Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Mol Med Rep ; 30(1)2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38695254

RESUMO

As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas­related diseases.


Assuntos
Pâncreas , Pancreatopatias , Células Estreladas do Pâncreas , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Pâncreas/citologia , Pancreatopatias/patologia , Pancreatopatias/metabolismo , Animais , Matriz Extracelular/metabolismo , Diferenciação Celular , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo
2.
Int Immunopharmacol ; 132: 111944, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581990

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal malignancy worldwide owing to its complex tumour microenvironment and dense physical barriers. Stromal-derived factor-1 (SDF-1), which is abundantly secreted by tumour stromal cells, plays a pivotal role in promoting PDAC growth and metastasis. In this study, we investigated the impact and molecular mechanisms of the anti-PD-L1&CXCR4 bispecific nanobody on the TME and their consequent interference with PDAC progression. We found that blocking the SDF-1/CXCR4 signalling pathway delayed the epithelial-mesenchymal transition in pancreatic cancer cells. Anti-PD-L1&CXCR4 bispecific nanobody effectively suppress the secretion of SDF-1 by pancreatic stellate cells and downregulate the expression of smooth muscle actin alpha(α-SMA), thereby preventing the activation of cancer-associated fibroblasts by downregulating the PI3K/AKT signaling pathway. This improves the pancreatic tumour microenvironment, favouring the infiltration of T cells into the tumour tissue. In conclusion, our results suggest that the anti-PD-L1&CXCR4 bispecific nanobody exerts an antitumor immune response by changing the pancreatic tumour microenvironment. Hence, the anti-PD-L1&CXCR4 bispecific nanobody is a potential candidate for pancreatic cancer treatment.


Assuntos
Antígeno B7-H1 , Carcinoma Ductal Pancreático , Quimiocina CXCL12 , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Receptores CXCR4 , Anticorpos de Domínio Único , Microambiente Tumoral , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/imunologia , Humanos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Animais , Quimiocina CXCL12/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/imunologia , Transdução de Sinais , Camundongos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Progressão da Doença
3.
Cancer Lett ; 589: 216810, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494151

RESUMO

Pancreatic cancer is characterized by desmoplasia; crosstalk between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) leads to the deposition of extracellular matrix proteins in the tumor environment resulting in poor vascularity. Targeting either PCCs or PSCs individually has produced mixed results, and there is currently no effective strategy to target both cell types simultaneously. Previously, we demonstrated, through in vitro cell culture experiments, that a specific gold nanoparticle-based nanoformulation containing the anti-EGFR antibody cetuximab (C225) as a targeting agent and gemcitabine as a chemotherapeutic agent effectively targets both PCCs and PSCs simultaneously. Herein, we extend our studies to test the ability of these in vitro tested nano formulations to inhibit tumor growth in an orthotopic co-implantation model of pancreatic cancer in vivo. Orthotopic tumors were established by co-implantation of equal numbers of PCCs and PSCs in the mouse pancreas. Among the various formulations tested, 5 nm gold nanoparticles coated with gemcitabine, cetuximab and poly-ethylene glycol (PEG) of molecular weight 1000 Da, which we named ACGP441000, demonstrated optimal efficacy in inhibiting tumor growth. The current study reveals an opportunity to target PCCs and PSCs simultaneously, by exploiting their overexpression of EGFR as a target, in order to inhibit pancreatic cancer growth.


Assuntos
Nanopartículas Metálicas , Neoplasias Pancreáticas , Animais , Camundongos , Gencitabina , Ouro , Cetuximab/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Sistemas de Liberação de Medicamentos/métodos , Células Estreladas do Pâncreas/metabolismo
4.
Cell Signal ; 118: 111135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479555

RESUMO

BACKGROUND: Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS: ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS: ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-ß1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION: In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.


Assuntos
Pancreatopatias , Pancreatite Crônica , Animais , Humanos , Camundongos , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/farmacologia , Proteína de Matriz Oligomérica de Cartilagem/uso terapêutico , Células Cultivadas , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Fibrose , Pancreatopatias/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Int Immunopharmacol ; 130: 111691, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38367466

RESUMO

In the realm of fibroinflammatory conditions, chronic pancreatitis (CP) stands out as a particularly challenging ailment, lacking a dedicated, approved treatment. The potential of Pirfenidone (PFD), a drug originally used for treating idiopathic pulmonary fibrosis (IPF), in addressing CP's fibrotic aspects has sparked new interest. This investigation focused on the role of PFD in diminishing fibrosis and immune response in CP, using a mouse model induced by caerulein. The research extended to in vitro studies examining the influence of PFD on pancreatic stellate cells' (PSCs) behavior and the polarization of macrophages into M1 and M2 types. Advanced techniques like RNA sequencing and comprehensive data analyses were employed to decode the molecular interactions of PFD with PSCs. Supplementary experiments using techniques such as quantitative real-time PCR, western blotting, and immunofluorescence were also implemented. Results showed a notable reduction in pancreatic damage in PFD-treated mice, manifested through decreased acinar cell atrophy, lower collagen deposition, and a reduction in macrophage presence. Further investigation revealed PFD's capacity to hinder PSCs' migration, growth, and activation, alongside a reduction in the production and secretion of extracellular matrix proteins. This effect is primarily achieved by interfering with signaling pathways such as TGF-ß/Smad, Wnt/ß-catenin, and JAK/STAT. Additionally, PFD selectively hampers M1 macrophage polarization through the STAT3 pathway, without impacting M2 polarization. These outcomes highlight PFD's dual mechanism in moderating PSC activity and M1 macrophage polarization, positioning it as a promising candidate for CP therapy.


Assuntos
Células Estreladas do Pâncreas , Pancreatite Crônica , Piridonas , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/induzido quimicamente , Pâncreas/patologia , Macrófagos/metabolismo , Fibrose
6.
Adv Sci (Weinh) ; 11(16): e2308637, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417121

RESUMO

One major obstacle in the drug treatment of pancreatic ductal adenocarcinoma (PDAC) is its highly fibrotic tumor microenvironment, which is replete with activated pancreatic stellate cells (a-PSCs). These a-PSCs generate abundant extracellular matrix and secrete various cytokines to form biophysical and biochemical barriers, impeding drug access to tumor tissues. Therefore, it is imperative to develop a strategy for reversing PSC activation and thereby removing the barriers to facilitate PDAC drug treatment. Herein, by integrating chromatin immunoprecipitation (ChIP)-seq, Assays for Transposase-Accessible Chromatin (ATAC)-seq, and RNA-seq techniques, this work reveals that super-enhancers (SEs) promote the expression of various genes involved in PSC activation. Disruption of SE-associated transcription with JQ1 reverses the activated phenotype of a-PSCs and decreases stromal fibrosis in both orthotopic and patient-derived xenograft (PDX) models. More importantly, disruption of SEs by JQ1 treatments promotes vascularization, facilitates drug delivery, and alters the immune landscape in PDAC, thereby improving the efficacies of both chemotherapy (with gemcitabine) and immunotherapy (with IL-12). In summary, this study not only elucidates the contribution of SEs of a-PSCs in shaping the PDAC tumor microenvironment but also highlights that targeting SEs in a-PSCs may become a gate-opening strategy that benefits PDAC drug therapy by removing stromal barriers.


Assuntos
Carcinoma Ductal Pancreático , Imunoterapia , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Microambiente Tumoral , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Humanos , Animais , Camundongos , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Modelos Animais de Doenças , Gencitabina , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Azepinas/farmacologia , Azepinas/uso terapêutico , Linhagem Celular Tumoral , Triazóis/farmacologia , Triazóis/uso terapêutico
7.
Eur J Pharmacol ; 967: 176374, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309676

RESUMO

Pancreatic stellate cells (PSCs) are activated following loss of cytoplasmic vitamin A (retinol)-containing lipid droplets, which is a key event in the process of fibrogenesis of chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDCA). PSCs are the major source of cancer-associated fibroblasts (CAFs) that produce stroma to induce PDAC cancer cell growth, invasion, and metastasis. As an active metabolite of retinol, retinoic acid (RA) can regulate target gene expression in PSCs through its nuclear receptor complex (RAR/RXR or RXR/RXR) or transcriptional intermediary factor. Additionally, RA also has extranuclear and non-transcriptional effects. In vitro studies have shown that RA induces PSC deactivation which reduces extracellular matrix production through multiple modes of action, such as inhibiting TßRⅡ, PDGFRß, ß-catenin and Wnt production, downregulating ERK1/2 and JNK phosphorylation and suppressing active TGF-ß1 release. RA alone or in combination with other reagents have been demonstrated to have an effective anti-fibrotic effect on cerulein-induced mouse CP models in vivo studies. Clinical trial data have shown that repurposing all-trans retinoic acid (ATRA) as a stromal-targeting agent for human pancreatic cancer is safe and tolerable, suggesting the possibility of using RA for the treatment of CP and PDCA in humans. This review focuses on RA signaling pathways in PSCs and the effects and mechanisms of RA in PSC-mediated fibrogenesis as well as the anti-fibrotic and anti-tumor effects of RA targeting PSCs or CAFs in vitro and in vivo, highlighting the potential therapies of RA against CP and PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite Crônica , Camundongos , Humanos , Animais , Tretinoína/uso terapêutico , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Vitamina A/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico
8.
Toxicol Sci ; 199(1): 120-131, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38407484

RESUMO

The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.


Assuntos
Células Acinares , Apoptose , Éteres Difenil Halogenados , Pancreatite Crônica , Pancreatite , Animais , Éteres Difenil Halogenados/toxicidade , Apoptose/efeitos dos fármacos , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/patologia , Células Acinares/efeitos dos fármacos , Células Acinares/patologia , Células Acinares/metabolismo , Masculino , Pancreatite/induzido quimicamente , Pancreatite/patologia , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos , Ceruletídeo/toxicidade , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/patologia , Células Estreladas do Pâncreas/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retardadores de Chama/toxicidade , Células Cultivadas
9.
Diabet Med ; 41(6): e15279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38185936

RESUMO

AIMS: Evidence is accumulating of the therapeutic benefits of mesenchymal stromal cells (MSCs) in diabetes-related conditions. We have identified a novel population of stromal cells within islets of Langerhans - islet stellate cells (ISCs) - which have a similar morphology to MSCs. In this study we characterize mouse ISCs and compare their morphology and function to MSCs to determine whether ISCs may also have therapeutic potential in diabetes. METHODS: ISCs isolated from mouse islets were compared to mouse bone marrow MSCs by analysis of cell morphology; expression of cell-surface markers and extracellular matrix (ECM) components; proliferation; apoptosis; paracrine activity; and differentiation into adipocytes, chondrocytes and osteocytes. We also assessed the effects of co-culture with ISCs or MSCs on the insulin secretory capacity of islet beta cells. RESULTS: Although morphological similar, ISCs were functionally distinct from MSCs. Thus, ISCs were less proliferative and more apoptotic; they had different expression levels of important paracrine factors; and they were less efficient at differentiation down multiple lineages. Co-culture of mouse islets with ISCs enhanced glucose induced insulin secretion more effectively than co-culture with MSCs. CONCLUSIONS: ISCs are a specific sub-type of islet-derived stromal cells that possess biological behaviors distinct from MSCs. The enhanced beneficial effects of ISCs on islet beta cell function suggests that they may offer a therapeutic target for enhancing beta cell functional survival in diabetes.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Células Secretoras de Insulina , Ilhotas Pancreáticas , Células-Tronco Mesenquimais , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Células Secretoras de Insulina/citologia , Diferenciação Celular/fisiologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/fisiologia , Proliferação de Células/fisiologia , Insulina/metabolismo , Células Cultivadas , Secreção de Insulina/fisiologia , Camundongos Endogâmicos C57BL , Masculino , Apoptose/fisiologia
10.
Front Immunol ; 14: 1248547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035115

RESUMO

Activation of pancreatic stellate cells (PSCs) to cancer-associated fibroblasts (CAFs) is responsible for the extensive desmoplastic reaction observed in PDAC stroma: a key driver of pancreatic ductal adenocarcinoma (PDAC) chemoresistance leading to poor prognosis. Specialized pro-resolving mediators (SPMs) are prime modulators of inflammation and its resolution, traditionally thought to be produced by immune cells. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipid mediator profiling PSCs as well as primary human CAFs express enzymes and receptors to produce and respond to SPMs. Human PSC/CAF SPM secretion profile can be modulated by rendering these cells activated [transforming growth factor beta (TGF-ß)] or quiescent [all-trans retinoic acid (ATRA)]. ATRA-induced nuclear translocation of arachidonate-15-lipoxygenase (ALOX15) was linked to increased production of n-3 docosapentaenoic acid-derived Resolvin D5 (RvD5n-3 DPA), among other SPMs. Inhibition of RvD5n-3 DPA formation increases cancer cell invasion, whereas addback of this molecule reduced activated PSC-mediated cancer cell invasion. We also observed that circulating concentrations of RvD5n-3 DPA levels were decreased in peripheral blood of metastatic PDAC patients when compared with those measured in plasma of non-metastatic PDAC patients. Together, these findings indicate that RvD5n-3 DPA may regulate cancer-stroma cross-talk and invasion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Araquidonato 15-Lipoxigenase/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Tretinoína/metabolismo , Invasividade Neoplásica/patologia
11.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958889

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), a highly malignant neoplasm, is classified as one of the most severe and devastating types of cancer. PDAC is a notable malignancy that exhibits a discouraging prognosis and a rising occurrence. The interplay between diabetes and pancreatic cancer exhibits a reciprocal causation. The identified metabolic disorder has been observed to possess noteworthy consequences on health outcomes, resulting in elevated rates of morbidity. The principal mechanisms involve the suppression of the immune system, the activation of pancreatic stellate cells (PSCs), and the onset of systemic metabolic disease caused by dysfunction of the islets. From this point forward, it is important to recognize that pancreatic-cancer-related diabetes (PCRD) has the ability to increase the likelihood of developing pancreatic cancer. This highlights the complex relationship that exists between these two physiological states. Therefore, we investigated into the complex domain of PSCs, elucidating their intricate signaling pathways and the profound influence of chemokines on their behavior and final outcome. In order to surmount the obstacle of drug resistance and eliminate PDAC, researchers have undertaken extensive efforts to explore and cultivate novel natural compounds of the next generation. Additional investigation is necessary in order to comprehensively comprehend the effect of PCRD-mediated apoptosis on the progression and onset of PDAC through the utilization of natural compounds. This study aims to examine the potential anticancer properties of natural compounds in individuals with diabetes who are undergoing chemotherapy, targeted therapy, or immunotherapy. It is anticipated that these compounds will exhibit increased potency and possess enhanced pharmacological benefits. According to our research findings, it is indicated that naturally derived chemical compounds hold potential in the development of PDAC therapies that are both safe and efficacious.


Assuntos
Produtos Biológicos , Carcinoma Ductal Pancreático , Diabetes Mellitus Tipo 2 , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Células Estreladas do Pâncreas/metabolismo , Microambiente Tumoral
12.
Pflugers Arch ; 475(10): 1225-1240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37566113

RESUMO

Pancreatic stellate cells (PSCs) that can co-metastasize with cancer cells shape the tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) by producing an excessive amount of extracellular matrix. This leads to a TME characterized by increased tissue pressure, hypoxia, and acidity. Moreover, cells within the tumor secrete growth factors. The stimuli of the TME trigger Ca2+ signaling and cellular Na+ loading. The Na+/Ca2+ exchanger (NCX) connects the cellular Ca2+ and Na+ homeostasis. The NCX is an electrogenic transporter, which shuffles 1 Ca2+ against 3 Na+ ions over the plasma membrane in a forward or reverse mode. Here, we studied how the impact of NCX activity on PSC migration is modulated by cues from the TME. NCX expression was revealed with qPCR and Western blot. [Ca2+]i, [Na+]i, and the cell membrane potential were determined with the fluorescent indicators Fura-2, Asante NaTRIUM Green-2, and DiBAC4(3), respectively. PSC migration was quantified with live-cell imaging. To mimic the TME, PSCs were exposed to hypoxia, pressure, acidic pH (pH 6.6), and PDGF. NCX-dependent signaling was determined with Western blot analyses. PSCs express NCX1.3 and NCX1.9. [Ca2+]i, [Na+]i, and the cell membrane potential are 94.4 nmol/l, 7.4 mmol/l, and - 39.8 mV, respectively. Thus, NCX1 usually operates in the forward (Ca2+ export) mode. NCX1 plays a differential role in translating cues from the TME into an altered migratory behavior. When NCX1 is operating in the forward mode, its inhibition accelerates PSC migration. Thus, NCX1-mediated extrusion of Ca2+ contributes to a slow mode of migration of PSCs.


Assuntos
Células Estreladas do Pâncreas , Trocador de Sódio e Cálcio , Humanos , Trocador de Sódio e Cálcio/metabolismo , Células Estreladas do Pâncreas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais , Hipóxia , Cálcio/metabolismo
13.
Sci Rep ; 13(1): 12201, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500741

RESUMO

Chronic pancreatitis (CP) is a disease characterized by the inflammation and destruction of pancreatic tissue, leading to the replacement of functional tissue with fibrotic tissue. The regenerating gene (Reg) family proteins have recently been implicated in the repair and regeneration of inflamed pancreatic tissue, though the exact mechanisms of their involvement in the pathogenesis of CP are not yet fully understood. To investigate the role of Reg family proteins in CP, we generated global knockout mice (Reg-/-) for Reg1-3 (Reg1,2,3a,3b,3d,3g) genes using the CRISPR/Cas9 system. We then investigated the effect of Reg family protein deficiency in a genetic model of CP (X-SPINK1) mice by knocking out Reg1-3 genes. We examined pancreatic morphology, inflammatory cytokines expression, and activation of pancreatic stellate cells (PSCs) at different ages. Reg-/- mice showed no abnormalities in general growth and pancreas development. Deficiency of Reg1-3 in CP mice led to a reduction in pancreatic parenchymal loss, decreased deposition of collagen, and reduced expression of proinflammatory cytokines. Additionally, Reg proteins were found to stimulate PSCs activation. Overall, our study suggests that Reg1-3 deficiency can lead to the remission of CP and Reg family proteins could be a potential therapeutic target for the treatment of CP.


Assuntos
Células Estreladas do Pâncreas , Pancreatite Crônica , Camundongos , Animais , Células Estreladas do Pâncreas/metabolismo , Pancreatite Crônica/metabolismo , Pâncreas/metabolismo , Inflamação/patologia , Camundongos Knockout , Colágeno/metabolismo , Citocinas/metabolismo , Regeneração , Fibrose , Litostatina/genética , Litostatina/metabolismo
14.
J Cell Mol Med ; 27(17): 2533-2546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488774

RESUMO

The pancreatic stellate cells (PSCs) play an important role in the development of pancreatic cancer (PC) through mechanisms that remain unclear. Exosomes secreted from PSCs act as mediators for communication in PC. This study aimed to explore the role of PSC-derived exosomal small RNAs derived from tRNAs (tDRs) in PC cells. Exosomes from PSCs were extracted and used to detect their effects on PC cell proliferation, migration and invasion. Exosomal tDRs profiling was performed to identify PSC-derived exosomal tDRs. ISH and qRT-PCR were used to examine the tRF-19-PNR8YPJZ levels and clinical value in clinical samples. The biological function of exosomal tRF-19-PNR8YPJZ was determined using the CCK-8, clone formation, wound healing and transwell assays, subcutaneous tumour formation and lung metastatic models. The relationship between the selected exosomal tRF-19-PNR8YPJZ and AXIN2 was determined by RNA sequencing, luciferase reporter assay. PSC-derived exosomes promoted the proliferation, migration, and invasion of PC cells. Novel and abundant tDRs are found to be differentially expressed in PANC-1 cells after treatment with PSC-derived exosomes, such as tRF-19-PNR8YPJZ. PC tissue samples showed markedly higher levels of tRF-19-PNR8YPJZ than normal controls. Patients with PC exhibiting high tRF-19-PNR8YPJZ expression had a highly lymph node invasion, metastasis, perineural invasion, advanced clinical stage and poor overall survival. Exosomal tRF-19-PNR8YPJZ from PSCs targeted AXIN2 in PC cells and decreased its expression, thus activating the Wnt pathway and promoting proliferation and metastasis. Exosomal tRF-19-PNR8YPJZ from PSCs promoted proliferation and metastasis in PC cells via AXIN2.


Assuntos
Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , Células Estreladas do Pâncreas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Pancreáticas/patologia , Exossomos/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Neoplasias Pancreáticas
15.
Indian J Gastroenterol ; 42(4): 558-561, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37418051

RESUMO

Pancreatic fibrosis is characterized by the activation of pancreatic stellate cells leading to the expression of smooth muscle actin (α-SMA). Normal pancreatic tissue has predominantly quiescent stellate cells in periductal and perivascular locations, which do not express α-SMA. We aimed at studying the immunohistochemistry (IHC) expression pattern of α-SMA, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-ß) in the resected specimen of chronic pancreatitis. Twenty biopsies from resected specimens of patients with chronic pancreatitis were included. The expression was measured in comparison to positive control biopsies (breast carcinoma for PDGF-BB and TGF-ß and appendicular tissue for α-SMA) and scored based on a semi-quantitative system based on staining intensity. The percentage of positive cells was used for objective scoring, which ranged from 0 to 15. The scoring was done separately for acini, ducts, stroma and islet cell. All patients had undergone surgery for refractory pain and the median duration of symptoms was 48 months. On IHC, α-SMA was not expressed in the acini, ducts or islets, but had high expression in the stromal regions (vs. acini, ducts and islet, p < 0.05), TGF-ß1 was also expressed maximally in islet cells; however, the distribution among all locations was statistically similar. α-SMA expression in the pancreatic stroma is an indicator of the concentration of activated stellate cells in the stroma, a site for genesis of fibrosis under the influence of growth factors in the local milieu.


Assuntos
Células Estreladas do Pâncreas , Pancreatite Crônica , Humanos , Becaplermina/metabolismo , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/cirurgia , Pancreatite Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1393-1403, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337632

RESUMO

Since the prognosis of patients with pancreatic cancer is very poor and there is a lack of treatment methods, this study is performed to investigate the function of PITX2 in pancreatic stellate cells (PSCs) in the progression of pancreatic cancer. Scientific hypotheses are proposed according to bioinformatics analysis and tissue microarray analysis. Stable knockdown of PITX2 in PSCs is achieved through lentiviral infection. The relative expressions of PITX2, α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are measured in wild-type PSCs and PITX2-knockdown PSCs. Proliferative capacity is measured by EdU assay. After coculture with PSCs, the proliferation, invasion and migration capacity of pancreatic cancer cells are tested. EMT and Wnt/ß-catenin downstream genes of pancreatic cancer cells are investigated to reveal the potential mechanism. Bioinformatics analysis reveals that the PITX2 gene is highly expressed in stromal cells in pancreatic cancer and is correlated with squamous-type PDAC. Analysis of PDAC tissue microarray further demonstrates that high PITX2 level in stromal cells is correlated with poor prognosis in PDAC. After stable knockdown of PITX2 in PSCs, the relative protein levels of α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are decreased, and the proliferative capacity of PSCs is also decreased. After coculture with PSCs, in which PITX2 expression is downregulated, the proliferation, invasion and migration capacities of pancreatic cancer cells are inhibited. Thus, our results show that PITX2-silenced PSCs inhibit the growth, migration and invasion of pancreatic cancer cells via reduced EMT and Wnt/ß-catenin signaling.


Assuntos
Neoplasias Pancreáticas , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Vimentina/genética , Vimentina/metabolismo , Células Estreladas do Pâncreas/metabolismo , Movimento Celular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Proliferação de Células/genética
17.
Mol Cell Endocrinol ; 572: 111947, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37150285

RESUMO

Hypoxia in pancreatic islets (islet hypoxia) can occur in type 2 diabetes mellitus. Previously, our in vitro experiments demonstrated that pancreatic stellate cells (PSCs) within the islet are activated in hypoxia, promoting pancreatic ß-cell death. Here, we aimed to demonstrate the in vivo activation of intra-islet PSCs and investigate the mechanism of PSC-induced ß-cell death in hypoxia. A novel in vivo model of islet hypoxia was established by injecting fluorescent microspheres into a carotid artery of Balb/c mice (Microsphere mice). The intraperitoneal glucose tolerance (IPGTT) was performed, and pancreatic tissues were stained for insulin expression after tissue clearing. Pimonidazole staining was also performed in the pancreas to detect the presence of hypoxia in islets. Next, primary PSCs were isolated and cultured from Balb/c mice. Exosomes were isolated from culture media from PSCs cultured in hypoxia (1% oxygen). MicroRNAs (miRNAs) were prepared from exosomes from PSCs, and miRNA expression profiles were analyzed by miRNA sequencing. Several miRNAs were overexpressed in islets using miRNA mimics. Two weeks after injection of microspheres, the Microsphere mice showed worsening of glucose tolerance in IPGTT. Later, cataracts were developed in the eyes of the mice. The pancreas showed that the areas, perimeters, and diameters of insulin-positive cells decreased in Microsphere mice. Pimonidazole adducts were detected in the islets of these mice, indicating the presence of islet hypoxia. In addition, α-smooth muscle actin-positive cell numbers per islet were higher in Microsphere mice, confirming the in vivo activation of intra-islet PSCs in hypoxia. Mouse islets incubated with exosomes isolated from PSCs cultured in hypoxia showed a decrease in cell viability. The exosomes contained a variety of miRNAs, of which miR-23a-3p was found to notably increase ß-cell death through apoptosis. Together, our in vivo and in vitro data provide evidence to support that PSCs within the islets are activated in hypoxia and promote ß-cell death through exosomal miRNA transfer, which may contribute to the progression of type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Estreladas do Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Morte Celular
18.
Cancer Lett ; 555: 216040, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36565920

RESUMO

Pancreatic stellate cells (PSCs) are crucial for metabolism and disease progression in pancreatic ductal adenocarcinoma (PDAC). However, detailed mechanisms of PSCs in glutamine (Gln) metabolism and tumor-stromal metabolic interactions have not been well clarified. Here we showed that tumor tissues displayed Gln deficiency in orthotopic PDAC models. Single-cell RNA sequencing analysis revealed metabolic heterogeneity in PDAC, with significantly higher expression of Gln catabolism pathway in stromal cells. Significantly higher glutamine synthetase (GS) protein expression was further validated in human tissues and cells. Elevated GS levels in tumor and stroma were independently prognostic of poorer prognosis in PDAC patients. Gln secreted by PSCs increased basal oxygen consumption rate in PCCs. Depletion of GS in PSCs significantly decreased PCCs proliferation in vitro and in vivo. Mechanistically, activation of Wnt signaling induced directly binding of ß-catenin/TCF7 complex to GS promoter region and upregulated GS expression. Rescue experiments testified that GS overexpression recovered ß-catenin knockdown-mediated function on Gln synthesis and tumor-promoting ability of PSCs. Overall, these findings identify the Wnt/ß-catenin/TCF7/GS-mediated growth-promoting effect of PSCs and provide new insights into stromal Gln metabolism, which may offer novel therapeutic strategies for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Células Estreladas do Pâncreas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fator 1 de Transcrição de Linfócitos T/metabolismo , Neoplasias Pancreáticas
19.
Gene ; 851: 147000, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36283605

RESUMO

Pancreatic stellate cell (PSC) activation is a major cause of chronic pancreatitis and pancreatic cancer, yet the mechanisms by which PSCs switch from quiescent to activated state are poorly studied. In this study, we identified JUN, a key transcription factor that maintains the quiescent state of PSCs, by integrating single-cell sequencing data from multiple pancreatic tissues and using WGCNA and SCENIC algorithms, and demonstrated that the expression and activity of JUN is a major regulator of the quiescent state of PSCs through cellular experiments and multiple pancreatic-related disease bulk RNAseq data. This study explores the main mechanism of PSC activation and provides a theoretical basis for the treatment of multiple pancreatic injury-related diseases caused by PSCs.


Assuntos
Neoplasias Pancreáticas , Pancreatite Crônica , Humanos , Células Estreladas do Pâncreas/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Pancreáticas/genética , Pancreatite Crônica/metabolismo , Pâncreas/metabolismo , Células Cultivadas
20.
Physiol Res ; 72(1): 49-57, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36545882

RESUMO

The acidic tumor microenvironment (TME) of pancreatic cancer affects the physiological function of pancreatic stellate cells (PSCs), which in turn promotes cancer progression. Acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-related physiopathological processes. In this study, we investigated the effect of acid exposure on the activation and autophagy of PSCs, and the role of ASIC1a in these events. The results showed that acidic medium upregulated the expression of ASIC1a, induced PSCs activation and autophagy, which can be suppressed by inhibiting ASIC1a using PcTx1 or ASIC1a knockdown, suggesting that ASIC1a involves these two processes. In addition, the acid-induced activation of PSCs was impaired after the application of autophagy inhibitor alone or in combination with ASIC1a siRNA, meaning a connection between autophagy and activation. Collectively, our study provides evidence for the involvement of ASIC1a in the acid-caused PSCs activation, which may be associated with autophagy induction.


Assuntos
Canais Iônicos Sensíveis a Ácido , Células Estreladas do Pâncreas , Animais , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Autofagia , Células Estreladas do Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA