Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.083
Filtrar
1.
BMC Genom Data ; 25(1): 43, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38710997

RESUMO

BACKGROUND: Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS: Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 µM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS: Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.


Assuntos
Cádmio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glycine max , Estresse Fisiológico , Glycine max/genética , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Genótipo , Transcriptoma/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
2.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Life Sci ; 348: 122688, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710284

RESUMO

Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1ß, MCP-1, JNK1, and TGF-ß in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.


Assuntos
Cádmio , Cardiotoxicidade , Inflamassomos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estresse Oxidativo , Ubiquinona , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Cádmio/toxicidade , Regulação para Baixo/efeitos dos fármacos , Antioxidantes/farmacologia
4.
Cell Biol Toxicol ; 40(1): 35, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771546

RESUMO

Neural tube defects (NTDs) represent a prevalent and severe category of congenital anomalies in humans. Cadmium (Cd) is an environmental teratogen known to cause fetal NTDs. However, its underlying mechanisms remain elusive. This study aims to investigate the therapeutic potential of lipophagy in the treatment of NTDs, providing valuable insights for future strategies targeting lipophagy activation as a means to mitigate NTDs.We successfully modeled NTDs by Cd exposure during pregnancy. RNA sequencing was employed to investigate the transcriptomic alterations and functional enrichment of differentially expressed genes in NTD placental tissues. Subsequently, pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. We found that Cd exposure caused NTDs. Further analyzed transcriptomic data from the placentas with NTDs which revealed significant downregulation of low-density lipoprotein receptor associated protein 1(Lrp1) gene expression responsible for positive regulation of low-density lipoprotein cholesterol (LDL-C) transport. Correspondingly, there was an increase in maternal serum/placenta/amniotic fluid LDL-C content. Subsequently, we have discovered that Cd exposure activated placental lipophagy. Pharmacological/genetic (Atg5-/- placentas) experiments confirmed that inducing placental lipophagy can alleviate Cd induced-NTDs. Furthermore, our findings demonstrate that activation of placental lipophagy effectively counteracts the Cd-induced elevation in LDL-C levels. Lipophagy serves to mitigate Cd-induced NTDs by reducing LDL-C levels within mouse placentas.


Assuntos
Cádmio , LDL-Colesterol , Defeitos do Tubo Neural , Placenta , Feminino , Animais , Gravidez , Placenta/metabolismo , Placenta/efeitos dos fármacos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/induzido quimicamente , Defeitos do Tubo Neural/metabolismo , Camundongos , Cádmio/toxicidade , LDL-Colesterol/sangue , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Sci Total Environ ; 931: 172938, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.


Assuntos
Cádmio , Mitocôndrias , Piroptose , Testículo , Animais , Cádmio/toxicidade , Masculino , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Piroptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Proteostase , Proteínas Mitocondriais/metabolismo , Exposição Ambiental/efeitos adversos , DNA Mitocondrial , Proteases Dependentes de ATP/metabolismo , Estresse Proteotóxico
6.
Sci Total Environ ; 931: 172919, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703857

RESUMO

Species in estuaries tend to undergo both cadmium (Cd) and low salinity stress. However, how low salinity affects the Cd toxicity has not been fully understood. Investigating the impacts of low salinity on the dose-response relationships between Cd and biological endpoints has potential to enhance our understanding of the combined effects of low salinity and Cd. In this work, changes in the transcriptomes of Pacific oysters were analyzed following exposure to Cd (5, 20, 80 µg/L Cd2+) under normal (31.4 psu) and low (15.7 psu) salinity conditions, and then the dose-response relationship between Cd and transcriptome was characterized in a high-throughput manner. The benchmark dose (BMD) of gene expression, as a point of departure (POD), was also calculated based on the fitted dose-response model. We found that low salinity treatment significantly influenced the dose-response relationships between Cd and transcripts in oysters indicated by altered dose-response curves. In details, a total of 219 DEGs were commonly fitted to best models under both normal and low salinity conditions. Nearly three quarters of dose-response curves varied with salinity condition. Some monotonic dose-response curves in normal salinity condition even were replaced by nonmonotonic curves in low salinity condition. Low salinity treatment decreased the PODs of differentially expressed genes induced by Cd, suggesting that gene differential expression was more prone to being triggered by Cd in low salinity condition. The changed sensitivity to Cd in low salinity condition should be taken into consideration when using oyster as an indicator to assess the ecological risk of Cd pollution in estuaries.


Assuntos
Cádmio , Relação Dose-Resposta a Droga , Salinidade , Transcriptoma , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Transcriptoma/efeitos dos fármacos
7.
Sci Total Environ ; 931: 172812, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703854

RESUMO

Cadmium (Cd), as a non-essential and toxic heavy metal in plants, has deleterious effects on plant physiological and biochemical processes. Nitric oxide (NO) is one of the most important signaling molecules for plants to response diverse stresses. Here, we found that Cd-induced programmed cell death (PCD) was accompanied by NO bursts, which exacerbated cell death when NO was removed and vice versa. Proteomic analysis of S-nitrosylated proteins showed that the differential proteins in Cd-induced PCD and in NO-alleviated PCD mainly exist together in carbohydrate metabolism and amino acid metabolism, while some of the differential proteins exist alone in metabolism of cofactors and vitamins and lipid metabolism. Meanwhile, S-nitrosylation of proteins in porphyrin and chlorophyll metabolism and starch and sucrose metabolism could explain the leaf chlorosis induced by PCD. Moreover, protein transport protein SEC23, ubiquitinyl hydrolase 1 and pathogenesis-related protein 1 were identified to be S-nitrosylated in vivo, and their expressions were increased in Cd-induced PCD while decreased in NO treatment. Similar results were obtained in tomato seedlings with higher S-nitrosylation. Taken together, our results indicate that NO might be involved in the regulation of Cd-induced PCD through protein S-nitrosylation, especially proteins involved in PCD response.


Assuntos
Cádmio , Óxido Nítrico , Plântula , Solanum lycopersicum , Óxido Nítrico/metabolismo , Cádmio/toxicidade , Solanum lycopersicum/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
8.
PLoS One ; 19(5): e0302940, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748679

RESUMO

Miscanthus lutarioriparia is a promising energy crop that is used for abandoned mine soil phytoremediation because of its high biomass yield and strong tolerance to heavy metals. However, the biological mechanism of heavy metal resistance is limited, especially for applications in the soil restoration of mining areas. Here, through the investigation of soil cadmium(Cd) in different mining areas and soil potted under Cd stress, the adsorption capacity of Miscanthus lutarioriparia was analyzed. The physiological and transcriptional effects of Cd stress on M. lutarioriparia leaves and roots under hydroponic conditions were analyzed. The results showed that M. lutarioriparia could reduce the Cd content in mining soil by 29.82%. Moreover, different Cd varieties have different Cd adsorption capacities in soils with higher Cd concentration. The highest cadmium concentrations in the aboveground and belowground parts of the plants were 185.65 mg/kg and 186.8 mg/kg, respectively. The total chlorophyll content, superoxide dismutase and catalase activities all showed a trend of increasing first and then decreasing. In total, 24,372 differentially expressed genes were obtained, including 7735 unique to leaves, 7725 unique to roots, and 8912 unique to leaves and roots, which showed differences in gene expression between leaves and roots. These genes were predominantly involved in plant hormone signal transduction, glutathione metabolism, flavonoid biosynthesis, ABC transporters, photosynthesis and the metal ion transport pathway. In addition, the number of upregulated genes was greater than the number of downregulated genes at different stress intervals, which indicated that M. lutarioriparia adapted to Cd stress mainly through positive regulation. These results lay a solid foundation for breeding excellent Cd resistant M. lutarioriparia and other plants. The results also have an important theoretical significance for further understanding the detoxification mechanism of Cd stress and the remediation of heavy metal pollution in mining soil.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Poaceae , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Poaceae/genética , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Perfilação da Expressão Gênica , Biodegradação Ambiental , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Transcriptoma , Solo/química , Estresse Fisiológico , Mineração
9.
BMC Plant Biol ; 24(1): 359, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698306

RESUMO

BACKGROUND: Selenium (Se) fertilizer and arbuscular mycorrhizal fungi (AMF) are known to modulate cadmium (Cd) toxicity in plants. However, the effects of their co-application on wheat growth and soil microbial communities in Cd-contaminated soil are unclear. RESULTS: A pot experiment inoculation with two types of AMF and the application of Se fertilizer under Cd stress in wheat showed that inoculation AMF alone or combined with Se fertilizer significantly increased wheat biomass. Se and AMF alone or in combination significantly reduced available Cd concentration in wheat and soil, especially in the Se combined with Ri treatment. High throughput sequencing of soil samples indicated that Se and AMF application had stronger influence on bacterial community compared to fungal community and the bacterial network seemed to have more complex interconnections than the fungal network, and finally shaped the formation of specific microflora to affect Cd availability. CONCLUSION: These results indicate that the application of Se and AMF, particularly in combination, could successfully decrease soil Cd availability and relieve the harm of Cd in wheat by modifying rhizosphere soil microbial communities.


Assuntos
Biomassa , Cádmio , Fertilizantes , Micorrizas , Rizosfera , Selênio , Microbiologia do Solo , Triticum , Triticum/crescimento & desenvolvimento , Triticum/microbiologia , Triticum/efeitos dos fármacos , Micorrizas/fisiologia , Cádmio/análise , Cádmio/toxicidade , Fertilizantes/análise , Selênio/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Microbiota/efeitos dos fármacos
10.
BMC Plant Biol ; 24(1): 360, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698342

RESUMO

BACKGROUND: Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS: Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION: Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.


Assuntos
Cádmio , Oryza , Proteínas de Plantas , Proteômica , Plântula , Selênio , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Selênio/farmacologia , Cádmio/toxicidade , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Perfilação da Expressão Gênica , Transcriptoma , Genes de Plantas
11.
Water Sci Technol ; 89(9): 2523-2537, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747965

RESUMO

Miscanthus sacchariflorus is previously demonstrated to be a potential candidate for remediation of cadmium (Cd) pollution. To explore its resistance strategy to Cd, a hydroponic experiment was conducted to determine the variations of photosynthetic activity in leaves and physiological response in roots of this plant. Results showed that the root of M. sacchariflorus was the primary location for Cd accumulation. The bioconcentration factor in the roots and rhizomes was >1, and the translocation factor from underground to aboveground was <1. Throughout the experimental period, treatment with 0.06 mM Cd2+ did not significantly alter the contents of chlorophyll a, chlorophyll b, or carotenoid. By contrast, treatment with 0.15 and 0.30 mM Cd2+ decreased the contents of chlorophyll a, chlorophyll b, and carotenoid; caused the deformation of the chlorophyll fluorescence transient curve; reduced the photochemical efficiency of photosystem II; and increased the contents of non-protein thiols, total flavone, and total phenol. These results indicate that M. sacchariflorus has good adaptability to 0.06 mM Cd2+. Moreover, the accumulation of the non-protein thiols, total flavone, and total phenol in roots may promote the chelation of Cd2+, thus alleviating Cd toxicity. This study provides theoretical support for using M. sacchariflorus to remediate Cd-polluted wetlands.


Assuntos
Cádmio , Fotossíntese , Poaceae , Compostos de Sulfidrila , Cádmio/toxicidade , Cádmio/metabolismo , Fotossíntese/efeitos dos fármacos , Poaceae/metabolismo , Poaceae/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Clorofila/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Biodegradação Ambiental
12.
Mol Biol Rep ; 51(1): 660, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750264

RESUMO

BACKGROUND: Cadmium (Cd) is a heavy metal with extremely harmful toxic effects on the brain. Quetiapine (QTP) has unique neuroprotective effects with anti-inflammatory and antioxidant actions. However, its neuroprotective effect against Cd-induced neurotoxicity has not been previously studied. METHODS: QTP was administered in 10 and 20 mg/kg doses, while Cd was given in a dose of 6.5 mg/kg. RESULTS: In our study, QTP dose-dependently attenuated neuronal injury by downregulating p-tau and ß-amyloid. QTP potently attenuates histological abrasions induced by Cd. QTP counteracted oxidative injury by decreasing neuronal MDA and increased GSH levels mediated by downregulating Keap1 and upregulating Nrf2 and HO-1. QTP mitigated inflammation by decreasing MPO and NO2 and neuronal cytokines TNF-α and IL-1ß and upregulating IL-10 levels mediated by NF-κB downregulation. Additionally, QTP counteracted Cd-induced pyroptosis by downregulating caspase-1, ASC, and NLRP3 protein levels. CONCLUSION: In conclusion, QTP mitigates neurotoxicity induced by Cd through suppression of inflammation, pyroptosis, and oxidative stress by controlling the NF-κB, Keap1/Nrf2, and pyroptosis signals.


Assuntos
Cádmio , Inflamação , Estresse Oxidativo , Piroptose , Fumarato de Quetiapina , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Cádmio/toxicidade , Fumarato de Quetiapina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/metabolismo , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo
13.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612404

RESUMO

At present, the mechanism of varietal differences in cadmium (Cd) accumulation in rice is not well understood. Two rice cultivars, ZZY (high translocation-high grain Cd) and SJ18 (low translocation-low grain Cd), were used to analyze transcriptome differences in the spike-neck tissue in field trials. The results showed that, compared with ZZY, 22,367 differentially expressed genes (DEGs) were identified in SJ18, including 2941 upregulated and 19,426 downregulated genes. GO analysis enriched 59 downregulated terms, concerning 24 terms enriched for more than 1000 DEGs, including cellular and metabolic processes, biological regulation, localization, catalytic activity, transporter activity, signaling, etc. KEGG enrichment identified 21 significant downregulated pathways, regarding the ribosome, metabolic pathways, biosynthesis of secondary metabolism, signaling transduction, cell membrane and cytoskeleton synthesis, genetic information transfer, amino acid synthesis, etc. Weighted gene co-expression network analysis (WGCNA) revealed that these DEGs could be clustered into five modules. Among them, the yellow module was significantly related to SJ18 with hub genes related to OsHMA and OsActin, whereas the brown module was significantly related to ZZY with hub genes related to mitogen-activated protein kinase (MAPK), CBS, and glutaredoxin. This suggests that different mechanisms are involved in the process of spike-neck-grain Cd translocation among varieties. This study provides new insights into the mechanisms underlying differences in Cd transport among rice varieties.


Assuntos
Oryza , Oryza/genética , Transcriptoma , Cádmio/toxicidade , Perfilação da Expressão Gênica , Metabolismo Secundário , Grão Comestível
14.
Plant Cell Rep ; 43(4): 113, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573519

RESUMO

KEY MESSAGE: Selenium nanoparticles reduce cadmium absorption in tomato roots, mitigating heavy metal effects. SeNPs can efficiently help to enhance growth, yield, and biomolecule markers in cadmium-stressed tomato plants. In the present study, the effects of selenium nanoparticles (SeNPs) were investigated on the tomato plants grown in cadmium-contaminated soil. Nanoparticles were synthesized using water extract of Nigella sativa and were characterized for their size and shape. Two application methods (foliar spray and soil drench) with nanoparticle concentrations of 0, 100, and 300 mg/L were used to observe their effects on cadmium-stressed plants. Growth, yield, biochemical, and stress parameters were studied. Results showed that SeNPs positively affected plant growth, mitigating the negative effects of cadmium stress. Shoot length (SL), root length (RL), number of branches (NB), number of leaves per plant (NL), and leaf area (LA) were significantly reduced by cadmium stress but enhanced by 45, 51, 506, 208, and 82%, respectively, by soil drench treatment of SeNPs. Similarly, SeNPs increased the fruit yield (> 100%) and fruit weight (> 100%), and decreased the days to fruit initiation in tomato plants. Pigments were also positively affected by the SeNPs, particularly in foliar treatment. Lycopene content was also enhanced by the addition of NPs (75%). Furthermore, the addition of SeNPs improved the ascorbic acid, protein, phenolic, flavonoid, and proline contents of the tomato plants under cadmium stress, whereas stress enzymes also showed enhanced activities under cadmium stress. It is concluded from the present study that the addition of selenium nanoparticles enhanced the growth and yield of Cd-stressed plants by reducing the absorption of cadmium and increasing the stress management of plants.


Assuntos
Nanopartículas , Selênio , Solanum lycopersicum , Selênio/farmacologia , Cádmio/toxicidade , Solo
15.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564424

RESUMO

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Assuntos
Brassicaceae , Sulfeto de Hidrogênio , Melatonina , Sulfetos , Sulfeto de Hidrogênio/farmacologia , Cádmio/toxicidade , Melatonina/farmacologia , Estresse Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrogênio
17.
Sci Rep ; 14(1): 8023, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580805

RESUMO

Toxic metals are vital risk factors affecting serum ion balance; however, the effect of their co-exposure on serum ions and the underlying mechanism remain unclear. We assessed the correlations of single metal and mixed metals with serum ion levels, and the mediating effects of mineralocorticoids by investigating toxic metal concentrations in the blood, as well as the levels of representative mineralocorticoids, such as deoxycorticosterone (DOC), and serum ions in 471 participants from the Dongdagou-Xinglong cohort. In the single-exposure model, sodium and chloride levels were positively correlated with arsenic, selenium, cadmium, and lead levels and negatively correlated with zinc levels, whereas potassium and iron levels and the anion gap were positively correlated with zinc levels and negatively correlated with selenium, cadmium and lead levels (all P < 0.05). Similar results were obtained in the mixed exposure models considering all metals, and the major contributions of cadmium, lead, arsenic, and selenium were highlighted. Significant dose-response relationships were detected between levels of serum DOC and toxic metals and serum ions. Mediation analysis showed that serum DOC partially mediated the relationship of metals (especially mixed metals) with serum iron and anion gap by 8.3% and 8.6%, respectively. These findings suggest that single and mixed metal exposure interferes with the homeostasis of serum mineralocorticoids, which is also related to altered serum ion levels. Furthermore, serum DOC may remarkably affect toxic metal-related serum ion disturbances, providing clues for further study of health risks associated with these toxic metals.


Assuntos
Arsênio , Metais Pesados , Selênio , Humanos , Chumbo/toxicidade , Arsênio/toxicidade , Cádmio/toxicidade , Análise de Mediação , Mineralocorticoides , Intoxicação por Metais Pesados , Zinco , Ferro , Íons , China , Metais Pesados/toxicidade
18.
Environ Monit Assess ; 196(5): 412, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565815

RESUMO

Cadmium (Cd) is a highly toxic metal that frequently contaminates our environment. In this study, the bioflocculant-producing, cadmium-resistant Escherichia fergusonii ZSF-15 was characterized from Paharang drain, Bawa Chak, Faisalabad, Pakistan. The Cd-resistant E. fergusonii was used to determine the bioflocculant production using yeast-peptone-glycerol medium (pH 6.5) supplemented with 50 mg L-1 of Cd. The culture was incubated for 3 days at 37 °C in a rotary shaker at 120 rpm. The fermentation broth was centrifuged at 4000 g for 10 min after the incubation period. The maximum flocculating activity by isolate ZSF-15 was found to be 71.4% after 48 h of incubation. According to the Fourier transform infrared spectroscopy analysis, the bioflocculant produced by strain ZSF-15 was comprised of typical polysaccharide and protein, i.e. hydroxyl, carboxyl, and amino groups. The strain ZSF-15 exhibited bioflocculant activity at range of pH (6-8) and temperature (35-50℃). Maximum flocculation activity (i.e. 71%) was observed at 47℃, whereas 63% flocculation production was observed at pH 8. In the present study, antioxidant enzyme profile of ZSF-15 was also evaluated under cadmium stress. A significant increase in antioxidant enzymes including superoxide dismutase (118%) and ascorbate peroxidase (28%) was observed, whereas contents of catalase (86%), glutathione transferase (13%), and peroxidase (8%) were decreased as compared to control.


Assuntos
Antioxidantes , Cádmio , Escherichia , Cádmio/toxicidade , Concentração de Íons de Hidrogênio , Monitoramento Ambiental , Floculação
19.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608882

RESUMO

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Assuntos
Cádmio , Patos , Microplásticos , Estresse Oxidativo , Pâncreas , Animais , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Microplásticos/toxicidade , Fibrose , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
20.
Sci Rep ; 14(1): 8563, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609487

RESUMO

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Assuntos
Cólera , Infecções Urinárias , Vibrio , Humanos , Proteus mirabilis/genética , Cádmio/toxicidade , Sistemas CRISPR-Cas/genética , RNA Ribossômico 16S , Águas Residuárias , RNA Guia de Sistemas CRISPR-Cas , Vibrio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA