Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.268
Filtrar
1.
Nat Commun ; 15(1): 3734, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702312

RESUMO

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


Assuntos
Desmetilação do DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA , Células Germinativas , Animais , Humanos , Camundongos , Células Germinativas/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Masculino , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Feminino , Dano ao DNA , Camundongos Knockout , Meiose/genética , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Epigênese Genética , Síntese de DNA Translesão
2.
Artigo em Inglês | MEDLINE | ID: mdl-38641164

RESUMO

The Notch signaling pathway plays a pivotal role in governing cell fate determinations within the gonadal niche. This study provides an extensive elucidation of the male and female gonadal niches within Crassostrea gigas. Examination via transmission electron microscopy revealed the presence of desmosome-like connection not only between germ cells and niche cells but also among adjacent niche cells within the oyster gonad. Transcriptomic analysis identified several putative Notch pathway components, including CgJAG1, CgNOTCH1, CgSuh, and CgHey1. Phylogenetic analysis indicated a close evolutionary relationship between CgJAG1, CgNOTCH1, and CgHey1 and Notch members present in Drosophila. Expression profiling results indicated a notable abundance of CgHey1 in the gonads, while CgJAG1 and CgNOTCH1 displayed distinct expression patterns associated with sexual dimorphism. In situ hybridization findings corroborated the predominant expression of CgJAG1 in male niche cells, while CgNOTCH1 was expressed in both male and female germ cells, as well as female niche cells. These findings demonstrate the important role of the Notch signaling pathway in the gonadal niche of oysters.


Assuntos
Comunicação Celular , Crassostrea , Gônadas , Filogenia , Receptores Notch , Transdução de Sinais , Animais , Crassostrea/genética , Crassostrea/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Masculino , Feminino , Gônadas/metabolismo , Células Germinativas/metabolismo
3.
Sci Prog ; 107(2): 368504241242278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629201

RESUMO

Treacher Collins syndrome (TCS) is a rare congenital craniofacial disorder, typically inherited as an autosomal dominant condition. Here, we report on a family in which germline mosaicism for TCS was likely present. The proband was diagnosed with TCS based on the typical clinical features and a pathogenic variant TCOF1 (c.4369_4373delAAGAA, p.K1457Efs*12). The mutation was not detected in his parents' peripheral blood DNA samples, suggesting a de novo mutation had occurred in the proband. However, a year later, the proband's mother became pregnant, and the amniotic fluid puncture revealed that the fetus carried the same mutation as the proband. Prenatal ultrasound also indicated a maxillofacial dysplasia with unilateral microtia. The mother then disclosed a previous birth history in which a baby had died of respiratory distress shortly after birth, displaying a TCS-like phenotype. Around the same time, the proband's father was diagnosed with mild bilateral conductive hearing loss. Based on array data, we concluded that the father may have had germline mosaicism for TCOF1 mutation. Our findings highlight the importance of considering germline mosaicism in sporadic de novo TCOF1 mutations when providing genetic consulting, and prenatal diagnosis is important when the proband's parents become pregnant again.


Assuntos
Disostose Mandibulofacial , Mosaicismo , Humanos , Linhagem , Disostose Mandibulofacial/diagnóstico , Disostose Mandibulofacial/genética , Mutação , Células Germinativas
4.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631707

RESUMO

BACKGROUND: The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides. METHODS: HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses. RESULTS: We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele. CONCLUSION: The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.


Assuntos
Adenocarcinoma , Peptídeos , Humanos , Peptídeos/metabolismo , Linfócitos T , Antígenos HLA , Antígenos de Neoplasias , Desequilíbrio Alélico , Adenocarcinoma/metabolismo , Células Germinativas/metabolismo
5.
EMBO Rep ; 25(5): 2188-2201, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649664

RESUMO

Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , Janus Quinases , Zigoto , Animais , Zigoto/metabolismo , Células Germinativas/metabolismo , Janus Quinases/metabolismo , Transdução de Sinais , Ciona/genética , Ciona/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/embriologia , Transcrição Gênica
6.
Sci Adv ; 10(15): eadg7894, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608012

RESUMO

During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.


Assuntos
Drosophila , Lagartos , Animais , Citoplasma , Células Germinativas , RNA Mensageiro/genética , Contagem de Células
7.
JAMA Netw Open ; 7(4): e247421, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639936

RESUMO

Importance: In young-onset breast cancer (YOBC), a diagnosis within 5 to 10 years of childbirth is associated with increased mortality. Women with germline BRCA1/2 pathogenic variants (PVs) are more likely to be diagnosed with BC at younger ages, but the impact of childbirth on mortality is unknown. Objective: To determine whether time between most recent childbirth and BC diagnosis is associated with mortality among patients with YOBC and germline BRCA1/2 PVs. Design, Setting, and Participants: This prospective cohort study included women with germline BRCA1/2 PVs diagnosed with stage I to III BC at age 45 years or younger between 1950 and 2021 in the United Kingdom, who were followed up until November 2021. Data were analyzed from December 3, 2021, to November 29, 2023. Exposure: Time between most recent childbirth and subsequent BC diagnosis, with recent childbirth defined as 0 to less than 10 years, further delineated to 0 to less than 5 years and 5 to less than 10 years. Main Outcomes and Measures: The primary outcome was all-cause mortality, censored at 20 years after YOBC diagnosis. Mortality of nulliparous women was compared with the recent post partum groups and the 10 or more years post partum group. Cox proportional hazards regression analyses were adjusted for age, tumor stage, and further stratified by tumor estrogen receptor (ER) and BRCA gene status. Results: Among 903 women with BRCA PVs (mean [SD] age at diagnosis, 34.7 [6.1] years; mean [SD] follow-up, 10.8 [9.8] years), 419 received a BC diagnosis 0 to less than 10 years after childbirth, including 228 women diagnosed less than 5 years after childbirth and 191 women diagnosed 5 to less than 10 years after childbirth. Increased all-cause mortality was observed in women diagnosed within 5 to less than 10 years post partum (hazard ratio [HR], 1.56 [95% CI, 1.05-2.30]) compared with nulliparous women and women diagnosed 10 or more years after childbirth, suggesting a transient duration of postpartum risk. Risk of mortality was greater for women with ER-positive BC in the less than 5 years post partum group (HR, 2.35 [95% CI, 1.02-5.42]) and ER-negative BC in the 5 to less than 10 years post partum group (HR, 3.12 [95% CI, 1.22-7.97]) compared with the nulliparous group. Delineated by BRCA1 or BRCA2, mortality in the 5 to less than 10 years post partum group was significantly increased, but only for BRCA1 carriers (HR, 2.03 [95% CI, 1.15-3.58]). Conclusions and Relevance: These findings suggest that YOBC with germline BRCA PVs was associated with increased risk for all-cause mortality if diagnosed within 10 years after last childbirth, with risk highest for ER-positive BC diagnosed less than 5 years post partum, and for ER-negative BC diagnosed 5 to less than 10 years post partum. BRCA1 carriers were at highest risk for poor prognosis when diagnosed at 5 to less than 10 years post partum. No such associations were observed for BRCA2 carriers. These results should inform genetic counseling, prevention, and treatment strategies for BRCA PV carriers.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Predisposição Genética para Doença , Células Germinativas/patologia , Período Pós-Parto , Estudos Prospectivos , Adulto
8.
BMC Genomics ; 25(1): 409, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664626

RESUMO

OBJECTIVE: To evaluate the contribution of germline genetics to regulating the briskness and diversity of T cell responses in CRC, we conducted a genome-wide association study to examine the associations between germline genetic variation and quantitative measures of T cell landscapes in 2,876 colorectal tumors from participants in the Molecular Epidemiology of Colorectal Cancer Study (MECC). METHODS: Germline DNA samples were genotyped and imputed using genome-wide arrays. Tumor DNA samples were extracted from paraffin blocks, and T cell receptor clonality and abundance were quantified by immunoSEQ (Adaptive Biotechnologies, Seattle, WA). Tumor infiltrating lymphocytes per high powered field (TILs/hpf) were scored by a gastrointestinal pathologist. Regression models were used to evaluate the associations between each variant and the three T-cell features, adjusting for sex, age, genotyping platform, and global ancestry. Three independent datasets were used for replication. RESULTS: We identified a SNP (rs4918567) near RBM20 associated with clonality at a genome-wide significant threshold of 5 × 10- 8, with a consistent direction of association in both discovery and replication datasets. Expression quantitative trait (eQTL) analyses and in silico functional annotation for these loci provided insights into potential functional roles, including a statistically significant eQTL between the T allele at rs4918567 and higher expression of ADRA2A (P = 0.012) in healthy colon mucosa. CONCLUSIONS: Our study suggests that germline genetic variation is associated with the quantity and diversity of adaptive immune responses in CRC. Further studies are warranted to replicate these findings in additional samples and to investigate functional genomic mechanisms.


Assuntos
Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Idoso , Linfócitos do Interstício Tumoral/imunologia , Mutação em Linhagem Germinativa , Proteínas de Ligação a RNA/genética , Genótipo , Células Germinativas/metabolismo
9.
Nat Commun ; 15(1): 3266, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627502

RESUMO

DNA methyltransferase 3A (DNMT3A) and its catalytically inactive cofactor DNA methyltransferase 3-Like (DNMT3L) proteins form functional heterotetramers to deposit DNA methylation in mammalian germ cells. While both proteins have an ATRX-DNMT3-DNMT3L (ADD) domain that recognizes histone H3 tail unmethylated at lysine-4 (H3K4me0), the combined and differential roles of the domains in the two proteins have not been fully defined in vivo. Here we investigate DNA methylation landscapes in female and male germ cells derived from mice with loss-of-function amino acid substitutions in the ADD domains of DNMT3A and/or DNMT3L. Mutations in either the DNMT3A-ADD or the DNMT3L-ADD domain moderately decrease global CG methylation levels, but to different degrees, in both germ cells. Furthermore, when the ADD domains of both DNMT3A and DNMT3L lose their functions, the CG methylation levels are much more reduced, especially in oocytes, comparable to the impact of the Dnmt3a/3L knockout. In contrast, aberrant accumulation of non-CG methylation occurs at thousands of genomic regions in the double mutant oocytes and spermatozoa. These results highlight the critical role of the ADD-H3K4me0 binding in proper CG and non-CG methylation in germ cells and the various impacts of the ADD domains of the two proteins.


Assuntos
Metilação de DNA , DNA Metiltransferase 3A , Animais , Feminino , Masculino , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo
10.
Nucleus ; 15(1): 2339214, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38597409

RESUMO

The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.


Assuntos
Proteínas de Drosophila , Lâmina Nuclear , Animais , Feminino , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Drosophila , Diferenciação Celular , Células Germinativas
11.
JCO Glob Oncol ; 10: e2300417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635940

RESUMO

PURPOSE: Genetic cancer risk assessment (GCRA) provides pathogenic variant (PV) carriers with the invaluable opportunity to undertake timely cancer risk-reducing (RR) measures and initiate cascade testing (CT). This study describes the uptake of these strategies and the related barriers among breast cancer-associated germline PV carriers in Mexico. METHODS: Carriers who were at least 6 months after disclosure of genetic test results at two GCRA referral centers were invited to answer a survey assessing sociodemographic characteristics, awareness of their carrier status and its implications, uptake of RR measures according to international guidelines by PV, CT initiation, and associated challenges. RESULTS: Of the eligible carriers, 246/384 (64%) answered the survey (median age: 44 years). Most were female (88%), married/in domestic partnership (66%), and had personal breast/ovarian cancer history (61%). PVs included BRCA1/2 (75%), CHEK2 (10%), PALB2 (5%), ATM (5%), NF1 (2%), RAD51C (2%), PTEN (1%), and TP53 (1%). Most (87%) participants were aware of their carrier status. When recommended, 37% underwent RR bilateral mastectomy, 48% RR oophorectomy, 70% annual mammogram, and 20% breast magnetic resonance imaging. Challenges hindering the uptake of RR measures included financial limitations (67%), lack of recommendation by their physician (35%), and fear (24%). Nearly all (98%) claimed sharing their results with their relatives. CT was initiated in 63% of families and was associated with carriers being married/in domestic partnership (P = .04) and believing GCRA was useful (P < .001). CONCLUSION: Despite the resource-constrained setting, relevant rates of RR measures and CT were observed. Targeted interventions to reduce out-of-pocket expenses and improve patient-physician communication and patients' understanding on carrier status are warranted to enhance the overall benefit of GCRA and ultimately improve the provision of patient-centered care to both carriers and their at-risk relatives.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Adulto , Masculino , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Proteína BRCA1/genética , México/epidemiologia , Predisposição Genética para Doença , Proteína BRCA2/genética , Mastectomia , Células Germinativas
12.
BMC Genomics ; 25(1): 344, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580899

RESUMO

BACKGROUND: Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS: We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS: The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.


Assuntos
Proteínas Cromossômicas não Histona , Desmetilação do DNA , Epigênese Genética , Animais , Feminino , Camundongos , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Genoma , Células Germinativas/metabolismo , Mamíferos/genética
13.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612451

RESUMO

Reproduction is the important process of transmitting one's genetic information to the next generation [...].


Assuntos
Células Germinativas , Neoplasias , Genitália , Reprodução , Biologia
14.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607588

RESUMO

The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.


Assuntos
Células Germinativas , Sêmen , Masculino , Humanos , Espermatozoides , Sinais (Psicologia) , Movimento Celular
15.
Cancer Med ; 13(7): e7166, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572926

RESUMO

BACKGROUND: Studies have shown that some single nucleotide polymorphisms (SNPs) could serve as excellent markers in foretelling the treatment outcome of interferon (IFN) in myeloproliferative neoplasms (MPN). However, most work originated from western countries, and data from different ethnic populations have been lacking. METHODS: To gain insights, targeted sequencing was performed to detect myeloid-associated mutations and SNPs in eight loci across three genes (IFNL4, IFN-γ, and inosine triphosphate pyrophosphatase [ITPA]) to explore their predictive roles in our cohort of 21 ropeginterferon alpha-2b (ROPEG)-treated MPN patients, among whom real-time quantitative PCR was also performed periodically to monitor the JAK2V617F allele burden in 19 JAK2V617F-mutated cases. RESULTS: ELN response criteria were adopted to designate patients as good responders if they achieved complete hematological responses (CHR) within 1 year (CHR1) or attained major molecular responses (MMR), which occurred in 70% and 45% of the patients, respectively. IFNL4 and IFN-γ gene SNPs were infrequent in our population and were thus excluded from further analysis. Two ITPA SNPs rs6051702 A>C and rs1127354 C>A were associated with an inferior CHR1 rate and MMR rate, respectively. The former seemed to be linked to grade 2 or worse hepatotoxicity as well, although the comparison was of borderline significance only (50%, vs. 6.7% in those with common haplotype, p = 0.053). Twelve patients harbored 19 additional somatic mutations in 12 genes, but the trajectory of these mutations varied considerably and was not predictive of any response. CONCLUSIONS: Overall, this study provided valuable information on the ethnics- and genetics-based algorithm in the treatment of MPN.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Humanos , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Resultado do Tratamento , Haplótipos , Células Germinativas , Interferon lambda , Interleucinas/genética
16.
JCO Precis Oncol ; 8: e2300355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38564682

RESUMO

PURPOSE: Pancreatic cancer (PC) is a deadly disease most often diagnosed in late stages. Identification of high-risk subjects could both contribute to preventative measures and help diagnose the disease at earlier timepoints. However, known risk factors, assessed independently, are currently insufficient for accurately stratifying patients. We use large-scale data from the UK Biobank (UKB) to identify genetic variant-smoking interaction effects and show their importance in risk assessment. METHODS: We draw data from 15,086,830 genetic variants and 315,512 individuals in the UKB. There are 765 cases of PC. Crucially, robust resampling corrections are used to overcome well-known challenges in hypothesis testing for interactions. Replication analysis is conducted in two independent cohorts totaling 793 cases and 570 controls. Integration of functional annotation data and construction of polygenic risk scores (PRS) demonstrate the additional insight provided by interaction effects. RESULTS: We identify the genome-wide significant variant rs77196339 on chromosome 2 (per minor allele odds ratio in never-smokers, 2.31 [95% CI, 1.69 to 3.15]; per minor allele odds ratio in ever-smokers, 0.53 [95% CI, 0.30 to 0.91]; P = 3.54 × 10-8) as well as eight other loci with suggestive evidence of interaction effects (P < 5 × 10-6). The rs77196339 region association is validated (P < .05) in the replication sample. PRS incorporating interaction effects show improved discriminatory ability over PRS of main effects alone. CONCLUSION: This study of genome-wide germline variants identified smoking to modify the effect of rs77196339 on PC risk. Interactions between known risk factors can provide critical information for identifying high-risk subjects, given the relative inadequacy of models considering only main effects, as demonstrated in PRS. Further studies are necessary to advance toward comprehensive risk prediction approaches for PC.


Assuntos
Predisposição Genética para Doença , Neoplasias Pancreáticas , Humanos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Fumar/genética , Fumar/efeitos adversos , Fatores de Risco , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Células Germinativas
18.
Epigenetics Chromatin ; 17(1): 11, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671530

RESUMO

BACKGROUND: In mammals, primordial germ cells (PGCs), the embryonic precursors of the germline, arise from embryonic or extra-embryonic cells upon induction by the surrounding tissues during gastrulation, according to mechanisms which are elucidated in mice but remain controversial in primates. They undergo genome-wide epigenetic reprogramming, consisting of extensive DNA demethylation and histone post-translational modification (PTM) changes, toward a basal, euchromatinized state. In contrast, chicken PGCs are specified by preformation before gastrulation based on maternally-inherited factors. They can be isolated from the bloodstream during their migration to the genital ridges. Our prior research highlighted differences in the global epigenetic profile of cultured chicken PGCs compared with chicken somatic cells and mammalian PGCs. This study investigates the acquisition and evolution of this profile during development. RESULTS: Quantitative analysis of global DNA methylation and histone PTMs, including their distribution, during key stages of chicken early development revealed divergent PGC epigenetic changes compared with mammals. Unlike mammalian PGCs, chicken PGCs do not undergo genome-wide DNA demethylation or exhibit a decrease in histone H3 lysine 9 dimethylation. However, chicken PGCs show 5­hydroxymethylcytosine loss, macroH2A redistribution, and chromatin decompaction, mirroring mammalian processes. Chicken PGCs initiate their epigenetic signature during migration, progressively accumulating high global levels of H3K9me3, with preferential enrichment in inactive genome regions. Despite apparent global chromatin decompaction, abundant heterochromatin marks, including repressive histone PTMs, HP1 variants, and DNA methylation, persists in chicken PGCs, contrasting with mammalian PGCs. CONCLUSIONS: Chicken PGCs' epigenetic signature does not align with the basal chromatin state observed in mammals, suggesting a departure from extensive epigenetic reprogramming. Despite disparities in early PGC development, the persistence of several epigenetic features shared with mammals implies their involvement in chromatin-regulated germ cell properties, with the distinctive elevation of chicken-specific H3K9me3 potentially participating in these processes.


Assuntos
Galinhas , Metilação de DNA , Epigênese Genética , Células Germinativas , Histonas , Animais , Histonas/metabolismo , Células Germinativas/metabolismo , Embrião de Galinha , Processamento de Proteína Pós-Traducional , Mamíferos/genética , Camundongos , Código das Histonas
19.
Theriogenology ; 222: 22-30, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615433

RESUMO

Primordial germ cells (PGCs) are the precursors of germ cells and play a crucial role in germline transmission. In chickens, PGCs can be cultured in vitro while maintaining their germline stem cell characteristics. The Deleted in Azoospermia-Like (DAZL) gene, which is highly expressed in PGCs, is essential for germ cell development. Here, through gene knockout experiments, we discovered that the loss of DAZL expression in chicken PGCs led to decreased proliferation and survival. By next employed techniques such as RIP-seq (RNA Binding Protein Immunoprecipitation) and Co-IP-MS/MS (Co-immunoprecipitation Mass Spectrometry), we identified genes directly regulated by DAZL or cooperating with DAZL at the transcriptomic and proteomic levels. DAZL was found to control genes related to germline development, pluripotency, and cell proliferation in PGCs. Additionally, we observed a significant overlap between RNAs and proteins that interact with both DAZL and DDX4, indicating their cooperation in the gene regulation network in chicken PGCs. Our research provides valuable insights into the function of the DAZL gene in germline cells.


Assuntos
Proliferação de Células , Galinhas , RNA Helicases DEAD-box , Células Germinativas , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Galinhas/genética , Células Germinativas/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
20.
Int J Dev Biol ; 68(1): 9-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591693

RESUMO

The megasporangium serves as a model system for understanding the concept of individual cell identity, and cell-to-cell communication in angiosperms. As development of the ovule progresses, three distinct layers, the epidermal (L1), the subepidermal or the hypodermal (L2) and the innermost layers (L3) are formed along the MMC (megaspore mother cell). The MMC, which is the primary female germline cell, is initiated as a single subepidermal cell amongst several somatic cells. MMC development is governed by various regulatory pathways involving intercellular signaling, small RNAs and DNA methylation. The programming and reprograming of a single nucellar cell to enter meiosis is governed by 'permissive' interacting processes and factors. Concomitantly, several nucellar sister cells are prevented from germline fate also by a set of 'repressive' factors. However, in certain angiosperms, anomalies in development of the female gametophyte have been observed. The sporophytic tissue surrounding the female gametophyte affects the gametophyte in multiple ways. The role of genes and transcription factors in the development of the MMC and in the regulation of various processes studied in selected model plants such as Arabidopsis is explained in detail in this paper. However, as angiosperms display enormous diversity, it is important to investigate early stages of megasporogenesis in other plant systems as well. Such studies provide valuable insights in understanding the regulation of megasporogenesis and the evolution of the female gametophyte from gymnosperms to flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Gametogênese Vegetal/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA