Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Drug Des Devel Ther ; 18: 871-879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524879

RESUMO

Purpose: Pediatric patients receiving hematopoietic stem cell transplantation undergo regular administration of intravenous busulfan as a conditioning regimen. Once-daily regimen of busulfan has been proposed as a more convenient alternative to the traditional regimen, but it may increase the risk of toxicity such as veno-occlusive disease (VOD). The study aims to evaluate the pharmacokinetics (PKs) of once-daily regimens and investigate appropriate intravenous infusion times to reduce the risk of toxicity. Patients and methods: Once-daily busulfan dosing regimens for pediatric patient were reviewed and selected including EMA- and FDA-based once-daily dosing regimens. We generated busulfan PK data of virtual pediatric patients using a previously developed population PK model. PK profiles and proportion of patients achieving the referenced maximum concentration (Cmax) and exposure to busulfan were used to evaluate the appropriateness of both infusion time and dosing regimens. Results: Predicted PK profiles and exposure of busulfan showed relatively similar distributions for all once-daily dosing regimens. Most patients exceeded the referenced Cmax possibly associated with a high risk of VOD with all once-daily regimens when applied with 3 hours of infusion. Conclusion: While intravenous infusion of once-daily busulfan is typically administered over 3 hours, our findings emphasize the necessity of considering sufficient infusion times to ensure safe drug utilization and prevent toxicity, which will aid in optimal busulfan use in pediatric oncology.


Assuntos
Bussulfano , Transplante de Células-Tronco Hematopoéticas , Criança , Humanos , Bussulfano/farmacocinética , Bussulfano/toxicidade , Infusões Intravenosas , Transplante Homólogo , Condicionamento Pré-Transplante
2.
J Toxicol Sci ; 49(4): 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556351

RESUMO

Busulfan is an anticancer drug known to cause serious damage to seminiferous tubules in the testes and deplete germ cells in human and animal models. The testicular artery is anastomosed with deferential and cremasteric arteries and is divided into capsular arteries, which give rise to the centripetal arteries and then recurrent arteries. The arterial blood in the testicular tissue is supplied by such a consequent system of arterial vessels, in order from the peripheral to the central area. As anticancer drugs are generally distributed throughout the whole body via the bloodstream and the running and distribution of arteries differ among the testicular areas, we hypothesized that the efficacy of busulfan differs in different testicular areas, particularly between the central and peripheral areas. In this study, busulfan was intraperitoneally injected at 40 mg/kg body weight into C57BL/6J male mice. After 28 days, in busulfan-treated mice, the diameters of seminiferous tubules were significantly higher in the central than in the peripheral area of the testes. The seminiferous tubular areas also significantly decreased in the peripheral areas compared with the central areas. The number of germ cells per seminiferous tubule was significantly higher in the central than in the peripheral area. Sertoli cell nuclei were detached into the lumen in the peripheral area. The number of Leydig cells was significantly lower in the peripheral areas. These data suggest that the effects of busulfan differ between the central and peripheral areas of the testis at 4 weeks after busulfan administration.


Assuntos
Bussulfano , Testículo , Masculino , Animais , Humanos , Camundongos , Bussulfano/toxicidade , Espermatogênese , Camundongos Endogâmicos C57BL , Túbulos Seminíferos
3.
Ultrastruct Pathol ; 48(3): 192-212, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38420954

RESUMO

This study was done to estimate the testicular histological alterations induced by Busulfan (BUS) and compare the possible protective effects of melatonin (MT) and platelet rich plasma (PRP) in a rat model. Sixty-four male rats were dispersed into: control group, BUS group, melatonin group, and PRP group. Blood samples were processed for biochemical analysis. Tissue specimens were managed for light and electron microscopic studies. Immunohistochemical expression of vimentin and proliferating cell nuclear antigen (PCNA) was performed. Busulfan induced severe testicular damage in all studied methodologies. It showed a statistically significant decrease in serum testosterone and elevation of MDA when compared to the control group. Abnormal testicular cytostructures suggesting defective spermatogenesis were observed: distorted seminiferous tubules, deformed spermatogenic cells, low germinal epithelium height, few mature spermatozoa, and also deformed barrier. Vimentin and PCNA expressions were reduced. Ultrastructurally, Sertoli cells and the blood testis barrier were deformed, spermatogenic cells were affected, and mature spermatozoa were few and showed abnormal structure. Both melatonin and PRP induced improvement in all the previous parameters and restoration of spermatogenesis as confirmed by improvement of Johnsen's score from 2.6 ± .74 to 7.6 ± .92. In conclusion, melatonin and PRP have equal potential to ameliorate the testicular toxicity of BUS. Melatonin can provide a better noninvasive way to combat BUS induced testicular injury.


Assuntos
Bussulfano , Melatonina , Plasma Rico em Plaquetas , Testículo , Animais , Masculino , Bussulfano/toxicidade , Bussulfano/farmacologia , Melatonina/farmacologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/ultraestrutura , Ratos , Imuno-Histoquímica , Espermatogênese/efeitos dos fármacos , Ratos Wistar , Antioxidantes/farmacologia , Doenças Testiculares/induzido quimicamente , Doenças Testiculares/patologia , Doenças Testiculares/prevenção & controle
4.
Ecotoxicol Environ Saf ; 272: 116063, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306818

RESUMO

Environmental pollution has emerged as a global concern due to its detrimental effects on human health. One of the critical aspects of this concern is the impact of environmental pollution on sperm quality in males. Male factor infertility accounts for approximately 40%- 50% of all infertility cases. Nonobstructive azoospermia (NOA) is the most severe type of male infertility. Human umbilical cord mesenchymal stem cell (hUCMSC) exosomes enhance proliferation and migration, playing crucial roles in tissue and organ injury repair. However, whether hUCMSC exosomes impacting on NOA caused by chemotherapeutic agents remains unknown. This study aimed to explore the functional restoration and mechanism of hUCMSC exosomes on busulfan-induced injury in GC-1 spg cells and ICR mouse testes. Our results revealed that hUCMSC exosomes effectively promoted the proliferation and migration of busulfan-treated GC-1 spg cells. Additionally, oxidative stress and apoptosis were significantly reduced when hUCMSC exosomes were treated. Furthermore, the injection of hUCMSC exosomes into the testes of ICR mice treated with busulfan upregulated the expression of mouse germ cell-specific genes, such as vasa, miwi, Stra8 and Dazl. Moreover, the expression of cellular junction- and cytoskeleton-related genes, including connexin 43, ICAM-1, ß-catenin and androgen receptor (AR), was increased in the testicular tissues treated with exosomes. Western blot analysis demonstrated significant downregulation of apoptosis-associated proteins, such as bax and caspase-3, and upregulation of bcl-2 in the mouse testicular tissues injected with hUCMSC exosomes. Further, the spermatogenesis in the experimental group of mice injected with exosomes showed partial restoration of spermatogenesis compared to the busulfan-treated group. Collectively, these findings provide evidence for the potential clinical applications of hUCMSC exosomes in cell repair and open up new avenues for the clinical treatment of NOA.


Assuntos
Acetatos , Azoospermia , Exossomos , Células-Tronco Mesenquimais , Fenóis , Camundongos , Masculino , Humanos , Animais , Bussulfano/toxicidade , Bussulfano/metabolismo , Exossomos/genética , Camundongos Endogâmicos ICR , Sêmen , Cordão Umbilical , Azoospermia/induzido quimicamente , Azoospermia/terapia , Azoospermia/metabolismo
5.
Chem Biol Interact ; 390: 110870, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38220133

RESUMO

Busulfan, a bifunctional alkylated chemotherapeutic agent, has male reproductive toxicity and induce oligospermia, which is associated with ferroptosis. However, the specific target cells of busulfan-induced oligospermia triggered by ferroptosis are largely elusive, and the detailed mechanisms also require further exploration. In the present study, busulfan (0.6, and 1.2 mM, 48 h) causes ferroptosis in GC-1 spg cells through inducing Fe2+, ROS and MDA accumulation and functional inhibition of Xc-GSH-GPX4 antioxidant system. After inhibition of ferroptosis by Fer-1 (1 µM, pretreatment for 2 h) or DFO (10 µM, pretreatment for 2 h) reverses busulfan-induced destructive effects in GC-1 spg cells. Furthermore, using RNA-seq and Western blotting, we found that busulfan promotes autophagy-dependent ferritin degradation, as reflected by enriching in autophagy, increased LC3 II, Beclin1 and NCOA4, as well as decreased P62 and ferritin heavy chain 1 (FTH1). Ultimately, GC-1 spg cells and Balb/c mice were treated with busulfan and/or 3-MA, the inhibitor of autophagy. The results displayed that inhibition of autophagy relieves busulfan-induced FTH1 degradation and then blocks the occurrence of ferroptosis in GC-1 spg cells and testicular spermatogonia, which subsequently alleviates busulfan-caused testicular damage and spermatogenesis disorders. In summary, these data collectively indicated that ferroptosis of spermatogonia is involved in busulfan-induced oligospermia and mediated by autophagy-dependent FTH1 degradation, identifying a new target for the therapy of busulfan-induced male infertility.


Assuntos
Acetatos , Ferroptose , Oligospermia , Fenóis , Humanos , Masculino , Animais , Camundongos , Bussulfano/toxicidade , Espermatogônias , Oligospermia/induzido quimicamente , Autofagia
6.
Fundam Clin Pharmacol ; 38(1): 152-167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37665028

RESUMO

BACKGROUND: The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES: This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS: Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS: Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION: While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fígado Gorduroso , Humanos , Bussulfano/toxicidade , Bussulfano/metabolismo , Hepatócitos/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Cátions/metabolismo , Lipídeos/efeitos adversos , Fígado/metabolismo
7.
Reprod Toxicol ; 123: 108525, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123000

RESUMO

SP-Max herbal capsule formulation contains Withania somnifera, Asparagus recemosus, Mucuna pruriens, Chlorophytum arundinaceum, Ipomoea digitata, and Dioscorea bulbifera which are reported in the 'Ayurveda', an Indian Traditional System of medicine as aphrodisiacs. The present study focused on the effect of herbomineral formulation, SP-Max in the treatment of oligospermia. Oligospermia was induced in male Swiss Albino mice by a single intraperitoneal injection of busulfan at a dose of 45 mg/kg. SP-Max herbomineral formulation was given at various doses of 130, 270, and 390 mg/kg for 45 days. Treatment with SP-Max herbomineral formulation at 130, 270 and 390 mg/kg doses significantly improved the sperm count, sperm motility and viability (p < 0.001). SP-Max treatment at a dose of 390 mg/kg significantly prevented the loss of anti-oxidant enzymes in testicular cells. SP-Max prevented the reduction in the level of testosterone, luteinizing hormone, and follicle-stimulating hormone. Histological findings showed that SP-Max treatment prevented degeneration of spermatid, interstitial cells, and Sertoli cells of the testes and also improved epididymal sperm count. High dose of SP-Max treatment i.e 390 mg/kg found to be more effective. Results showed that SP-Max herbomineral formulation is an effective treatment option for oligospermia by decreasing free radical damage to the testes and improving the levels of reproductive hormones.


Assuntos
Oligospermia , Humanos , Masculino , Camundongos , Animais , Oligospermia/induzido quimicamente , Oligospermia/tratamento farmacológico , Oligospermia/prevenção & controle , Bussulfano/toxicidade , Motilidade dos Espermatozoides , Sementes , Testículo , Testosterona/farmacologia , Hormônio Foliculoestimulante , Contagem de Espermatozoides
8.
PLoS One ; 18(10): e0293311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883349

RESUMO

The success of Haematopoietic cell transplantation (HCT) is often limited by regimen-related toxicity (RRT) caused by conditioning regimen drugs. Among different conditioning drugs, busulfan (Bu) and treosulfan (Treo), although widely used in HCT, exhibit different toxicity profiles, the mechanism of which is still unclear. Here we investigated the effects of Bu and Treo in endothelial cells. While both Bu and Treo induced DNA damage in endothelial cells, we observed Bu alone to induce oxidative stress and sustained activation of phospho-ERK1/2, leading to apoptosis. However, Treo-treated cells exhibited no oxidative stress/apoptosis of endothelial cells. Screening of pharmacological inhibitors of both ROS and p-ERK revealed that metformin effectively ameliorates Bu-mediated toxicity in endothelial cells. In Balb/c mice, we observed a significant reduction in bone marrow endothelial cells in Bu-treated mice compared to Treo-treated mice. Further, liver sinusoidal endothelial cells (LSEC) was damaged by Bu, which is implicated in liver vasculature and their functional capacity to uptake FITC-albumin. However, Treo-treated mice liver vasculature was morphologically and functionally normal. When mice were pretreated with metformin followed by Bu, LSECs damage was ameliorated morphologically and functionally. Bone marrow transplants done on these mice did not affect the engraftment of donor cells.


Assuntos
Bussulfano , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Bussulfano/toxicidade , Bussulfano/uso terapêutico , Células Endoteliais , Fígado , Condicionamento Pré-Transplante
9.
Toxicol In Vitro ; 92: 105663, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597760

RESUMO

Transplantation conditioning using Busulfan has been known to cause hepatotoxicity, which has great individual differences. Some have mild symptoms like the increase of hepatic drug-metabolizing enzyme, while others may have very serious ones, like hepatic sinusoidal obstruction syndrome. However, simply controlling the exposure of Busulfan may not effectively prevent or reduce the occurrence of hepatic sinusoidal obstruction syndrome. The occurrence of hepatic sinusoid obstruction syndrome is closely related to hepatic sinusoidal endothelial cells (HSECs). The objective of this study is to investigate the potential protective effect of Pirfenidone against Busulfan-induced damage to hepatic sinusoidal endothelial cells and to preliminarily explore the mechanisms underlying this protective effect. Our results indicate that Pirfenidone has a great protective effect on the injury induced by Busulfan. In addition, Busulfan increased the relative mRNA expression of transforming growth factor-ß1 (TGF-ß1), collagen and tissue inhibitor of metalloproteinase-1 in HSECs. After pretreatment with Pirfenidone, the expression level of TGF-ß1 was down-regulated. Mechanically, Pirfenidone primarily improves liver fibrosis by inhibiting collagen formation and hepatic stellate cell activation, thereby providing a protective effect on HSECs damaged by Busulfan. Therefore, Pirfenidone may reduce the hepatotoxicity caused by transplantation conditioning regimens based on Busulfan.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatia Veno-Oclusiva , Humanos , Células Endoteliais , Bussulfano/toxicidade , Fator de Crescimento Transformador beta1/genética , Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/tratamento farmacológico , Inibidor Tecidual de Metaloproteinase-1
10.
Biomed Pharmacother ; 165: 115231, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516022

RESUMO

Male infertility is a global concern, with a noticeable increase in the decline of spermatogenesis and sperm quality. However, there are limited clinically effective treatments available. This study aimed to investigate the potential effectiveness of puerarin in treating male infertility, which leads to gonadal changes. The results obtained from various analyses such as CASA, immunofluorescence, DIFF-Quick, hematoxylin and eosin (H&E), and periodic acid-Schiff (PAS) staining demonstrated that puerarin supplementation significantly alleviated the busulfan-induced reduction in spermatogenesis and sperm quality in both young and adult mice. Furthermore, puerarin exhibited a marked improvement in the damage caused by busulfan to the architecture of seminiferous tubules, causal epididymis, blood-testicular barrier (BTB), as well as spermatogonia and Sertoli cells. Similarly, puerarin significantly reduced the levels of total antioxidant capacity (T-AOC), malondialdehyde (MDA), and caspase-3 in the testes of busulfan-induced mice, as determined by microplate reader analysis. Additionally, RNA-seq data, RT-qPCR, and western blotting revealed that puerarin restored the abnormal gene expressions induced by busulfan to nearly healthy levels. Notably, puerarin significantly reversed the impact of busulfan on the expression of marker genes involved in spermatogenesis and oxidative stress. Moreover, puerarin suppressed the phosphorylation of p38, ERK1/2, and JNK in the testes, as observed through testicular analysis. Consequently, this study concludes that puerarin may serve as a potential alternative for treating busulfan-induced damage to male fertility by inactivating the testicular MAPK pathways. These findings may pave the way for the use of puerarin in addressing chemotherapy- or other factors-induced male infertility in humans.


Assuntos
Bussulfano , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Bussulfano/toxicidade , Sêmen , Espermatogênese , Testículo , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Infertilidade Masculina/metabolismo
11.
Ultrastruct Pathol ; 47(5): 424-450, 2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37455400

RESUMO

Busulfan is a widely used cancer chemotherapeutic agent. Temporary or permanent sterility in male patients is one of the most common side effects of this drug. The present study was performed to evaluate the changes in the microscopic structure of the testes of prepubertal rats, as well as the changes in PCNA and caspase-3 immune expression, at different durations after busulfan administration. The rats were 5 weeks old and were divided into two main groups. Control group and busulfan treated group. Busulfan treated group received a single dose of busulfan (40 mg/kg), then animals were subdivided to three subgroups; IIa, IIb, IIc which were sacrificed after four, ten and twenty weeks, respectively, from the beginning of the experiment. Light and electron microscopic studies were done. Serum testosterone level and relative testes weight were assessed. Immunohistochemical staining for anti-proliferating cell nuclear antigen (PCNA) and anti-caspase-3 antigen was also done. Morphometric and statistical studies were carried out. Group II revealed histological and ultrastructural degenerative changes including congested blood vessels and degenerated spermatogenic epithelium, Sertoli cells, and Leydig cells. These changes were more evident after 10 weeks of busulfan administration and were accompanied by absence of mature sperms in the lumen of seminiferous tubules. These changes were associated with a significant reduction in relative testes weight, testosterone level, germinal epithelial height and seminiferous tubule diameter. Moreover, PCNA and caspase-3 immune expression was significantly altered in busulfan treated group. Mild improvement in testicular structure was observed 20 weeks after busulfan treatment.


Assuntos
Bussulfano , Testículo , Ratos , Masculino , Animais , Bussulfano/toxicidade , Bussulfano/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Testosterona
12.
J Toxicol Sci ; 48(2): 57-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36725021

RESUMO

In non-clinical animal studies for drug discovery, histopathological evaluation is the most powerful tool to assess testicular toxicity. However, histological analysis is extremely invasive; many experimental animals are needed to evaluate changes in the pathology and anatomy of the testes over time. As an alternative, small animal magnetic resonance imaging (MRI) offers a non-invasive methodology to examine testicular toxicity without radiation. The present study demonstrated the suitability of a new, ready-to-use compact MRI platform using a high-field permanent magnet to assist with the evaluation of testicular toxicity. To validate the utility of the MRI platform, male mice were treated with busulfan (40 mg/kg, intraperitoneal injection). Twenty-eight days after treatment, both testes in busulfan-treated and control mice (n = 6/group) were non-invasively scanned in situ by MRI at 1 tesla. On a T1-weighted 3D gradient-echo MRI sequences (voxel size: 0.23 × 0.23 × 0.50 mm), the total testicular volume in busulfan-treated mice was significantly smaller than in controls. On T1-weighted images, the signal intensity of the testes was significantly higher in busulfan-treated mice than in controls. The mice were sacrificed, and the testes were isolated for histopathological analysis. The weight of the testes in busulfan-treated mice significantly decreased, similar to the results of the non-invasive analysis. Additionally, periodic acid-Schiff stain-positive effusions were observed in the interstitium of the busulfan-treated mouse testes, potentially explaining T1 shortening due to a high concentration of glycoproteinaceous content. The present data demonstrated a rapid evaluation of testicular toxicity in vivo by compact MRI.


Assuntos
Espermatogênese , Testículo , Masculino , Camundongos , Animais , Testículo/diagnóstico por imagem , Bussulfano/toxicidade , Injeções Intraperitoneais , Imageamento por Ressonância Magnética
13.
Int J Toxicol ; 42(3): 232-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630195

RESUMO

The NCG triple immunodeficient mice on a NOD/Nju background lack functional/mature T, B, and NK cells, and have reduced macrophage and dendritic cell function. This study characterized the NCG mouse model for toxicity, engraftment and tumorigenicity assessments of cell therapies, using CD34+ hHSPC adult mobilized cells with two myeloablation regimens.Mice received sub-lethal irradiation or busulfan and were then injected intravenously with CD34+ hHSPCs (1.0 x 106 cells/mouse) or PBS (control), while positive control animals received 2 x 106 HL-60 cells/mouse. hCD34+ cell donors were treated with the mobilizing agent G-CSF prior to leukapheresis. Following injections, mouse blood samples were collected to assess engraftment rates by flow cytometry with body weights recorded periodically up to 20 weeks post-cell injection. No significant clinical signs or body weight changes were observed. At week 10 post-cell injection, the peripheral blood chimerism of hCD45+ cells was above 20%. While mCD45+ concentration was constant between week 10 and 17 in whole blood samples, hCD45+ concentration and chimerism slightly decreased at week 17. However, chimerism remained above 10%, with busulfan-treated mice presenting higher values. Chimerism was further assessed by quantifying human Alu sequences in blood and multiple organs using qPCR. Alu sequences were most abundant in the spleen and bone marrow, while lowest in the testes. In the positive control group, expected mortalities due to tumorigenesis were observed between days 27 and 40 post-cell injection. Overall, study results may be used to inform study design and potential toxicological endpoints relevant to non-clinical cell therapy development.


Assuntos
Medula Óssea , Bussulfano , Humanos , Animais , Camundongos , Bussulfano/toxicidade , Camundongos Endogâmicos NOD , Baço
14.
J Assist Reprod Genet ; 40(1): 19-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508035

RESUMO

OBJECTIVE: Modeling methods for busulfan-induced oligoasthenozoospermia are controversial. We aimed to systematically review the modeling method of busulfan-induced oligospermia and asthenozoospermia, and analyze changes in various evaluation indicators at different busulfan doses over time. METHODS: We searched the Cochrane Library, PubMed databases, Web of Science, the Chinese National Knowledge Infrastructure, and the Chinese Biomedical Literature Service System until April 9, 2022. Animal experiments of busulfan-induced spermatogenesis dysfunction were included and screened. The model mortality and parameters of the evaluation indicators were subjected to meta-analysis. RESULTS: Twenty-nine animal studies were included (control/model: 669/1829). The mortality of mice increased with busulfan dose. Significant spermatogenesis impairment occurred within 5 weeks, regardless of busulfan dose (10-40 mg/kg). Testicular weight (weighted mean difference [WMD]: - 0.04, 95% CI: - 0.05, - 0.03), testicular index (WMD: - 2.10, 95% CI: - 2.43, - 1.76), and Johnsen score (WMD: - 4.67, 95% CI: - 5.99, - 3.35) were significantly decreased. The pooled sperm counts of the model group were reduced by 32.8 × 106/ml (WMD: - 32.8, 95% CI: - 44.34, - 21.28), and sperm motility decreased by 37% (WMD: - 0.37, 95% CI: - 0.47, - 0.27). Sperm counts decreased slightly (WMD: - 3.03, 95% CI: - 3.42, - 2.64) in an intratesticular injection of low-dose busulfan (4 - 6 mg/kg), and the model almost returned to normal after one seminiferous cycle. CONCLUSION: The model using low-dose busulfan (10 - 20 mg/kg) returned to normal after 10 - 15 weeks. However, in some spermatogenesis cycles, testicular weight reduction and testicular spermatogenic function damage were not proportional to busulfan dose. Sperm counts and motility results in different studies had significant heterogeneity. Standard protocols for sperm assessment in animal models were needed to reduce heterogeneity between studies.


Assuntos
Astenozoospermia , Oligospermia , Humanos , Camundongos , Masculino , Animais , Oligospermia/induzido quimicamente , Bussulfano/toxicidade , Astenozoospermia/induzido quimicamente , Contagem de Espermatozoides , Motilidade dos Espermatozoides , Sêmen
15.
Int J Toxicol ; 42(3): 219-231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36565254

RESUMO

The NOD/SCID/IL2Rγnull (NSG) mouse is a relevant model for toxicology and tumorigenicity studies evaluating human cell therapies. Data was compiled from toxicology study control NSG mice exposed to gamma irradiation (0 or 200 cGy) or busulfan. Retrospective data evaluation included mortality, clinical observations, body weights, hematology, and external and internal macroscopic observations. There was no mortality in any of the 129 toxicology control (irradiated and non-irradiated) mice up to the 20-week observation period. Mortalities occurred between Days 1 and 25 among animals given busulfan ≥25 mg/kg/day at 1 or 2 doses via intraperitoneal (i.p.) injection. There were 4/10, 6/10 and 4/10 deaths at 25, 30 and 35 mg/kg/day busulfan, respectively. Busulfan-treated mice presented with dose-dependent clinical signs including signs of anemia in some individuals. Hematology, including white blood cell (WBC) and neutrophil (NEUT) counts, from irradiated mice at Weeks 12 and 20 revealed comparable values to non-irradiated animals. In contrast, irradiated mice treated with a positive control (HL-60) were euthanized prior to Week 12. There were no irradiation-related differences in macroscopic observations with lymphoid atrophy identified comparably in irradiated and non-irradiated groups. These results suggest that irradiation was suitable for conditioning to enable cell engraftment in NSG mice in the context of regulatory toxicology and tumorigenicity studies. Busulfan administered at 20 mg/kg/day for 2 days, i.p. was also well-tolerated, and it could be considered for toxicology studies of genetically modified human cells.


Assuntos
Bussulfano , Irradiação Corporal Total , Camundongos , Humanos , Animais , Bussulfano/toxicidade , Estudos Retrospectivos , Camundongos Endogâmicos NOD , Camundongos SCID
16.
Reprod Toxicol ; 115: 1-7, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372306

RESUMO

Busulfan is an alkylating agent commonly used in cancer chemotherapy. It is also an ideal agent for preparing transplant recipients of spermatogonial stem cells because of its high efficiency in destroying endogenous germ cells in the testis. However, its toxicity mechanism remains unclear, affecting its clinical use and applications. Based on reports of busulfan causing orchitis and a previous study by our team, this article summarizes the relationship between busulfan and orchitis, cytokines, the blood-testis barrier, and the cytoskeleton, unravels the regulatory pathways and mechanism behind busulfan-induced orchitis, and reveals the molecular mechanism underlying impaired spermatogenic function in orchitis, providing new ideas for the clinical application of busulfan while reducing its testicular toxicity.


Assuntos
Infertilidade Masculina , Orquite , Masculino , Humanos , Bussulfano/toxicidade , Espermatogônias , Orquite/induzido quimicamente , Orquite/metabolismo , Testículo , Infertilidade Masculina/metabolismo
17.
BMC Pharmacol Toxicol ; 23(1): 50, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35831882

RESUMO

BACKGROUND: Administration of antineoplastic drugs may cause azoospermia driving to subfertility. Production of animal azoospermia models is essential for evaluating new treatment methods before therapeutic interventions in human setup. This study aimed to investigate the toxic effects of Busulfan (an anticancer drug) on some vital organs and describe the best method and appropriate dose of Busulfan to induce an animal azoospermia model. METHODS: Rats were randomly assigned into four groups, treatment groups received 10 mg/kg, 40 mg/kg Busulfan intraperitoneally (IP), 5 mg/kg Busulfan intratesticular (IT), and control group. Blood, bone marrow, liver, renal, and testes samples were collected for histological (H&E staining), biochemical (serum levels of ALT, AST, ALP, creatinine, and urea), and hematological analyses. RESULTS: Results revealed severe anemia and leukopenia in rats that received Busulfan via IP. By contrast, injection of 5 mg/kg Busulfan via IT did not cause anemia except with a mild decrease in RBC count. Non-significant differences in the M/E ratio were observed in all groups. The administration of 40 mg/kg of Busulfan led to evacuation and destruction in the spermatogenesis process with thin-walled seminiferous epithelium in most tubules, but in rats treated with 10 mg/kg of Busulfan, the normal spermatogenesis process was notified. IT injection of Busulfan contributed to the complete degradation of spermatogenesis in which all spermatogenic cells degenerated. In the renal tissue, hyperemia, extensive tubular necrosis degeneration, and hyaline casts were found after IP injection of Busulfan. In hepatic tissue, focal hemorrhagic, chronic cholangitis, and hepatocyte degeneration, and swelling were noticed. Biochemical analysis revealed apparent Busulfan toxicity of both hepatic and renal tissues in IP Busulfan-treated rats. CONCLUSIONS: In summary, we found that the intratesticular injection of low doses of Busulfan (5 mg/kg) is a relatively non-invasive and safe method for producing the rat azoospermia model causing the least toxicity on vital organs.


Assuntos
Azoospermia , Animais , Azoospermia/induzido quimicamente , Azoospermia/patologia , Azoospermia/terapia , Bussulfano/toxicidade , Modelos Animais de Doenças , Humanos , Injeções , Injeções Intraperitoneais , Masculino , Ratos , Espermatogênese , Testículo
18.
Toxicology ; 473: 153193, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35533795

RESUMO

Busulfan, a chemotherapeutic agent for cancer, has detrimental effects on germ cells and fertility, yet the specific mechanisms remain largely uncertain. The blood-testis barrier (BTB) maintains a suitable microenvironment for germ cells self-renewal and spermatogenesis by blocking the interference and damage of deleterious substances. Therefore, we hypothesized that BTB abnormalities might be involved in busulfan-induced oligospermia. To verify the hypothesis, thirty male Balb/c mice were randomly administered with busulfan (at a total dose of 40 mg/kg body weight) by intraperitoneal injection for 4 weeks to establish the model of oligospermia. The results displayed that busulfan caused testicular histopathological lesions and spermatogenesis disorder. Meanwhile, busulfan disrupted BTB integrity and lessened the expressions of BTB junction proteins, including Occludin, Claudin-11 and Connexin-43. Furthermore, busulfan activated the endoplasmic reticulum (ER) stress and PERK-eIF2α signaling pathway, reflected by the increased protein expressions of GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. Finally, to evaluate whether the ER stress is involved in busulfan-induced BTB destruction, the ER stress inhibitor 4-Phenylbutyric acid (4-PBA, 1 mM) was used to intervene in busulfan-exposed TM4 cells. The results displayed that inhibition of ER stress alleviated the reduction of BTB junction protein expressions induced by busulfan in TM4 cells. These data collectively indicated that busulfan-induced BTB impairment was mediated by triggering ER stress and activation of the PERK-eIF2α signaling pathway, thereby damaging the spermatogenesis, providing a new therapeutic target for male infertility induced by busulfan.


Assuntos
Fator de Iniciação 2 em Eucariotos , Oligospermia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Apoptose , Barreira Hematotesticular/metabolismo , Bussulfano/toxicidade , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Masculino , Camundongos , Transdução de Sinais , eIF-2 Quinase/metabolismo
19.
Neurotox Res ; 40(2): 585-595, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380369

RESUMO

As bone marrow transplant (BMT) is gradually applied to the study of central nervous system (CNS) disease, it is needed to investigate the proper dose of chemotherapy to eradicate bone marrow cells while bringing little damage to brain. In the present study, we established a BMT model with varied busulfan and cyclophosphamide (Bu-Cy) dosages. The recipient mice's chimera rate, neuronal death, neuroinflammation, and behavioral functions were all investigated. Chimerism of peripheral blood cells was shown to rise with Bu-Cy treatment doses, with 60.7% in the Bu(20 mg/kg)/Cy(100 mg/kg) group and 93.0% in the Bu(35 mg/kg)/Cy(100 mg/kg) group. Recipients with Bu(35 mg/kg)/Cy(100 mg/kg) therapy had brain injury, increased neuroinflammation, diminished neurogenesis and cognitive abnormalities, whereas animals given a lesser dosage had no such brain damages. Conclusively, considering the chimerism and the possibility to damage brain, we recommend Bu(20 mg/kg)/Cy(100 mg/kg) is the ideal dose in BMT for studying CNS diseases in the C57/BL6 mouse strain.


Assuntos
Transplante de Medula Óssea , Doenças Neuroinflamatórias , Animais , Bussulfano/uso terapêutico , Bussulfano/toxicidade , Ciclofosfamida/toxicidade , Camundongos , Neurogênese
20.
Pharm Biol ; 60(1): 319-325, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35148224

RESUMO

CONTEXT: The swim bladder of the croceine croaker is believed to have a therapeutic effect on various diseases. However, there is no research about its effect on mammalian spermatogenesis. OBJECTIVE: We investigated the swim bladder peptides (SBPs) effect on busulfan-induced oligoasthenospermia in mice. MATERIALS AND METHODS: We first extracted SBP from protein hydrolysate of the croceine croaker swim bladder, and then five groups of ICR male mice were randomly assigned: control, control + SBP 60 mg/kg, busulfan, busulfan + SBP 30 mg/kg and busulfan + SBP 60 mg/kg. Mice received bilateral intratesticular injections of busulfan to establish oligoasthenospermia model. After treatment with SBP for 4 weeks, testis and epididymis were collected from all mice for further analysis. RESULTS: After treatment with SBP 30-60 mg/kg for 4 weeks, epididymal sperm concentration and motility increased by 3.9-9.6- and 1.9-2.4-fold than those of oligoasthenospermia mice induced by busulfan. Meanwhile, histology showed that spermatogenic cells decreased, leading to increased lumen diameters and vacuolization in the busulfan group. These features were reversed by SBP treatment. RNA-sequencing analysis revealed that, compared with the busulfan group, Lin28b and Igf2bp1 expression related to germ cell proliferation, increased with a >1.5-fold change after SBP treatment. Additionally, PGK2 and Cfap69 mRNAs associated with sperm motility, also increased with a >1.5-fold change. Furthermore, these findings were validated by quantitative real-time PCR and Western blotting. DISCUSSION AND CONCLUSIONS: This is the first reported evidence for the therapeutic effect of SBP on oligoasthenospermia. SBP may be a promising drug for oligoasthenospermia in humans.


Assuntos
Bussulfano/toxicidade , Oligospermia/tratamento farmacológico , Peptídeos/farmacologia , Perciformes/metabolismo , Animais , Antineoplásicos Alquilantes/toxicidade , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos ICR , Oligospermia/induzido quimicamente , Peptídeos/administração & dosagem , Peptídeos/isolamento & purificação , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA