Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 585
Filtrar
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721692

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Assuntos
Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Bainha de Mielina , Oligodendroglia , Animais , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferação de Células , Distrofina/metabolismo , Distrofina/deficiência , Distrofina/genética , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Ventrículos Laterais/patologia , Ventrículos Laterais/metabolismo , Modelos Animais de Doenças , Diferenciação Celular , Masculino
2.
J Neurosci Res ; 102(4): e25334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656648

RESUMO

Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.


Assuntos
Astrócitos , Diferenciação Celular , Deficiências de Ferro , Oligodendroglia , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ratos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Desferroxamina/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ferro/metabolismo
3.
Cell Mol Neurobiol ; 44(1): 33, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625414

RESUMO

Subarachnoid hemorrhage (SAH) is associated with high mortality and disability rates, and secondary white matter injury is an important cause of poor prognosis. However, whether brain capillary pericytes can directly affect the differentiation and maturation of oligodendrocyte precursor cells (OPCs) and subsequently affect white matter injury repair has still been revealed. This study was designed to investigate the effect of tissue inhibitor of metalloproteinase-3 (TIMP-3) for OPC differentiation and maturation. PDGFRßret/ret and wild-type C57B6J male mice were used to construct a mouse model of SAH via endovascular perforation in this study. Mice were also treated with vehicle, TIMP-3 RNAi or TIMP-3 RNAi + TIMP-3 after SAH. The effect of TIMP-3 on the differentiation and maturation of OPCs was determined using behavioral score, ELISA, transmission electron microscopy, immunofluorescence staining and cell culture. We found that TIMP-3 was secreted mainly by pericytes and that SAH and TIMP-3 RNAi caused a significant decrease in the TIMP-3 content, reaching a nadir at 24 h, followed by gradual recovery. In vitro, the myelin basic protein content of oligodendrocytes after oxyhemoglobin treatment was increased by TIMP-3 overexpression. The data indicates TIMP-3 could promote the differentiation and maturation of OPCs and subsequently improve neurological outcomes after SAH. Therefore, TIMP-3 could be beneficial for repair after white matter injury and could be a potential therapeutic target in SAH.


Assuntos
Células Precursoras de Oligodendrócitos , Hemorragia Subaracnóidea , Substância Branca , Masculino , Animais , Camundongos , Inibidor Tecidual de Metaloproteinase-3 , Encéfalo
4.
Methods Mol Biol ; 2782: 167-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622401

RESUMO

Microglia and oligodendrocyte precursor cells (OPCs) are critical glia subsets in the central nervous system (CNS) and are actively engaged in a body of diseases, such as stroke, Alzheimer's disease, multiple sclerosis, etc. Microglia and OPC serve as compelling tools for the study of CNS diseases as well as the repair and damage of myelin sheath in vitro. In this protocol, we summarized a method which is capable of using the same batch of new-born mice to isolate and culture microglia and OPCs. It integrates the characteristics of practicality, convenience, and efficiency, providing a convenient, easy, and reliable technique for research.


Assuntos
Microglia , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Diferenciação Celular/fisiologia , Bainha de Mielina , Sistema Nervoso Central , Oligodendroglia
5.
J Mol Neurosci ; 74(2): 40, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594388

RESUMO

Astrocytes, the most prevalent cells in the central nervous system (CNS), can be transformed into neurons and oligodendrocyte progenitor cells (OPCs) using specific transcription factors and some chemicals. In this study, we present a cocktail of small molecules that target different signaling pathways to promote astrocyte conversion to OPCs. Astrocytes were transferred to an OPC medium and exposed for five days to a small molecule cocktail containing CHIR99021, Forskolin, Repsox, LDN, VPA and Thiazovivin before being preserved in the OPC medium for an additional 10 days. Once reaching the OPC morphology, induced cells underwent immunocytofluorescence evaluation for OPC markers while checked for lacking the astrocyte markers. To test the in vivo differentiation capabilities, induced OPCs were transplanted into demyelinated mice brains treated with cuprizone over 12 weeks. Two distinct lines of astrocytes demonstrated the potential of conversion to OPCs using this small molecule cocktail as verified by morphological changes and the expression of PDGFR and O4 markers as well as the terminal differentiation to oligodendrocytes expressing MBP. Following transplantation into demyelinated mice brains, induced OPCs effectively differentiated into mature oligodendrocytes. The generation of OPCs from astrocytes via a small molecule cocktail may provide a new avenue for producing required progenitors necessary for myelin repair in diseases characterized by the loss of myelin such as multiple sclerosis.


Assuntos
Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo , Astrócitos/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Linhagem Celular
6.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652118

RESUMO

Chromatin-remodeling protein BRG1/SMARCA4 is pivotal for establishing oligodendrocyte (OL) lineage identity. However, its functions for oligodendrocyte-precursor cell (OPC) differentiation within the postnatal brain and during remyelination remain elusive. Here, we demonstrate that Brg1 loss profoundly impairs OPC differentiation in the brain with a comparatively lesser effect in the spinal cord. Moreover, BRG1 is critical for OPC remyelination after injury. Integrative transcriptomic/genomic profiling reveals that BRG1 exhibits a dual role by promoting OPC differentiation networks while repressing OL-inhibitory cues and proneuronal programs. Furthermore, we find that BRG1 interacts with EED/PRC2 polycomb-repressive-complexes to enhance H3K27me3-mediated repression at gene loci associated with OL-differentiation inhibition and neurogenesis. Notably, BRG1 depletion decreases H3K27me3 deposition, leading to the upregulation of BMP/WNT signaling and proneurogenic genes, which suppresses OL programs. Thus, our findings reveal a hitherto unexplored spatiotemporal-specific role of BRG1 for OPC differentiation in the developing CNS and underscore a new insight into BRG1/PRC2-mediated epigenetic regulation that promotes and safeguards OL lineage commitment and differentiation.


Assuntos
Diferenciação Celular , DNA Helicases , Oligodendroglia , Complexo Repressor Polycomb 2 , Animais , Camundongos , DNA Helicases/metabolismo , DNA Helicases/genética , Epigênese Genética , Histonas/metabolismo , Histonas/genética , Camundongos Endogâmicos C57BL , Neurogênese/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Remielinização , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
7.
Neuroreport ; 35(8): 536-541, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597261

RESUMO

Transfer RNAs (tRNAs) can regulate cell behavior and are associated with neurological disorders. Here, we aimed to investigate the expression levels of tRNAs in oligodendrocyte precursor cells (OPCs) and their possible roles in the regulation of brain white matter injury (WMI). Newborn Sprague-Dawley rats (postnatal day 5) were used to establish a model that mimicked neonatal brain WMI. RNA-array analysis was performed to examine the expression of tRNAs in OPCs. psRNAtarget software was used to predict target mRNAs of significantly altered tRNAs. Gene ontology (GO) and KEGG were used to analyze the pathways for target mRNAs. Eighty-nine tRNAs were changed after WMI (fold change absolute ≥1.5, P  < 0.01), with 31 downregulated and 58 upregulated. Among them, three significantly changed tRNAs were identified, with two being significantly increased (chr10.trna1314-ProTGG and chr2.trna2771-ProAGG) and one significantly decreased (chr10.trna11264-GlyTCC). Further, target mRNA prediction and GO/KEGG pathway analysis indicated that the target mRNAs of these tRNAs are mainly involved in G-protein coupled receptor signaling pathways and beta-alanine metabolism, which are both related to myelin formation. In summary, the expression of tRNAs in OPCs was significantly altered after brain WMI, suggesting that tRNAs may play important roles in regulating WMI. This improves the knowledge about WMI pathophysiology and may provide novel treatment targets for WMI.


Assuntos
RNA de Transferência , Ratos Sprague-Dawley , Substância Branca , Animais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Substância Branca/metabolismo , Substância Branca/patologia , Ratos , Animais Recém-Nascidos , Células Precursoras de Oligodendrócitos/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , RNA Mensageiro/metabolismo
8.
Cell Mol Biol Lett ; 29(1): 44, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553684

RESUMO

Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doenças Mitocondriais , Células Precursoras de Oligodendrócitos , Transtornos Psicomotores , Camundongos , Animais , Regulação para Baixo/genética , Células Precursoras de Oligodendrócitos/metabolismo , Ácido Aspártico/metabolismo , Isoformas de Proteínas/metabolismo , Ácidos Graxos
9.
Cell Rep ; 43(3): 113930, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38507412

RESUMO

Oligodendrocyte progenitor cells (OPCs) differentiate into myelin-producing cells and modulate neuronal activity. Defects in OPC development are associated with neurological diseases. N6-methyladenosine (m6A) contributes to neural development; however, the mechanism by which m6A regulates OPC development remains unclear. Here, we demonstrate that PRRC2B is an m6A reader that regulates OPC development and myelination. Nestin-Cre-mediated Prrc2b deletion affects neural stem cell self-renewal and glial differentiation. Moreover, the oligodendroglia lineage-specific deletion of Prrc2b reduces the numbers of OPCs and oligodendrocytes, causing hypomyelination and impaired motor coordination. Integrative methylated RNA immunoprecipitation sequencing, RNA sequencing, and RNA immunoprecipitation sequencing analyses identify Sox2 as the target of PRRC2B. Notably, PRRC2B, displaying separate and cooperative functions with PRRC2A, stabilizes mRNA by binding to m6A motifs in the coding sequence and 3' UTR of Sox2. In summary, we identify the posttranscriptional regulation of PRRC2B in OPC development, extending the understanding of PRRC2 family proteins and providing a therapeutic target for myelin-related disorders.


Assuntos
Células Precursoras de Oligodendrócitos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Oligodendroglia/metabolismo , Bainha de Mielina/metabolismo , Neurogênese , Diferenciação Celular/genética
10.
Cell ; 187(8): 1955-1970.e23, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503282

RESUMO

Characterizing somatic mutations in the brain is important for disentangling the complex mechanisms of aging, yet little is known about mutational patterns in different brain cell types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4-104 years of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/deletions (indels). Although both cell types accumulate somatic mutations linearly with age, oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic regions and are distributed across the genome similarly to mutations in brain cancers. In contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.


Assuntos
Envelhecimento , Encéfalo , Neurônios , Oligodendroglia , Humanos , Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Análise da Expressão Gênica de Célula Única , Sequenciamento Completo do Genoma , Encéfalo/metabolismo , Encéfalo/patologia , Polimorfismo de Nucleotídeo Único , Mutação INDEL , Bancos de Espécimes Biológicos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia
11.
Stem Cell Res Ther ; 15(1): 35, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321505

RESUMO

BACKGROUND: Spinal cord injury (SCI) is a devastating disease that causes extensive damage to oligodendrocytes and neurons leading to demyelination and axonal degeneration. In this study, we co-transplanted cell grafts containing oligodendrocyte progenitor cells (OPCs) derived from human-induced pluripotent stem cells (iPSCs) combined with human umbilical vein endothelial cells (HUVECs), which were reported to promote OPCs survival and migration, into rat contusion models to promote functional recovery after SCI. METHODS: OPCs were derived from iPSCs and identified by immunofluorescence at different time points. Functional assays in vitro were performed to evaluate the effect of HUVECs on the proliferation, migration, and survival of OPCs by co-culture and migration assay, as well as on the neuronal axonal growth. A combination of OPCs and HUVECs was transplanted into the rat contusive model. Upon 8 weeks, immunofluorescence staining was performed to test the safety of transplanted cells and to observe the neuronal repairment, myelination, and neural circuit reconstruction at the injured area; also, the functional recovery was assessed by Basso, Beattie, and Bresnahan open-field scale, Ladder climb, SEP, and MEP. Furthermore, the effect of HUVECs on grafts was also determined in vivo. RESULTS: Data showed that HUVECs promote the proliferation, migration, and survival of OPCs both in vitro and in vivo. Furthermore, 8 weeks upon engraftment, the rats with OPCs and HUVECs co-transplantation noticeably facilitated remyelination, enhanced functional connection between the grafts and the host and promoted functional recovery. In addition, compared with the OPCs-alone transplantation, the co-transplantation generated more sensory neurons at the lesion border and significantly improved the sensory functional recovery. CONCLUSIONS: Our study demonstrates that transplantation of OPCs combined with HUVECs significantly enhances both motor and sensory functional recovery after SCI. No significance was observed between OPCs combined with HUVECs group and OPCs-alone group in motor function recovery, while the sensory function recovery was significantly promoted in OPCs combined with HUVECs groups compared with the other two groups. These findings provide novel insights into the field of SCI research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Precursoras de Oligodendrócitos , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Células Precursoras de Oligodendrócitos/patologia , Células Precursoras de Oligodendrócitos/transplante , Células Endoteliais da Veia Umbilical Humana , Recuperação de Função Fisiológica , Células-Tronco Pluripotentes Induzidas/transplante , Traumatismos da Medula Espinal/patologia , Oligodendroglia , Medula Espinal/patologia , Diferenciação Celular/fisiologia
12.
J Vis Exp ; (204)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38407295

RESUMO

Tissue-specific neural stem cells (NSCs) remain active in the mammalian postnatal brain. They reside in specialized niches, where they generate new neurons and glia. One such niche is the subependymal zone (SEZ; also called the ventricular-subventricular zone), which is located across the lateral walls of the lateral ventricles, adjacent to the ependymal cell layer. Oligodendrocyte progenitor cells (OPCs) are abundantly distributed throughout the central nervous system, constituting a pool of proliferative progenitor cells that can generate oligodendrocytes. Both NSCs and OPCs exhibit self-renewal potential and quiescence/activation cycles. Due to their location, the isolation and experimental investigation of these cells is performed postmortem. Here, we describe in detail "brain milking", a method for the isolation of NSCs and OPCs, amongst other cells, from live animals. This is a two-step protocol designed for use in rodents and tested in rats. First, cells are "released" from the tissue via stereotaxic intracerebroventricular (i.c.v.) injection of a "release cocktail". The main components are neuraminidase, which targets ependymal cells and induces ventricular wall denudation, an integrin-ß1-blocking antibody, and fibroblast growth factor-2. At a second "collection" step, liquid biopsies of cerebrospinal fluid are performed from the cisterna magna, in anesthetized rats without the need of an incision. Results presented here show that isolated cells retain their endogenous profile and that NSCs of the SEZ preserve their quiescence. The denudation of the ependymal layer is restricted to the anatomical level of injection and the protocol (release and collection) is tolerated well  by the animals. This novel approach paves the way for performing longitudinal studies of endogenous neurogenesis and gliogenesis in experimental animals.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Ratos , Animais , Encéfalo , Sistema Nervoso Central , Neuroglia , Mamíferos
13.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351133

RESUMO

The subependymal zone (SEZ), also known as the subventricular zone (SVZ), constitutes a neurogenic niche that persists during postnatal life. In humans, the neurogenic potential of the SEZ declines after the first year of life. However, studies discovering markers of stem and progenitor cells highlight the neurogenic capacity of progenitors in the adult human SEZ, with increased neurogenic activity occurring under pathological conditions. In the present study, the complete cellular niche of the adult human SEZ was characterized by single-nucleus RNA sequencing, and compared between four youth (age 16-22) and four middle-aged adults (age 44-53). We identified 11 cellular clusters including clusters expressing marker genes for neural stem cells (NSCs), neuroblasts, immature neurons, and oligodendrocyte progenitor cells. The relative abundance of NSC and neuroblast clusters did not differ between the two age groups, indicating that the pool of SEZ NSCs does not decline in this age range. The relative abundance of oligodendrocyte progenitors and microglia decreased in middle-age, indicating that the cellular composition of human SEZ is remodeled between youth and adulthood. The expression of genes related to nervous system development was higher across different cell types, including NSCs, in youth as compared with middle-age. These transcriptional changes suggest ongoing central nervous system plasticity in the SEZ in youth, which declined in middle-age.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Adulto , Pessoa de Meia-Idade , Adolescente , Humanos , Adulto Jovem , RNA-Seq , Neurônios , Ventrículos Laterais/metabolismo , Neurogênese/fisiologia
14.
Eur J Neurosci ; 59(9): 2276-2292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385867

RESUMO

Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.


Assuntos
Diferenciação Celular , Proliferação de Células , Corticosterona , Glucocorticoides , Camundongos Endogâmicos C57BL , Bainha de Mielina , Oligodendroglia , Animais , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Glucocorticoides/farmacologia , Corticosterona/farmacologia , Camundongos Endogâmicos DBA , Células Cultivadas , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Patrimônio Genético , Masculino , Linhagem da Célula/efeitos dos fármacos , Estresse Psicológico/metabolismo
15.
Sci Rep ; 14(1): 4091, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374232

RESUMO

In the central nervous system, oligodendrocyte precursor cells (OPCs) proliferate and differentiate into myelinating oligodendrocytes throughout life, allowing for ongoing myelination and myelin repair. With age, differentiation efficacy decreases and myelin repair fails; therefore, recent therapeutic efforts have focused on enhancing differentiation. Many cues are thought to regulate OPC differentiation, including neuronal activity, which OPCs can sense and respond to via their voltage-gated ion channels and glutamate receptors. However, OPCs' density of voltage-gated ion channels and glutamate receptors differs with age and brain region, and correlates with their proliferation and differentiation potential, suggesting that OPCs exist in different functional cell states, and that age-associated states might underlie remyelination failure. Here, we use whole-cell patch-clamp to investigate whether clemastine and metformin, two pro-remyelination compounds, alter OPC membrane properties and promote a specific OPC state. We find that clemastine and metformin extend the window of NMDAR surface expression, promoting an NMDAR-rich OPC state. Our findings highlight a possible mechanism for the pro-remyelinating action of clemastine and metformin, and suggest that OPC states can be modulated as a strategy to promote myelin repair.


Assuntos
Metformina , Células Precursoras de Oligodendrócitos , Células Precursoras de Oligodendrócitos/metabolismo , Clemastina , Receptores de N-Metil-D-Aspartato/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia
17.
Immunology ; 171(4): 618-633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243672

RESUMO

Oligodendrocyte progenitor cells (OPCs) were regarded for years solely for their regenerative role; however, their immune-modulatory roles have gained much attention recently, particularly in the context of multiple sclerosis (MS). Despite extensive studies on OPCs, there are limited data elucidating the interactions between their intrinsic regenerative and immune functions, as well as their relationship with the inflamed central nervous system (CNS) environment, a key factor in MS pathology. We examined the effects of pro-inflammatory cytokines, represented by interferon (IFN)-γ and tumour necrosis factor (TNF)-α, as well as anti-inflammatory cytokines, represented by interleukin (IL)-4 and IL-10, on OPC differentiation and immune characteristics. Using primary cultures, enzyme-linked immunosorbent assay and immunofluorescence stainings, we assessed differentiation capacity, phagocytic activity, major histocompatibility complex (MHC)-II expression, and cytokine secretion. We observed that the anti-inflammatory milieu (IL4 and IL10) reduced both OPC differentiation and immune functions. Conversely, exposure to TNF-α led to intact differentiation, increased phagocytic activity, high levels of MHC-II expression, and cytokines secretion. Those effects were attributed to signalling via TNF-receptor-2 and counteracted the detrimental effects of IFN-γ on OPC differentiation. Our findings suggest that a pro-regenerative, permissive inflammatory environment is needed for OPCs to execute both regenerative and immune-modulatory functions.


Assuntos
Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Humanos , Células Precursoras de Oligodendrócitos/metabolismo , Citocinas/metabolismo , Diferenciação Celular , Esclerose Múltipla/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunidade , Anti-Inflamatórios/farmacologia , Oligodendroglia
18.
CNS Neurosci Ther ; 30(1): e14552, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287523

RESUMO

AIMS: Multiple sclerosis (MS) is a chronic neurological disease that currently lacks effective curative treatments. There is a need to find effective therapies, especially to reverse the progressive demyelination and neuronal damage. Oligodendrocytes form the myelin sheath around axons in the central nervous system (CNS) and oligodendrocyte precursor cells (OPCs) undergo mechanisms that enable spontaneously the partial repair of damaged lesions. The aim of this study was to discover small molecules with potential effects in demyelinating diseases, including (re)myelinating properties. METHODS: Recently, it has been shown how LRRK2 inhibition promotes oligodendrogliogenesis and therefore an efficient repair or myelin damaged lesions. Here we explored small molecules inhibiting LRRK2 as potential enhancers of primary OPCs proliferation and differentiation, and their potential impact on the clinical score of experimental autoimmune encephalomyelitys (EAE) mice, a validated model of the most frequent clinical form of MS, relapsing-remitting MS. RESULTS: One of the LRRK2 inhibitors presented in this study promoted the proliferation and differentiation of OPC primary cultures. When tested in the EAE murine model of MS, it exerted a statistically significant reduction of the clinical burden of the animals, and histological evidence revealed how the treated animals presented a reduced lesion area in the spinal cord. CONCLUSIONS: For the first time, a small molecule with LRRK2 inhibition properties presented (re)myelinating properties in primary OPCs cultures and potentially in the in vivo murine model. This study provides an in vivo proof of concept for a LRRK2 inhibitor, confirming its potential for the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Células Precursoras de Oligodendrócitos/patologia , Modelos Animais de Doenças , Bainha de Mielina/patologia , Oligodendroglia/patologia , Diferenciação Celular , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Camundongos Endogâmicos C57BL
19.
Nat Neurosci ; 27(2): 219-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216650

RESUMO

In the nervous system, only one type of neuron-glial synapse is known to exist: that between neurons and oligodendrocyte precursor cells (OPCs), yet their composition, assembly, downstream signaling and in vivo functions remain largely unclear. Here, we address these questions using in vivo microscopy in zebrafish spinal cord and identify postsynaptic molecules PSD-95 and gephyrin in OPCs. The puncta containing these molecules in OPCs increase during early development and decrease upon OPC differentiation. These puncta are highly dynamic and frequently assemble at 'hotspots'. Gephyrin hotspots and synapse-associated Ca2+ activity in OPCs predict where a subset of myelin sheaths forms in differentiated oligodendrocytes. Further analyses reveal that spontaneous synaptic release is integral to OPC Ca2+ activity, while evoked synaptic release contributes only in early development. Finally, disruption of the synaptic genes dlg4a/dlg4b, gphnb and nlgn3b impairs OPC differentiation and myelination. Together, we propose that neuron-OPC synapses are dynamically assembled and can predetermine myelination patterns through Ca2+ signaling.


Assuntos
Bainha de Mielina , Células Precursoras de Oligodendrócitos , Animais , Bainha de Mielina/fisiologia , Peixe-Zebra , Oligodendroglia/fisiologia , Neurônios/fisiologia , Diferenciação Celular/fisiologia
20.
Neurochem Res ; 49(3): 670-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38015410

RESUMO

White matter dysplasia (WMD) in preterm infants due to intrauterine inflammation is caused by excessive apoptosis of oligodendrocyte precursor cells (OPCs). In recent years, studies have found that excessive autophagy and apoptosis are highly interconnected and important in infection and inflammatory diseases in general. Therefore, in this study, we aimed to confirm whether regulation of autophagy by using the Akt phosphorylation agonist SC79 can inhibit abnormal apoptosis of OPCs and promote myelin maturation and white matter development in neonatal rats with WMD. We investigated the effect of inflammation on oligodendrocyte development in P0 neonatal rats by intracerebellar injection of LPS, and collected brain tissue at P2 and P5. Immunohistochemical and immunofluorescence staining were used to evaluate white matter damage, while immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling analysis (TUNEL), and western blotting were used to evaluate autophagy and apoptosis. First, we observed that white matter development was arrested and white matter fiber maturation was impaired in LPS-inflicted pups compared with those in the sham-operated group. Second, treatment with SC79 reduced the levels of LC3II, caspase 3, caspase 9, and Bax/Bcl-2 and increased the levels of p62, p-Akt, and p-mTOR in the brain tissue of neonatal rats. Finally, SC79 treatment inhibited OPC apoptosis by increasing the binding of Beclin 1 to Bcl-2, which promoted OPC differentiation and maturation. However, the opposite results were observed after rapamycin administration. Taken together, our results suggest that SC79 can inhibit the abnormal apoptosis of OPCs caused by excessive autophagy through the Akt/mTOR pathway and that SC79 is a potential therapeutic agent for WMD in preterm infants.


Assuntos
Células Precursoras de Oligodendrócitos , Substância Branca , Humanos , Recém-Nascido , Ratos , Animais , Substância Branca/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Recém-Nascido Prematuro , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Inflamação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA