Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.477
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731850

RESUMO

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Assuntos
Ciclo Celular , Podofilotoxina , Proteômica , Humanos , Podofilotoxina/farmacologia , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteômica/métodos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Etoposídeo/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HT29 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
2.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732003

RESUMO

Berberis vulgaris L. (Berberidaceae) is a shrub that has been widely used in European folk medicine as an anti-inflammatory and antimicrobial agent. The purpose of our study was to elucidate the mechanisms of the chemopreventive action of the plant's methanolic root extract (BVR) against colon cancer cells. Studies were conducted in human colon adenocarcinoma cell lines (LS180 and HT-29) and control colon epithelial CCD841 CoN cells. According to the MTT assay, after 48 h of cell exposure, the IC50 values were as follows: 4.3, 46.1, and 50.2 µg/mL for the LS180, HT-29, and CCD841 CoN cells, respectively, showing the greater sensitivity of the cancer cells to BVR. The Cell Death Detection ELISAPLUS kit demonstrated that BVR induced programmed cell death only against HT-29 cells. Nuclear double staining revealed the great proapoptotic BVR properties in HT-29 cells and subtle effect in LS180 cells. RT-qPCR with the relative quantification method showed significant changes in the expression of genes related to apoptosis in both the LS180 and HT-29 cells. The genes BCL2L1 (126.86-421.43%), BCL2L2 (240-286.02%), CASP3 (177.19-247.83%), and CASP9 (157.99-243.75%) had a significantly elevated expression, while BCL2 (25-52.03%) had a reduced expression compared to the untreated control. Furthermore, in a panel of antioxidant tests, BVR showed positive effects (63.93 ± 0.01, 122.92 ± 0.01, and 220.29 ± 0.02 mg Trolox equivalents (TE)/g in the DPPH•, ABTS•+, and ORAC assays, respectively). In the lipoxygenase (LOX) inhibition test, BVR revealed 62.60 ± 0.87% of enzyme inhibition. The chemical composition of BVR was determined using a UHPLC-UV-CAD-MS/MS analysis and confirmed the presence of several known alkaloids, including berberine, as well as other alkaloids and two derivatives of hydroxycinnamic acid (ferulic and sinapic acid hexosides). The results are very promising and encourage the use of BVR as a comprehensive chemopreventive agent (anti-inflammatory, antioxidant, and pro-apoptotic) in colorectal cancer, and were widely discussed alongside data from the literature.


Assuntos
Adenocarcinoma , Apoptose , Berberis , Neoplasias do Colo , Extratos Vegetais , Raízes de Plantas , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Apoptose/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Raízes de Plantas/química , Berberis/química , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Células HT29 , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia
3.
Mol Biol Rep ; 51(1): 603, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698270

RESUMO

BACKGROUND: Drug combination studies help to improve new treatment approaches for colon cancer. Tumor spheroids (3D) are better models than traditional 2-dimensional cultures (2D) to evaluate cellular responses to chemotherapy drugs. The cultivation of cancer cells in 2D and 3D cultures affects the apoptotic process, which is a major factor influencing the response of cancer cells to chemotherapeutic drugs. In this study, the antiproliferative effects of 5-fluorouracil (5-FU) and doxorubicin (DOX) were investigated separately and in combination using 2D and 3D cell culture models on two different colon cancer cell lines, HT-29 (apoptosis-resistant cells) and Caco-2 2 (apoptosis-susceptible cells). METHODS: The effect of the drugs on the proliferation of both colon cancer cells was determined by performing an MTT assay in 2D culture. The apoptotic effect of 5-FU and DOX, both as single agents and in combination, was assessed in 2D and 3D cultures through quantitative real-time polymerase chain reaction analysis. The expression of apoptotic genes, such as caspases, p53, Bax, and Bcl-2, was quantified. RESULTS: It was found that the mRNA expression of proapoptotic genes was significantly upregulated, whereas the mRNA expression of the antiapoptotic Bcl-2 gene was significantly downregulated in both colon cancer models treated with 5-FU, DOX, and 5-FU + DOX. CONCLUSION: The results indicated that the 5-FU + DOX combination therapy induces apoptosis and renders 5-FU and DOX more effective at lower concentrations compared to their alone use. This study reveals promising results in reducing the potential side effects of treatment by enabling the use of lower drug doses.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Doxorrubicina , Fluoruracila , Esferoides Celulares , Humanos , Fluoruracila/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Doxorrubicina/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Células HT29 , Proliferação de Células/efeitos dos fármacos , Células CACO-2 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
4.
World J Gastroenterol ; 30(16): 2258-2271, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38690023

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is one of the most frequent and debilitating conditions leading to gastroenterological referrals. However, recommended treatments remain limited, yielding only limited therapeutic gains. Chitin-glucan (CG) is a novel dietary prebiotic classically used in humans at a dosage of 1.5-3.0 g/d and is considered a safe food ingredient by the European Food Safety Authority. To provide an alternative approach to managing patients with IBS, we performed preclinical molecular, cellular, and animal studies to evaluate the role of chitin-glucan in the main pathophysiological mechanisms involved in IBS. AIM: To evaluate the roles of CG in visceral analgesia, intestinal inflammation, barrier function, and to develop computational molecular models. METHODS: Visceral pain was recorded through colorectal distension (CRD) in a model of long-lasting colon hypersensitivity induced by an intra-rectal administration of TNBS [15 milligrams (mg)/kilogram (kg)] in 33 Sprague-Dawley rats. Intracolonic pressure was regularly assessed during the 9 wk-experiment (weeks 0, 3, 5, and 7) in animals receiving CG (n = 14) at a human equivalent dose (HED) of 1.5 g/d or 3.0 g/d and compared to negative control (tap water, n = 11) and positive control (phloroglucinol at 1.5 g/d HED, n = 8) groups. The anti-inflammatory effect of CG was evaluated using clinical and histological scores in 30 C57bl6 male mice with colitis induced by dextran sodium sulfate (DSS) administered in their drinking water during 14 d. HT-29 cells under basal conditions and after stimulation with lipopolysaccharide (LPS) were treated with CG to evaluate changes in pathways related to analgesia (µ-opioid receptor (MOR), cannabinoid receptor 2 (CB2), peroxisome proliferator-activated receptor alpha, inflammation [interleukin (IL)-10, IL-1b, and IL-8] and barrier function [mucin 2-5AC, claudin-2, zonula occludens (ZO)-1, ZO-2] using the real-time PCR method. Molecular modelling of CG, LPS, lipoteichoic acid (LTA), and phospholipomannan (PLM) was developed, and the ability of CG to chelate microbial pathogenic lipids was evaluated by docking and molecular dynamics simulations. Data were expressed as the mean ± SEM. RESULTS: Daily CG orally-administered to rats or mice was well tolerated without including diarrhea, visceral hypersensitivity, or inflammation, as evaluated at histological and molecular levels. In a model of CRD, CG at a dosage of 3 g/d HED significantly decreased visceral pain perception by 14% after 2 wk of administration (P < 0.01) and reduced inflammation intensity by 50%, resulting in complete regeneration of the colonic mucosa in mice with DSS-induced colitis. To better reproduce the characteristics of visceral pain in patients with IBS, we then measured the therapeutic impact of CG in rats with TNBS-induced inflammation to long-lasting visceral hypersensitivity. CG at a dosage of 1.5 g/d HED decreased visceral pain perception by 20% five weeks after colitis induction (P < 0.01). When the CG dosage was increased to 3.0 g/d HED, this analgesic effect surpassed that of the spasmolytic agent phloroglucinol, manifesting more rapidly within 3 wk and leading to a 50% inhibition of pain perception (P < 0.0001). The underlying molecular mechanisms contributing to these analgesic and anti-inflammatory effects of CG involved, at least in part, a significant induction of MOR, CB2 receptor, and IL-10, as well as a significant decrease in pro-inflammatory cytokines IL-1b and IL-8. CG also significantly upregulated barrier-related genes including muc5AC, claudin-2, and ZO-2. Molecular modelling of CG revealed a new property of the molecule as a chelator of microbial pathogenic lipids, sequestering gram-negative LPS and gram-positive LTA bacterial toxins, as well as PLM in fungi at the lowesr energy conformations. CONCLUSION: CG decreased visceral perception and intestinal inflammation through master gene regulation and direct binding of microbial products, suggesting that CG may constitute a new therapeutic strategy for patients with IBS or IBS-like symptoms.


Assuntos
Quitina , Colo , Modelos Animais de Doenças , Glucanos , Síndrome do Intestino Irritável , Ratos Sprague-Dawley , Dor Visceral , Animais , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Humanos , Colo/efeitos dos fármacos , Colo/patologia , Ratos , Dor Visceral/tratamento farmacológico , Dor Visceral/fisiopatologia , Dor Visceral/metabolismo , Dor Visceral/etiologia , Quitina/farmacologia , Glucanos/farmacologia , Glucanos/administração & dosagem , Camundongos , Prebióticos/administração & dosagem , Ácido Trinitrobenzenossulfônico/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/fisiopatologia , Colite/patologia , Células HT29
5.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732614

RESUMO

The incidence of ulcerative colitis (UC) is increasing annually, and UC has a serious impact on patients' lives. Polysaccharides have gained attention as potential drug candidates for treating ulcerative colitis (UC) in recent years. Huaier (Trametes robiniophila Murr) is a fungus that has been used clinically for more than 1000 years, and its bioactive polysaccharide components have been reported to possess immunomodulatory effects, antitumour potential, and renoprotective effects. In this study, we aimed to examine the protective effects and mechanisms of Huaier polysaccharide (HP) against UC. Based on the H2O2-induced oxidative stress model in HT-29 cells and the dextran sulphate sodium salt (DSS)-induced UC model, we demonstrated that Huaier polysaccharides significantly alleviated DSS-induced colitis (weight loss, elevated disease activity index (DAI) scores, and colonic shortening). In addition, HP inhibited oxidative stress and inflammation and alleviated DSS-induced intestinal barrier damage. It also significantly promoted the expression of the mucin Muc2. Furthermore, HP reduced the abundance of harmful bacteria Escherichia-Shigella and promoted the abundance of beneficial bacteria Muribaculaceae_unclassified, Anaerotruncus, and Ruminococcaceae_unclassified to regulate the intestinal flora disturbance caused by DSS. Nontargeted metabolomics revealed that HP intervention would modulate metabolism by promoting levels of 3-hydroxybutyric acid, phosphatidylcholine (PC), and phosphatidylethanolamine (PE). These results demonstrated that HP had the ability to mitigate DSS-induced UC by suppressing oxidative stress and inflammation, maintaining the intestinal barrier, and modulating the intestinal flora. These findings will expand our knowledge of how HP functions and offer a theoretical foundation for using HP as a potential prebiotic to prevent UC.


Assuntos
Sulfato de Dextrana , Microbioma Gastrointestinal , Estresse Oxidativo , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Humanos , Polissacarídeos/farmacologia , Camundongos , Masculino , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células HT29 , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/tratamento farmacológico
6.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677261

RESUMO

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Assuntos
Autofagia , Lisossomos , Fármacos Fotossensibilizantes , Humanos , Células HT29 , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inibidores , Luz , Porfirinas/farmacologia , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
7.
Aging (Albany NY) ; 16(7): 5866-5886, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38613793

RESUMO

NXPH4 promotes cancer proliferation and invasion. However, its specific role and mechanism in cancer remain unclear. Transcriptome and clinical data for pan-cancer were derived from the TCGA database. K-M survival curve and univariate Cox were used for prognostic analysis. CIBERSORT and TIMER algorithms were employed to calculate immune cell infiltration. Gene set enrichment analysis (GSEA) was employed for investigating the function of NXPH4. Western blot verified differential expression of NXPH4 in colon cancer. Functional assays (CCK-8, plate clonogenicity assay, wound healing assay, and Transwell assay) confirmed the impact of NXPH4 on proliferation, invasion, and migration of colon cancer cells. Dysregulation of NXPH4 in pan-cancer suggests its potential as a diagnostic and prognostic marker for certain cancers, including colon and liver cancer. High expression of NXPH4 in pan-cancer might be associated with the increase in copy number and hypomethylation. NXPH4 expression in pan-cancer is substantially linked to immune cell infiltration in the immune microenvironment. NXPH4 expression is associated with the susceptibility to immunotherapy and chemotherapy. Western blot further confirmed the higher expression of NXPH4 in colon cancer. Knockdown of NXPH4 significantly suppresses proliferation, invasion, and migration of colon cancer cell lines HT-29 and HCT116, as validated by functional assays.


Assuntos
Biomarcadores Tumorais , Movimento Celular , Proliferação de Células , Neoplasias do Colo , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Progressão da Doença , Células HT29 , Células HCT116 , Prognóstico , Invasividade Neoplásica , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Int J Biol Macromol ; 267(Pt 1): 131574, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615857

RESUMO

Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.


Assuntos
Caulerpa , Neoplasias do Colo , Algas Comestíveis , Polissacarídeos , Esferoides Celulares , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Caulerpa/química , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Técnicas de Cultura de Células em Três Dimensões/métodos , Proliferação de Células/efeitos dos fármacos , Células HT29 , Linhagem Celular Tumoral , Células HCT116 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
9.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674023

RESUMO

Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.


Assuntos
Cannabis , Cisplatino , Neoplasias Colorretais , Dronabinol , Extratos Vegetais , Transcriptoma , Humanos , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Dronabinol/farmacologia , Cannabis/química , Extratos Vegetais/farmacologia , Transcriptoma/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células HT29 , Perfilação da Expressão Gênica/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos
10.
Oncol Rep ; 51(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38666541

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies worldwide. The 5­year survival rate of patients diagnosed with the early stages of the disease is markedly higher than that of patients in the advanced stages. Therefore, identifying novel biomarkers and drug targets for CRC is critical for clinical practice. Zinc finger protein 169 (ZNF169) is a crucial transcription factor, and its role in CRC remains to be explored. The present study aimed to investigate the clinical relevance, function and underlying mechanisms of ZNF169 in CRC growth and proliferation. The Cancer Genome Atlas (TCGA) database was utilized to analyze the clinical relevance of ZNF169 in patients with CRC. Immunohistochemical staining was performed on tissue samples from patients with CRC to detect the expression of ZNF169. The HCT­116, HT­29 and RKO cell lines were employed for in vitro experiments. The overexpression and knockdown of ZNF169 were achieved by transfecting the cells with lentivirus and small interfering RNAs, respectively. Cell Counting Kit­8, colony formation and EdU staining assays were applied to investigate the function of ZNF169 in CRC cells. Dual luciferase activity and chromatin immunoprecipitation (ChIP)­quantitative PCR (qPCR) assays were performed to identify the regulatory effects of ZNF169 on the ankyrin repeat and zinc­finger domain­containing 1 (ANKZF1; also known as ZNF744) gene. Reverse transcription­quantitative PCR and western blot analysis were performed to measure mRNA and protein expression, respectively. The analysis of TCGA data revealed a positive correlation between ZNF169 and ANKZF1, with the overexpression of ANKZF1 being associated with a poor prognosis of patients with CRC. The experimental results demonstrated that ZNF169 was expression upregulated in CRC tissue compared with that in normal colon tissue. Gain­of­function and loss­of­function experiments revealed that ZNF169 enhanced the intensity of EdU staining, promoting the growth and proliferation of CRC cells. Furthermore, the overexpression of ZNF169 potentiated the transcriptional activity of the ANKZF1 gene, while the knockdown of ZNF169 produced the opposite results. ChIP­qPCR confirmed the interaction between ZNF169 and the promoter sequence of ANKZF1. Rescue experiments revealed that ZNF169 accelerated CRC cell growth and proliferation through the upregulation of ANKZF1. Furthermore, there was a positive correlation identified between ZNF169 and ANKZF1, and upregulation of ANKZF1 expression was associated with the poor prognosis of patients with CRC. On the whole, the present study demonstrates that ZNF169 contributes to CRC malignancy by potentiating the expression of ANKZF1. Thus, the regulation of ZNF169 and/or ANKZF1 expression may represent a viable strategy for the treatment patients with CRC with a high expression of ZNF169.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Regulação para Cima , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Células HT29 , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Prognóstico , Regiões Promotoras Genéticas
11.
Carbohydr Polym ; 336: 122129, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670770

RESUMO

Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 µg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.


Assuntos
Proliferação de Células , Citostáticos , Ácido Hialurônico , Hialuronoglucosaminidase , Oligossacarídeos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Citostáticos/farmacologia , Citostáticos/química , Citostáticos/síntese química , Células HT29 , Receptores de Hialuronatos/metabolismo , Fibroblastos/efeitos dos fármacos
12.
Med Oncol ; 41(5): 123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652404

RESUMO

Colon cancer is on the rise in both men and women. In addition to traditional treatment methods, herbal treatments from complementary and alternative medicine are actively followed. Naturally derived from plants, thymoquinone (TQ) has drawn a lot of attention in the field of cancer treatment. MK-801, an N-methyl-D-aspartate agonist, is used to improve memory and plasticity, but it has also lately been explored as a potential cancer treatment. This study aimed to determine the roles of N-Methyl-D-Aspartate agonists and Thymoquinone on mitochondria and apoptosis. HT-29 cells were treated with different TQ and MK-801 concentrations. We analyzed cell viability, apoptosis, and alteration of mitochondria. Cell viability significantly decreased depending on doses of TQ and MK-801. Apoptosis and mitochondrial dysfunctions induced by low and high doses of TQ and MK-801. Our study emphasizes the need for further safety evaluation of MK-801 due to the potential toxicity risk of TQ and MK-801. Optimal and toxic doses of TQ and MK-801 were determined for the treatment of colon cancer. It should be considered as a possibility that colon cancer can be treated with TQ and MK-801.


Assuntos
Apoptose , Benzoquinonas , Sobrevivência Celular , Neoplasias Colorretais , Maleato de Dizocilpina , Mitocôndrias , Receptores de N-Metil-D-Aspartato , Humanos , Benzoquinonas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células HT29 , Maleato de Dizocilpina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
13.
Eur J Med Chem ; 270: 116377, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581731

RESUMO

Evading the cellular apoptosis mechanism by modulating multiple pathways poses a sturdy barrier to effective chemotherapy. Cancer cell adeptly resists the apoptosis signaling pathway by regulating anti and pro-apoptotic proteins to escape cell death. Nevertheless, bypassing the apoptotic pathway through necroptosis, an alternative programmed cell death process, maybe a potential therapeutic modality for apoptosis-resistant cells. However, synthetic mono-quinoxaline-based intercalator-induced cellular necroptosis as an anti-cancer perspective remains under-explored. To address this concern, we undertook the design and synthesis of quinoxaline-based small molecules (3a-3l). Our approach involved enhancing the π-surface of the mandatory benzyl moiety to augment its ability to induce DNA structural alteration via intercalation, thereby promoting cytotoxicity across various cancer cell lines (HCT116, HT-29, and HeLa). Notably, the potent compound 3a demonstrated the capacity to induce DNA damage in cancer cells, leading to the induction of ZBP1-mediated necroptosis in the RIP3-expressed cell line (HT-29), where Z-VAD effectively blocked apoptosis-mediated cell death. Interestingly, we observed that 3a induced RIP3-driven necroptosis in combination with DNA hypomethylating agents, even in the RIP3-silenced cell lines (HeLa and HCT116). Overall, our synthesized compound 3a emerged as a promising candidate against various cancers, particularly in apoptosis-compromised cells, through the induction of necroptosis.


Assuntos
Necroptose , Neoplasias , Humanos , Quinoxalinas/farmacologia , Apoptose , Células HT29 , DNA/farmacologia , Necrose/induzido quimicamente , Proteínas Quinases/metabolismo
14.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567463

RESUMO

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Assuntos
Autofagia , Neoplasias Colorretais , Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Ouro/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas Metálicas/química , Autofagia/efeitos dos fármacos , Acetilação , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/tratamento farmacológico , Células HT29 , Caspases/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
15.
Curr Protoc ; 4(4): e1023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606936

RESUMO

Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.


Assuntos
Optogenética , Transdução de Sinais , Humanos , Animais , Morte Celular/genética , Células HT29 , Citocinas
16.
J Cancer Res Clin Oncol ; 150(4): 207, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647571

RESUMO

PURPOSE: Colon cancer is a prevalent cancer globally, representing approximately 10% of all cancer cases and accounting for 10% of all cancer-related deaths. Therefore, finding new therapeutic methods with high efficiency will be very valuable. Cromolyn (C), a common anti-allergic and mast cell membrane stabilizing drug, has recently shown valuable anti-cancer effects in several studies. This study was designed to investigate the anti-cancer activity of cromolyn on colon cancer in vitro and in vivo and to determine values such as selectivity index and survival effect. METHODS: HT-29 (colon cancer) and MCF-10 (normal epithelial) cell lines were treated with C and Doxorubicin (DOX; Positive control). IC50 values and the effects of C and DOX on apoptosis were explored using methyl thiazole diphenyl-tetrazolium bromide (MTT) assay and Annexin V/PI Apoptosis Assay Kit. To investigate in an animal study, colon cancer was subcutaneously induced by CT26 cells (mouse colon cancer) in bulb/c mice. Mice were treated with 0.05 LD50 intraperitoneal every other day for 35 days. After the death of mice, tumor volume, tumor weight, and survival rate were evaluated. RESULTS: C selectively and significantly suppressed the proliferation of cancer cells in a dose-dependent manner. The IC50 values for the MCF-10 and HT29 cell lines were 7.33 ± 0.78 µM and 2.33 ± 0.6 µM, respectively. Notably, the selective index (SI) highlighted that C displayed greater selectivity in inhibiting cancer cell growth compared to DOX, with SI values of 3.15 and 2.60, respectively. C exhibited higher effectiveness and selectivity in inducing apoptosis in cancer cells compared to DOX, with a significant p-value (61% vs. 52%, P-value ≤ 0.0001). Also, in mice bearing colon cancer, C reduced the tumor volume (6317 ± 1685mm3) and tumor weight (9.8 ± 1.6 g) compared to the negative control group (weight 12.45 ± 0.9 g; volume 7346 ± 1077) but these values were not statistically significant (P ≤ 0.05). CONCLUSION: Our study showed that cromolyn is a selective and strong drug in inhibiting the proliferation of colon cancer cells. Based on our results, the efficacy of C in vitro analysis (MTT assays and apoptosis), as well as animal studies is competitive with the FDA-approved drug doxorubicin. C is very promising as a low-complication and good-efficacy drug for cancer drug repositioning. This requires clinical research study designs to comprehensively evaluate its anti-cancer effects.


Assuntos
Apoptose , Proliferação de Células , Neoplasias do Colo , Cromolina Sódica , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromolina Sódica/farmacologia , Cromolina Sódica/uso terapêutico , Doxorrubicina/farmacologia , Camundongos Endogâmicos BALB C , Células HT29 , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
17.
J Ethnopharmacol ; 330: 118206, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636572

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Croton argyrophyllus Kunth., commonly known as "marmeleiro" or "cassetinga," is widely distributed in the Brazilian Northeast region. Its leaves and flowers are used in traditional medicine as tranquilizers to treat flu and headaches. AIM OF THE STUDY: This study was conducted to determine the chemical composition and toxicological safety of essential oil from C. argyrophyllus leaves using in vitro and in vivo models. MATERIALS AND METHODS: The chemical composition of the essential oil was determined using a gas chromatograph coupled to a mass spectrometer. Cytotoxicity was tested in the HeLa, HT-29, and MCF-7 cell lines derived from human cells (Homo sapiens) and Vero cell lines derived from monkeys (Cercopithecus aethiops) using the MTT method. Acute toxicity, genotoxicity. Mutagenicity tests were performed in Swiss mice (Mus musculus), which were administered essential oil orally in a single dose of 2000 mg/kg by gavage. RESULTS: The main components of the essential oil were p-mentha-2-en-1-ol, α-terpineol, ß-caryophyllene, and ß-elemene. The essential oil exhibited more than 90% cytotoxicity in all cell lines tested. No deaths or behavioral, hematological, or biochemical changes were observed in mice, revealing no acute toxicity. In genotoxic and mutagenic analyses, there was no increase in micronuclei in polychromatic erythrocytes or in the damage and index in the comet assay. CONCLUSIONS: The essential oil was cytotoxic towards the tested cell lines but did not exert toxic effects or promote DNA damage when administered orally at a single dose of 2000 mg/kg in mice.


Assuntos
Croton , Óleos Voláteis , Folhas de Planta , Animais , Croton/química , Óleos Voláteis/toxicidade , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Humanos , Chlorocebus aethiops , Camundongos , Células Vero , Testes de Mutagenicidade , Administração Oral , Células HeLa , Células HT29 , Células MCF-7 , Masculino , Feminino , Sobrevivência Celular/efeitos dos fármacos , Testes de Toxicidade Aguda , Dano ao DNA/efeitos dos fármacos
18.
Nutrients ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674882

RESUMO

BACKGROUND: Tropomyosins (TM) from vertebrates are generally non-allergenic, while invertebrate homologs are potent pan-allergens. This study aims to compare the risk of sensitization between chicken TM and shrimp TM through affecting the intestinal epithelial barrier integrity and type 2 mucosal immune activation. METHODS: Epithelial activation and/or barrier effects upon exposure to 2-50 µg/mL chicken TM, shrimp TM or ovalbumin (OVA) as a control allergen, were studied using Caco-2, HT-29MTX, or HT-29 intestinal epithelial cells. Monocyte-derived dendritic cells (moDC), cocultured with HT-29 cells or moDC alone, were exposed to 50 µg/mL chicken TM or shrimp TM. Primed moDC were cocultured with naïve Th cells. Intestinal barrier integrity (TEER), gene expression, cytokine secretion and immune cell phenotypes were determined in these human in vitro models. RESULTS: Shrimp TM, but not chicken TM or OVA exposure, profoundly disrupted intestinal barrier integrity and increased alarmin genes expression in Caco-2 cells. Proinflammatory cytokine secretion in HT-29 cells was only enhanced upon shrimp TM or OVA, but not chicken TM, exposure. Shrimp TM enhanced the maturation of moDC and chemokine secretion in the presence or absence of HT-29 cells, while only in the absence of epithelial cells chicken TM activated moDC. Direct exposure of moDC to shrimp TM increased IL13 and TNFα secretion by Th cells cocultured with these primed moDC, while shrimp TM exposure via HT-29 cells cocultured with moDC sequentially increased IL13 expression and IL4 secretion in Th cells. CONCLUSIONS: Shrimp TM, but not chicken TM, disrupted the epithelial barrier while triggering type 2 mucosal immune activation, both of which are key events in allergic sensitization.


Assuntos
Alérgenos , Galinhas , Técnicas de Cocultura , Células Dendríticas , Mucosa Intestinal , Células Th2 , Tropomiosina , Animais , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células CACO-2 , Tropomiosina/imunologia , Alérgenos/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Células HT29 , Células Th2/imunologia , Citocinas/metabolismo , Penaeidae/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Ovalbumina
19.
Phytochemistry ; 222: 114072, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561105

RESUMO

Phytochemical investigations of the leaves of Astragalus membranaceus (Fisch.) Bge. have led to the isolation of 12 undescribed triterpenoid saponins named huangqiyenins M-X. The structures of the undescribed compounds were determined using NMR and HRESIMS data. The cytotoxicity of these compounds against the RKO and HT-29 colon cancer cell lines was evaluated. Among these compounds, huangqiyenin W exhibited the highest cytotoxic activity against RKO colon cancer cells, whereas huangqiyenin Q and W showed moderate cytotoxic activity against HT-29 colon cancer cells. The network pharmacology results indicated that STAT3, IL-2 and CXCR1 are the correlated targets of huangqiyenin W against colon cancer, with AGE-RAGE and Th17 cell differentiation as the key signaling pathways.


Assuntos
Antineoplásicos Fitogênicos , Astragalus propinquus , Saponinas , Triterpenos , Saponinas/química , Saponinas/farmacologia , Saponinas/isolamento & purificação , Humanos , Astragalus propinquus/química , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Folhas de Planta/química , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Relação Dose-Resposta a Droga , Interleucina-2/metabolismo , Células HT29
20.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38682277

RESUMO

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Assuntos
Interleucina-8 , Mucosa Intestinal , Mangifera , Mucina-2 , Humanos , Mangifera/química , Células CACO-2 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Interleucina-8/metabolismo , Mucina-2/metabolismo , Células HT29 , Polifenóis/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inflamação/tratamento farmacológico , Função da Barreira Intestinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA