomato (Solanum lycopersicum L.) is an important vegetable cultivated around the world. Under field conditions, tomato can be negatively affected by water scarcity in arid and semiarid regions. The application of native plant growth-promoting rhizobacteria (PGPR) isolated from arid environments has been proposed as an inoculant to mitigate abiotic stresses in plants. In this study, we evaluated rhizobacteria from Cistanthe longiscapa (syn Calandrinia litoralis and Calandrinia longiscapa), a representative native plant of flowering desert (FD) events (Atacama Desert, Chile), to determine their ability to reduce water scarcity stress on tomato seedlings. The isolated bacterial strains were characterized with respect to their PGPR traits, including P solubilization, 1-aminocyclopropane-1-carboxylate deaminase activity, and tryptophan-induced auxin and exopolysaccharide production. Three PGPR consortia were formulated with isolated Bacillus strains and then applied to tomato seeds, and then, the seedlings were exposed to different levels of water limitations. In general, tomato seeds and seedlings inoculated with the PGPR consortia presented significantly (P ≤ 0.05) greater plant growth (48 to 60 cm of height and 171 to 214 g of weight) and recovery rates (88 to 100%) compared with those without inoculation (37 to 51 cm of height; 146 to 197 g of fresh weight; 54 to 92% of recovery) after exposure to a lack of irrigation over different time intervals (24, 72 and 120 h) before transplantation. Our results revealed the effectiveness of the formulated PGPR consortia from FD to improve the performance of inoculated seeds and seedlings subjected to water scarcity; thus, the use of these consortia can represent an alternative approach for farmers facing drought events and water scarcity associated with climate change in semiarid and arid regions worldwide.


Assuntos
Burkholderiales/metabolismo , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Burkholderiales/crescimento & desenvolvimento , Chile , Secas , Germinação/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Microbiologia do Solo , Insegurança Hídrica
15.
Nat Commun ; 12(1): 4347, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301933

RESUMO

Heterologous expression of biosynthetic gene clusters (BGCs) avails yield improvements and mining of natural products, but it is limited by lacking of more efficient Gram-negative chassis. The proteobacterium Schlegelella brevitalea DSM 7029 exhibits potential for heterologous BGC expression, but its cells undergo early autolysis, hindering further applications. Herein, we rationally construct DC and DT series genome-reduced S. brevitalea mutants by sequential deletions of endogenous BGCs and the nonessential genomic regions, respectively. The DC5 to DC7 mutants affect growth, while the DT series mutants show improved growth characteristics with alleviated cell autolysis. The yield improvements of six proteobacterial natural products and successful identification of chitinimides from Chitinimonas koreensis via heterologous expression in DT mutants demonstrate their superiority to wild-type DSM 7029 and two commonly used Gram-negative chassis Escherichia coli and Pseudomonas putida. Our study expands the panel of Gram-negative chassis and facilitates the discovery of natural products by heterologous expression.


Assuntos
Produtos Biológicos/metabolismo , Burkholderiales/genética , Genoma Bacteriano/genética , Família Multigênica/genética , Proteobactérias/genética , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Burkholderiales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Engenharia Genética/métodos , Mutação , Policetídeos/metabolismo , Proteobactérias/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
16.
Proteins ; 89(10): 1340-1352, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34075621

RESUMO

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the ß1-ß2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the ß7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiales/metabolismo , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Biocatálise , Hidrólise
17.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074785

RESUMO

Microbial interactions in aquatic environments profoundly affect global biogeochemical cycles, but the role of microparasites has been largely overlooked. Using a model pathosystem, we studied hitherto cryptic interactions between microparasitic fungi (chytrid Rhizophydiales), their diatom host Asterionella, and cell-associated and free-living bacteria. We analyzed the effect of fungal infections on microbial abundances, bacterial taxonomy, cell-to-cell carbon transfer, and cell-specific nitrate-based growth using microscopy (e.g., fluorescence in situ hybridization), 16S rRNA gene amplicon sequencing, and secondary ion mass spectrometry. Bacterial abundances were 2 to 4 times higher on individual fungal-infected diatoms compared to healthy diatoms, particularly involving Burkholderiales. Furthermore, taxonomic compositions of both diatom-associated and free-living bacteria were significantly different between noninfected and fungal-infected cocultures. The fungal microparasite, including diatom-associated sporangia and free-swimming zoospores, derived ∼100% of their carbon content from the diatom. By comparison, transfer efficiencies of photosynthetic carbon were lower to diatom-associated bacteria (67 to 98%), with a high cell-to-cell variability, and even lower to free-living bacteria (32%). Likewise, nitrate-based growth for the diatom and fungi was synchronized and faster than for diatom-associated and free-living bacteria. In a natural lacustrine system, where infection prevalence reached 54%, we calculated that 20% of the total diatom-derived photosynthetic carbon was shunted to the parasitic fungi, which can be grazed by zooplankton, thereby accelerating carbon transfer to higher trophic levels and bypassing the microbial loop. The herein termed "fungal shunt" can thus significantly modify the fate of photosynthetic carbon and the nature of phytoplankton-bacteria interactions, with implications for diverse pelagic food webs and global biogeochemical cycles.


Assuntos
Carbono/metabolismo , Quitridiomicetos/fisiologia , Diatomáceas , Cadeia Alimentar , Consórcios Microbianos , Fitoplâncton , Burkholderiales/metabolismo , Diatomáceas/metabolismo , Diatomáceas/parasitologia , Fitoplâncton/metabolismo , Fitoplâncton/parasitologia
18.
Arch Microbiol ; 203(6): 3373-3388, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33880605

RESUMO

Mitsuaria sp. TWR114 is a biocontrol agent against tomato bacterial wilt (TBW). We aimed to gain genomic insights relevant to the biocontrol mechanisms and colonization ability of this strain. The draft genome size was found to be 5,632,523 bp, with a GC content of 69.5%, assembled into 1144 scaffolds. Genome annotation predicted a total of 4675 protein coding sequences (CDSs), 914 pseudogenes, 49 transfer RNAs, 3 noncoding RNAs, and 2 ribosomal RNAs. Genome analysis identified multiple CDSs associated with various pathways for the metabolism and transport of amino acids and carbohydrates, motility and chemotactic capacities, protection against stresses (oxidative, antibiotic, and phage), production of secondary metabolites, peptidases, quorum-quenching enzymes, and indole-3-acetic acid, as well as protein secretion systems and their related appendages. The genome resource will extend our understanding of the genomic features related to TWR114's biocontrol and colonization abilities and facilitate its development as a new biopesticide against TBW.


Assuntos
Agentes de Controle Biológico , Burkholderiales/genética , Genoma Bacteriano , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/microbiologia , Proteínas de Bactérias/genética , Composição de Bases , Agentes de Controle Biológico/metabolismo , Burkholderiales/metabolismo , DNA Bacteriano/química , Genômica , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Metabolismo Secundário/genética , Estresse Fisiológico
19.
Arch Microbiol ; 203(6): 3191-3200, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33834272

RESUMO

The two novel bacterial strains designated 1Y17T and 4Y10T from aquaculture water were characterized using a polyphasic taxonomic approach. Phylogenetic analysis of 16S rRNA gene sequences revealed that strains 1Y17T and 4Y10T belonged to the genus Inhella and were close to Inhella crocodyli CCP-18T, Inhella inkyongensis IMCC1713T and Inhella fonticola TNR-25T. Strains 1Y17T and 4Y10T shared 98.6% identity with each other and less than 99.0% identity with their relatives above. The phylogenomic analysis indicated that the two strains formed two independent branches distinct from their relatives. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the two strains were 21.3 and 80.9% below the two thresholds of 70% dDDH and 95-96% ANI for species definition; those between the two novel strains and their relatives were far below thresholds for species definition, implying that they represent two novel genospecies. The predominant fatty acids of the two strains were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and C16:0; the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol; the major quinone and polyamine were Q-8 and putrescine. Their genomic DNA G + C contents were 69.3 and 65.0%. The two novel strains can produce poly-ß-hydroxybutyrate, matching with the presence of the three synthetic related genes of the phaC-phaA-phaB in their genomes. Based on the genotypic and phenotypic characteristics such as aesculin and gelatin hydrolysis, strains 1Y17T and 4Y10T are concluded to represent two novel species of the genus Inhella, for which the names Inhella proteolytica sp. nov. (type strain 1Y17T = GDMCC 1.1830T = KACC 21948T) and Inhella gelatinilytica sp. (type strain 4Y10T = GDMCC 1.1829T = KCTC 82338T) are proposed.


Assuntos
Aquicultura , Burkholderiales , Filogenia , Composição de Bases , Burkholderiales/classificação , Burkholderiales/genética , Burkholderiales/metabolismo , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Microbiologia da Água
20.
Methods Enzymol ; 648: 337-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579411

RESUMO

The concept of biocatalytic PET degradation for industrial recycling processes had made a big step when the bacterium Ideonella sakaiensis was discovered to break PET down to its building blocks at ambient temperature. This process involves two enzymes: cleavage of ester bonds in PET by PETase and in MHET, the resulting intermediate, by MHETase. To understand and further improve this unique capability, structural analysis of the involved enzymes was aimed at from early on. We describe a repertoire of methods to this end, including protein expression and purification, crystallization of apo and substrate-bound enzymes, and modeling of PETase complexed with a ligand.


Assuntos
Burkholderiales , Hidrolases , Biocatálise , Burkholderiales/metabolismo , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA