Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 643, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110570

RESUMO

Ancient whole-genome duplications (WGDs) characterize many large angiosperm lineages, including angiosperms themselves. Prominently, the core eudicot lineage accommodates 70% of all angiosperms and shares ancestral hexaploidy, termed gamma. Gamma arose via two WGDs that occurred early in eudicot history; however, the relative timing of these is unclear, largely due to the lack of high-quality genomes among early-diverging eudicots. Here, we provide complete genomes for Buxus sinica (Buxales) and Tetracentron sinense (Trochodendrales), representing the lineages most closely related to core eudicots. We show that Buxus and Tetracentron are both characterized by independent WGDs, resolve relationships among early-diverging eudicots and their respective genomes, and use the RACCROCHE pipeline to reconstruct ancestral genome structure at three key phylogenetic nodes of eudicot diversification. Our reconstructions indicate genome structure remained relatively stable during early eudicot diversification, and reject hypotheses of gamma arising via inter-lineage hybridization between ancestral eudicot lineages, involving, instead, only stem lineage core eudicot ancestors.


Assuntos
Buxus/genética , Genoma de Planta , Magnoliopsida/genética , Buxus/classificação , Evolução Molecular , Genômica , Hibridização Genética , Filogenia , Análise de Sequência de DNA
2.
Mol Phylogenet Evol ; 45(2): 547-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17644003

RESUMO

We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.


Assuntos
Buxus/genética , Dioscorea/genética , Evolução Molecular , Genoma de Cloroplastos , Illicium/genética , Magnoliopsida/genética , Filogenia , Buxus/classificação , DNA de Plantas/análise , Dioscorea/classificação , Especiação Genética , Illicium/classificação , Magnoliopsida/classificação , Modelos Biológicos , Análise de Sequência de DNA , Sequências Repetidas Terminais
3.
J Mol Evol ; 64(2): 143-57, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17211551

RESUMO

Sequences from the ribosomal nuclear internal transcribed spacers (ITS) have been widely used to infer evolutionary hypotheses across a broad range of living organisms. Intraspecific sequence variation is assumed to be absent or negliable in most species, but few detailed studies have been conducted to assess the apportionment of ITS sequence variation within and between plant populations. Buxus balearica was chosen as a model species to assess the levels of infraspecific and intragenomic ITS variation in rare and endangered species occurring in disjunct populations around the Mediterranean basin. Intragenomic polymorphic sites were detected for western and eastern accessions of B. balearica and in two accessions of the sister species B. sempervirens. Overall, 19 different ribotypes were found in B. balearica after sequencing 48 clones, whereas 15 ribotypes were detected in 19 clones of B. sempervirens. The integrity and secondary structure stability of the ribosomal sequences suggest that they are not pseudogenes. The high number of ribotypes recovered through cloning suggested that some sequences could be chimeric or generated in vivo by partial homogenization through gene conversion or unequal crossing-over. Average sequence divergence among B. balearica clones was 0.768%, and the most divergent sequences differed by 1.62%. Available evidence does not suggest that B. balearica paralogues have been obtained from other extant Buxus species through interspecific hybridization. The presence of several ribosomal sequences in box implies that the molecular forces driving the concerted evolution of this multigene family are not fully operational in this genus. Phylogenetic analyses of cloned ITS sequences from B. balearica displayed very poor resolution and only two clades received moderate bootstrap support. Despite the marked intragenomic sequence divergence found, ribosomal data suggest a clear phylogeographic split in B. balearica between western and eastern accessions. The distinct, nonchimeric sequences that are postulated as being present in each biogeographic group suggest that box populations from Anatolia (eastern Mediterranean) are relict.


Assuntos
Buxus/classificação , Buxus/genética , Filogenia , Sequência de Bases , DNA de Plantas/genética , Geografia , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA de Plantas/química , RNA de Plantas/genética , Ribossomos/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA