Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.435
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727276

RESUMO

In mammals, hearing loss is irreversible due to the lack of the regenerative capacity of the auditory epithelium. However, stem/progenitor cells in mammalian cochleae may be a therapeutic target for hearing regeneration. The ubiquitin proteasome system plays an important role in cochlear development and maintenance. In this study, we investigated the role of ubiquitin C-terminal hydrolase L1 (UCHL1) in the process of the transdifferentiation of auditory supporting cells (SCs) into hair cells (HCs). The expression of UCHL1 gradually decreased as HCs developed and was restricted to inner pillar cells and third-row Deiters' cells between P2 and P7, suggesting that UCHL1-expressing cells are similar to the cells with Lgr5-positive progenitors. UCHL1 expression was decreased even under conditions in which supernumerary HCs were generated with a γ-secretase inhibitor and Wnt agonist. Moreover, the inhibition of UCHL1 by LDN-57444 led to an increase in HC numbers. Mechanistically, LDN-57444 increased mTOR complex 1 activity and allowed SCs to transdifferentiate into HCs. The suppression of UCHL1 induces the transdifferentiation of auditory SCs and progenitors into HCs by regulating the mTOR pathway.


Assuntos
Transdiferenciação Celular , Células Ciliadas Auditivas , Transdução de Sinais , Serina-Treonina Quinases TOR , Ubiquitina Tiolesterase , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Transdiferenciação Celular/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citologia , Camundongos , Células Labirínticas de Suporte/metabolismo , Células Labirínticas de Suporte/citologia , Indóis , Oximas
2.
Sci Rep ; 14(1): 10910, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740884

RESUMO

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Assuntos
Canamicina , Camundongos Endogâmicos C57BL , Ototoxicidade , Transdução de Sinais , Gânglio Espiral da Cóclea , Fator de Crescimento Transformador beta , Animais , Canamicina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Fator de Crescimento Transformador beta/metabolismo , Camundongos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologia , Cóclea/metabolismo , Cóclea/efeitos dos fármacos , Cóclea/patologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Furosemida/farmacologia , Masculino
3.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682291

RESUMO

The planar polarized organization of hair cells in the vestibular maculae is unique because these sensory organs contain two groups of cells with oppositely oriented stereociliary bundles that meet at a line of polarity reversal (LPR). EMX2 is a transcription factor expressed by one hair cell group that reverses the orientation of their bundles, thereby forming the LPR. We generated Emx2-CreERt2 transgenic mice for genetic lineage tracing and demonstrate Emx2 expression before hair cell specification when the nascent utricle and saccule constitute a continuous prosensory domain. Precursors labeled by Emx2-CreERt2 at this stage give rise to hair cells located along one side of the LPR in the mature utricle or saccule, indicating that this boundary is first established in the prosensory domain. Consistent with this, Emx2-CreERt2 lineage tracing in Dreher mutants, where the utricle and saccule fail to segregate, labels a continuous field of cells along one side of a fused utriculo-saccular-cochlear organ. These observations reveal that LPR positioning is pre-determined in the developing prosensory domain, and that EMX2 expression defines lineages of hair cells with oppositely oriented stereociliary bundles.


Assuntos
Linhagem da Célula , Polaridade Celular , Orelha Interna , Proteínas de Homeodomínio , Camundongos Transgênicos , Fatores de Transcrição , Animais , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Linhagem da Célula/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Orelha Interna/metabolismo , Orelha Interna/embriologia , Orelha Interna/citologia , Polaridade Celular/genética , Sáculo e Utrículo/citologia , Sáculo e Utrículo/metabolismo , Sáculo e Utrículo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/citologia
4.
Toxicol Appl Pharmacol ; 486: 116947, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688426

RESUMO

AIMS: SERCA2, one of the P-type pumps encoded by gene ATP2A2, is the only calcium reflux channel of the endoplasmic reticulum (ER) and participates in maintaining calcium homeostasis. The present study was designed to explore SERCA2 expression pattern in auditory hair cells and the possible mechanism underlying the effects of SERCA2 on cisplatin-induced ototoxicity. MAIN METHODS: The SERCA2 expression pattern in cochlea hair cells and HEI-OC1 cells was measured by Western blot (WB) and immunofluorescence staining. The apoptosis and its related factors were detected by TUNEL assay and WB. The expression levels of ER stress-related factors, ATF6, PERK, IRE1α, and GRP78, were measured via WB. As for the determination of SERCA2 overexpression and knockdown, plasmids and lentiviral vectors were constructed, respectively. KEY FINDINGS: We found that SERCA2 was highly expressed in cochlea hair cells and HEI-OC1 cells. Of note, the level of SERCA2 expression in neonatal mice was remarkably higher than that in adult mice. Under the exposure of 30 µM cisplatin, SERCA2 was down-regulated significantly compared with the control group. In addition, cisplatin administration triggered the occurrence of ER stress and apoptosis. Those events were reversed by overexpressing SERCA2. On the contrary, SERCA2 knockdown could aggravate the above processes. SIGNIFICANCE: The findings from the present study disclose, for the first time, that SERCA2 is abundantly expressed in cochlea hair cells, and the suppression of SERCA2 caused by cisplatin could trigger ER homeostasis disruption, thereby implying that SERCA2 might be a promising target to prevent cisplatin-induced cytotoxicity of hair cells.


Assuntos
Apoptose , Cisplatino , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Células Ciliadas Auditivas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Cisplatino/toxicidade , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Linhagem Celular , Antineoplásicos/toxicidade , Masculino , Ototoxicidade/prevenção & controle
5.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563869

RESUMO

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Assuntos
Antibacterianos , Bloqueadores dos Canais de Cálcio , Cálcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamil , Peixe-Zebra , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Verapamil/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidade , Antibacterianos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/prevenção & controle , Aminoglicosídeos/toxicidade , Sistema da Linha Lateral/efeitos dos fármacos , Larva/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle
6.
Redox Rep ; 29(1): 2341470, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629504

RESUMO

Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.


Assuntos
Antineoplásicos , Hesperidina , Ototoxicidade , Humanos , Cisplatino/toxicidade , Hesperidina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ototoxicidade/tratamento farmacológico , Ototoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Antineoplásicos/toxicidade , Células Ciliadas Auditivas/metabolismo , Apoptose
7.
Hear Res ; 446: 109006, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583350

RESUMO

Hair cells in the cochlear sensory epithelia serve as mechanosensory receptors, converting sound into neuronal signals. The basal sensory epithelia are responsible for transducing high-frequency sounds, while the apex handles low-frequency sounds. Age-related hearing loss predominantly affects hearing at high frequencies and is indicative of damage to the basal sensory epithelia. However, the precise mechanism underlying this site-selective injury remains unclear. In this study, we employed a microscale proteomics approach to examine and compare protein expression in different regions of the cochlear sensory epithelia (upper half and lower half) in 1.5-month-old (normal hearing) and 6-month-old (severe high-frequency hearing loss without hair cell loss) C57BL/6J mice. A total of 2,386 proteins were detected, and no significant differences in protein expression were detected in the upper half of the cochlear sensory epithelia between the two age groups. The expression of 20 proteins in the lower half of the cochlear sensory epithelia significantly differed between the two age groups (e.g., MATN1, MATN4, and AQP1). Moreover, there were 311 and 226 differentially expressed proteins between the upper and lower halves of the cochlear sensory epithelia in 1.5-month-old and 6-month-old mice, respectively. The expression levels of selected proteins were validated by Western blotting. These findings suggest that the spatial differences in protein expression within the cochlear sensory epithelia may play a role in determining the susceptibility of cells at different sites of the cochlea to age-related damage.


Assuntos
Cóclea , Camundongos Endogâmicos C57BL , Presbiacusia , Proteômica , Animais , Cóclea/metabolismo , Cóclea/patologia , Presbiacusia/metabolismo , Presbiacusia/patologia , Presbiacusia/fisiopatologia , Presbiacusia/genética , Fatores Etários , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Modelos Animais de Doenças , Audição , Epitélio/metabolismo , Masculino , Camundongos
8.
Sci Rep ; 14(1): 7862, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570547

RESUMO

The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in the inner ear hair cells (HCs), possibly regulating auditory function. In the last decade, several mutations in SMPX have been associated with X-chromosomal progressive non syndromic hearing loss in humans and, in line with this, Smpx-deficient animal models, namely zebrafish and mouse, showed significant impairment of inner ear HCs development, maintenance, and functioning. In this work, we uncovered smpx expression in the neuromast mechanosensory HCs of both Anterior and Posterior Lateral Line (ALL and PLL, respectively) of zebrafish larvae and focused our attention on the PLL. Smpx was subcellularly localized throughout the cytoplasm of the HCs, as well as in their primary cilium. Loss-of-function experiments, via both morpholino-mediated gene knockdown and CRISPR/Cas9 F0 gene knockout, revealed that the lack of Smpx led to fewer properly differentiated and functional neuromasts, as well as to a smaller PLL primordium (PLLp), the latter also Smpx-positive. In addition, the kinocilia of Smpx-deficient neuromast HCs appeared structurally and numerically altered. Such phenotypes were associated with a significant reduction in the mechanotransduction activity of the neuromast HCs, in line with their positivity for Smpx. In summary, this work highlights the importance of Smpx in lateral line development and, specifically, in proper HCs differentiation and/or maintenance, and in the mechanotransduction process carried out by the neuromast HCs. Because lateral line HCs are both functionally and structurally analogous to the cochlear HCs, the neuromasts might represent an invaluable-and easily accessible-tool to dissect the role of Smpx in HCs development/functioning and shed light on the underlying mechanisms involved in hearing loss.


Assuntos
Perda Auditiva , Sistema da Linha Lateral , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sistema da Linha Lateral/metabolismo , Mecanotransdução Celular , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/genética , Proteínas Musculares/metabolismo
9.
Elife ; 122024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651641

RESUMO

Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Células Ciliadas Auditivas , Morfogênese , Animais , Camundongos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiologia , Polaridade Celular , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética
10.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673858

RESUMO

Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.


Assuntos
Antioxidantes , Células Ciliadas Auditivas , Perda Auditiva Neurossensorial , Estresse Oxidativo , Compostos Fitoquímicos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Morte Celular/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
11.
Sci Rep ; 14(1): 6670, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509148

RESUMO

Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.


Assuntos
Orelha Interna , Peixes Listrados , Sistema da Linha Lateral , Perciformes , Animais , Masculino , Feminino , Peixe-Zebra/genética , Células Ciliadas Auditivas/metabolismo , Regeneração/genética , Mamíferos
12.
Biochem Pharmacol ; 222: 116115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460910

RESUMO

In recent years, extensive research has been conducted on the pathogenesis of sensorineural hearing loss (SNHL). Apoptosis and necrosis have been identified to play important roles in hearing loss, but they cannot account for all hearing loss. Autophagy, a cellular process responsible for cell self-degradation and reutilization, has emerged as a significant factor contributing to hearing loss, particularly in cases of autophagy deficiency. Autophagy plays a crucial role in maintaining cell health by exerting cytoprotective and metabolically homeostatic effects in organisms. Consequently, modulating autophagy levels can profoundly impact the survival, death, and regeneration of cells in the inner ear, including hair cells (HCs) and spiral ganglion neurons (SGNs). Abnormal mitochondrial autophagy has been demonstrated in animal models of SNHL. These findings indicate the profound significance of comprehending autophagy while suggesting that our perspective on this cellular process holds promise for advancing the treatment of SNHL. Thus, this review aims to clarify the pathogenic mechanisms of SNHL and the role of autophagy in the developmental processes of various cochlear structures, including the greater epithelial ridge (GER), SGNs, and the ribbon synapse. The pathogenic mechanisms of age-related hearing loss (ARHL), also known as presbycusis, and the latest research on autophagy are also discussed. Furthermore, we underscore recent findings on the modulation of autophagy in SNHL induced by ototoxic drugs. Additionally, we suggest further research that might illuminate the complete potential of autophagy in addressing SNHL, ultimately leading to the formulation of pioneering therapeutic strategies and approaches for the treatment of deafness.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Animais , Perda Auditiva Neurossensorial/tratamento farmacológico , Perda Auditiva Neurossensorial/metabolismo , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/metabolismo , Modelos Animais de Doenças , Autofagia
13.
Elife ; 132024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334748

RESUMO

Two calcium-binding proteins, CaBP1 and CaBP2, cooperate to keep calcium channels in the hair cells of the inner ear open.


Assuntos
Cálcio , Células Ciliadas Auditivas , Cálcio/metabolismo , Células Ciliadas Auditivas/metabolismo , Canais de Cálcio/metabolismo , Cálcio da Dieta , Células Ciliadas Auditivas Internas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167024, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242180

RESUMO

Oxidative stress is the common mechanism of sensorineural hearing loss (SNHL) caused by many factors, such as noise, drugs and ageing. Here, we used tert-butyl hydroperoxide (t-BHP) to cause oxidative stress damage in HEI-OC1 cells and in an in vitro cochlear explant model. We observed lipid peroxidation, iron accumulation, mitochondrial shrinkage and vanishing of mitochondrial cristae, which caused hair cell ferroptosis, after t-BHP exposure. Moreover, the number of TUNEL-positive cells in cochlear explants and HEI-OC1 cells increased significantly, suggesting that t-BHP caused the apoptosis of hair cells. Administration of deferoxamine (DFOM) significantly attenuated t-BHP-induced hair cell loss and disordered hair cell arrangement in cochlear explants as well as HEI-OC1 cell death, including via apoptosis and ferroptosis. Mechanistically, we found that DFOM treatment reduced t-BHP-induced lipid peroxidation, iron accumulation and mitochondrial pathological changes in hair cells, consequently mitigating apoptosis and ferroptosis. Moreover, DFOM treatment alleviated GSH depletion caused by t-BHP and activated the Nrf2 signalling pathway to exert a protective effect. Furthermore, we confirmed that the protective effect of DFOM mainly depended on its ability to chelate iron by constructing Fth1 knockout (KO), TfR1 KO and Nrf2 KO HEI-OC1 cell lines using CRISPR/Cas9 technology and a Flag-Fth1 (overexpression) HEI-OC1 cell line using the FlpIn™ System. Our findings suggest that DFOM is a potential drug for SNHL treatment due to its ability to inhibit apoptosis and ferroptosis by chelating iron and scavenging reactive oxygen species (ROS).


Assuntos
Desferroxamina , Ototoxicidade , Humanos , terc-Butil Hidroperóxido/toxicidade , terc-Butil Hidroperóxido/metabolismo , Desferroxamina/farmacologia , Ototoxicidade/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células Ciliadas Auditivas/metabolismo , Ferro/metabolismo
15.
Hear Res ; 443: 108962, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295585

RESUMO

Nestin expression is associated with pluripotency. Growing evidence suggests nestin is involved in hair cell development. The objective of this study was to investigate the morphology and role of nestin-expressing cells residing in the early postnatal murine inner ear. A lineage-tracing nestin reporter mouse line was used to further characterize these cells. Their cochleae and vestibular organs were immunostained and whole-mounted for cell counting. We found Nestin-expressing cells present in low numbers throughout the inner ear. Three morphotypes were observed: bipolar, unipolar, and globular. Mitotic activity was noted in nestin-expressing cells in the cochlea, utricle, saccule, and crista. Nestin-expressing cell characteristics were then observed after hair cell ablation in two mouse models. First, a reporter model demonstrated nestin expression in a significantly higher proportion of hair cells after hair cell ablation than in control cochleae. However, in a lineage tracing nestin reporter mouse, none of the new hair cells which repopulated the organ of Corti after hair cell ablation expressed nestin, nor did the nestin-expressing cells change in morphotype. In conclusion, Nestin-expressing cells were identified in the cochlea and vestibular organs. After hair cell ablation, nestin-expressing cells did not react to the insult. However, a small number of nestin-expressing cells in all inner ear tissues exhibited mitotic activity, supporting progenitor cell potential, though perhaps not involved in hair cell regeneration.


Assuntos
Cóclea , Vestíbulo do Labirinto , Animais , Camundongos , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Nestina/genética , Nestina/metabolismo , Sáculo e Utrículo/metabolismo , Vestíbulo do Labirinto/metabolismo
16.
Mol Ther ; 32(3): 800-817, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243601

RESUMO

Hearing loss is a major health concern affecting millions of people worldwide with currently limited treatment options. In clarin-2-deficient Clrn2-/- mice, used here as a model of progressive hearing loss, we report synaptic auditory abnormalities in addition to the previously demonstrated defects of hair bundle structure and mechanoelectrical transduction. We sought an in-depth evaluation of viral-mediated gene delivery as a therapy for these hearing-impaired mice. Supplementation with either the murine Clrn2 or human CLRN2 genes preserved normal hearing in treated Clrn2-/- mice. Conversely, mutated forms of CLRN2, identified in patients with post-lingual moderate to severe hearing loss, failed to prevent hearing loss. The ectopic expression of clarin-2 successfully prevented the loss of stereocilia, maintained normal mechanoelectrical transduction, preserved inner hair cell synaptic function, and ensured near-normal hearing thresholds over time. Maximal hearing preservation was observed when Clrn2 was delivered prior to the loss of transducing stereocilia. Our findings demonstrate that gene therapy is effective for the treatment of post-lingual hearing impairment and age-related deafness associated with CLRN2 patient mutations.


Assuntos
Células Ciliadas Auditivas , Perda Auditiva , Humanos , Animais , Camundongos , Células Ciliadas Auditivas/metabolismo , Audição , Perda Auditiva/genética , Perda Auditiva/terapia , Estereocílios/metabolismo , Suplementos Nutricionais
17.
Mol Biol Rep ; 51(1): 217, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281217

RESUMO

BACKGROUND: In lower vertebrates like fish, the inner ear and lateral line hair cells (HCs) can regenerate after being damaged by proliferation/differentiation of supporting cells (SCs). However, the HCs of mouse cochlear could only regenerate within one to two weeks after birth but not for adults. METHODS AND RESULTS: To better understand the molecular foundations, we collected several public single-cell RNA sequencing (scRNAseq) data of mouse cochleae from E14 to P33 and extracted the prosensory and supporting cells specifically. Gene Set Enrichment Analysis (GSEA) results revealed a down-regulation of genes in Notch signaling pathway during postnatal stages (P7 and P33). We also identified 107 time-course co-expression genes correlated with developmental stage and predicated that EZH2 and KLF15 may be the key transcriptional regulators for these genes. Expressions of candidate target genes of EZH2 and KLF15 were also found in supporting cells of the auditory epithelia in chick and the neuromasts in zebrafish. Furthermore, inhibiting EZH2 suppressed regeneration of hair cells in zebrafish neuromasts and altered expressions of some developmental stage correlated genes. CONCLUSIONS: Our results extended the understanding for molecular basis of hair cell regeneration ability and revealed the potential role of Ezh2 in it.


Assuntos
Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Proliferação de Células/genética , Células Ciliadas Auditivas/metabolismo , Transdução de Sinais/fisiologia
18.
Nat Commun ; 15(1): 526, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228630

RESUMO

The inner ear is the hub where hair cells (HCs) transduce sound, gravity, and head acceleration stimuli to the brain. Hearing and balance rely on mechanosensation, the fastest sensory signals transmitted to the brain. The mechanoelectrical transducer (MET) channel is the entryway for the sound-balance-brain interface, but the channel-complex composition is not entirely known. Here, we report that the mouse utilizes Piezo1 (Pz1) and Piezo2 (Pz2) isoforms as MET-complex components. The Pz channels, expressed in HC stereocilia, and cell lines are co-localized and co-assembled with MET complex partners. Mice expressing non-functional Pz1 and Pz2 at the ROSA26 locus have impaired auditory and vestibular traits that can only be explained if the Pzs are integral to the MET complex. We suggest that Pz subunits constitute part of the MET complex and that interactions with other MET complex components yield functional MET units to generate HC MET currents.


Assuntos
Orelha Interna , Células Ciliadas Auditivas Internas , Animais , Camundongos , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas/metabolismo , Estereocílios/metabolismo , Orelha Interna/metabolismo , Audição , Mecanotransdução Celular , Mamíferos/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo
20.
Chin Med J (Engl) ; 137(6): 651-656, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37407223

RESUMO

ABSTRACT: Cochlear spiral ganglion neurons (SGNs) are bipolar ganglion cells and are the first neurons in the auditory transduction pathway. They transmit complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus for sound processing. Injury to SGNs causes largely irreversible hearing impairment because these neurons are highly differentiated cells and cannot regenerate, making treatment of sensorineural hearing loss (SNHL) arising from SGN injury difficult. When exposed to ototoxic drugs or damaging levels of noise or when there is loss of neurotrophic factors (NTFs), aging, and presence of other factors, SGNs can be irreversibly damaged, resulting in SNHL. It has been found that NTFs and stem cells can induce regeneration among dead spiral ganglion cells. In this paper, we summarized the present knowledge regarding injury, protection, and regeneration of SGNs.


Assuntos
Perda Auditiva Neurossensorial , Gânglio Espiral da Cóclea , Humanos , Gânglio Espiral da Cóclea/metabolismo , Neurônios , Cóclea , Células Ciliadas Auditivas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA