Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 147(2): 211-227, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393063

RESUMO

C4-like plants represent the penultimate stage of evolution from C3 to C4 plants. Although Coleataenia prionitis (formerly Panicum prionitis) has been described as a C4 plant, its leaf anatomy and gas exchange traits suggest that it may be a C4-like plant. Here, we reexamined the leaf structure and biochemical and physiological traits of photosynthesis in this grass. The large vascular bundles were surrounded by two layers of bundle sheath (BS): a colorless outer BS and a chloroplast-rich inner BS. Small vascular bundles, which generally had a single BS layer with various vascular structures, also occurred throughout the mesophyll together with BS cells not associated with vascular tissue. The mesophyll cells did not show a radial arrangement typical of Kranz anatomy. These features suggest that the leaf anatomy of C. prionitis is on the evolutionary pathway to a complete C4 Kranz type. Phosphoenolpyruvate carboxylase (PEPC) and pyruvate, Pi dikinase occurred in the mesophyll and outer BS. Glycine decarboxylase was confined to the inner BS. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) accumulated in the mesophyll and both BSs. C. prionitis had biochemical traits of NADP-malic enzyme type, whereas its gas exchange traits were close to those of C4-like intermediate plants rather than C4 plants. A gas exchange study with a PEPC inhibitor suggested that Rubisco in the mesophyll could fix atmospheric CO2. These data demonstrate that C. prionitis is not a true C4 plant but should be considered as a C4-like plant.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese , Poaceae/fisiologia , Cloroplastos/enzimologia , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Glicina Desidrogenase (Descarboxilante)/metabolismo , Malato Desidrogenase/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/fisiologia , Células do Mesofilo/ultraestrutura , Fenótipo , Fosfoenolpiruvato Carboxilase/antagonistas & inibidores , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Poaceae/enzimologia , Poaceae/ultraestrutura , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Methods Enzymol ; 609: 247-272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30244793

RESUMO

Catalyst-mediated bioprocessing at an industrial scale is dependent on the sustained stability and activity of the biocatalyst. Here, we demonstrate that strategy employed to increase the stability and activity of a mesophilic lipase immobilized on graphene oxide (GO). The protein adsorption capacity of GO is much higher than of other large surface area carbonaceous materials. Its structure and physicochemical properties are reported beneficial for enzymatic activity modifications. A purified lipase from Brevibacillus borstelensis NLIP05 immobilized on GO showed remarkable increase in thermostability (at 95°C) over a broad alkaline pH range (pH 7-12) compared to the free enzyme. Thermodynamic analysis of the GO-lip showed decreases in Km and activation energy (Ea) with increased Vmax and deactivation energy (Ed) at both 45 and 95°C. The decrease in decay constant (k) coupled with the increase in t1/2 value with temperature increase were salient features of the GO-lip system. This implies that GO-based immobilization conferred structural stability to the enzyme at higher temperature indicating chaperone like activity. Our findings support suitability of immobilized lipase on GO nanosupport for possible production of value-added materials with varied biological applications in the form of active pharmaceutical substances, synthetic building blocks, and effective synthesis of surfactants. The enhanced stability and activity of lipase indicate major application of GO on an industrial scale.


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Grafite/química , Estabilidade Enzimática , Cinética , Células do Mesofilo/enzimologia , Temperatura , Termodinâmica
3.
New Phytol ; 219(4): 1421-1432, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938800

RESUMO

The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H+ -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PPi hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na+ sequestration.


Assuntos
Pirofosfatase Inorgânica/metabolismo , Nicotiana/enzimologia , Salinidade , Cloreto de Sódio/farmacologia , Vacúolos/enzimologia , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Difosfatos/metabolismo , Concentração de Íons de Hidrogênio , Isoenzimas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Bombas de Próton/metabolismo , Prótons , Estresse Fisiológico/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
New Phytol ; 217(4): 1463-1474, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29220090

RESUMO

Mesophyll conductance (gm ) describes the movement of CO2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C3 -gm , little is currently known about the intraspecific variation in C4 -gm or its responsiveness to environmental stimuli. To address these questions, gm was measured on five maize (Zea mays) lines in response to CO2 , employing three different estimates of gm . Each of the methods indicated a significant response of gm to CO2 . Estimates of gm were similar between methods at ambient and higher CO2 , but diverged significantly at low partial pressures of CO2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of gm and leaf anatomical traits. These results provide strong support for a CO2 response of gm in Z. mays, and indicate that gm in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO2 response of gm indicates a potential role for facilitated diffusion in C4 -gm . These results also suggest that water-use efficiency could be enhanced in C4 species by targeting gm .


Assuntos
Dióxido de Carbono/farmacologia , Produtos Agrícolas/fisiologia , Células do Mesofilo/fisiologia , Transpiração Vegetal/fisiologia , Zea mays/fisiologia , Anidrases Carbônicas/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Modelos Biológicos , Isótopos de Oxigênio , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fotossíntese/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo , Água , Zea mays/anatomia & histologia , Zea mays/efeitos dos fármacos , Zea mays/enzimologia
5.
J Exp Bot ; 68(2): 311-320, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040798

RESUMO

The first two reactions of C4 photosynthesis are catalysed by carbonic anhydrase (CA) and phosphoenolpyruvate carboxylase (PEPC) in the leaf mesophyll (M) cell cytosol. Translatome experiments using a tagged ribosomal protein expressed under the control of M and bundle-sheath (BS) cell-specific promoters showed transcripts encoding CA3 from the C4 species Flaveria bidentis were highly enriched in polysomes from M cells relative to those of the BS. Localisation experiments employing a CA3-green fluorescent protein fusion protein showed F. bidentis CA3 is a cytosolic enzyme. A motif showing high sequence homology to that of the Flaveria M expression module 1 (MEM1) element was identified approximately 2 kb upstream of the F. bidentis and F. trinervia ca3 translation start sites. MEM1 is located in the promoter of C4 Flaveria ppcA genes, which encode the C4-associated PEPC, and is necessary for M-specific expression. No MEM1-like sequence was found in the 4 kb upstream of the C3 species F. pringlei ca3 translation start site. Promoter-reporter fusion experiments demonstrated the region containing the ca3 MEM1-like element also directs M-specific expression. These results support the idea that a common regulatory switch drives the expression of the C4 Flaveria ca3 and ppcA1 genes specifically in M cells.


Assuntos
Flaveria/enzimologia , Regulação da Expressão Gênica de Plantas , Células do Mesofilo/enzimologia , Sequência de Bases , Flaveria/genética , Dados de Sequência Molecular
6.
Plant Cell ; 28(2): 454-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26772995

RESUMO

C4 photosynthesis is a complex phenotype that allows more efficient carbon capture than the ancestral C3 pathway. In leaves of C4 species, hundreds of transcripts increase in abundance compared with C3 relatives and become restricted to mesophyll (M) or bundle sheath (BS) cells. However, no mechanism has been reported that regulates the compartmentation of multiple enzymes in M or BS cells. We examined mechanisms regulating CARBONIC ANHYDRASE4 (CA4) in C4 Gynandropsis gynandra. Increased abundance is directed by both the promoter region and introns of the G. gynandra gene. A nine-nucleotide motif located in the 5' untranslated region (UTR) is required for preferential accumulation of GUS in M cells. This element is present and functional in three additional 5' UTRs and six 3' UTRs where it determines accumulation of two isoforms of CA and pyruvate,orthophosphate dikinase in M cells. Although the GgCA4 5' UTR is sufficient to direct GUS accumulation in M cells, transcripts encoding GUS are abundant in both M and BS. Mutating the GgCA4 5' UTR abolishes enrichment of protein in M cells without affecting transcript abundance. The work identifies a mechanism that directs cell-preferential accumulation of multiple enzymes required for C4 photosynthesis.


Assuntos
Cleome/genética , Proteínas de Plantas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Cleome/citologia , Cleome/enzimologia , Genes Reporter , Íntrons/genética , Células do Mesofilo/enzimologia , Fotossíntese/genética , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Regiões não Traduzidas/genética
7.
Plant Physiol ; 167(1): 89-101, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406120

RESUMO

The esterification of methylecgonine (2-carbomethoxy-3ß-tropine) with benzoic acid is the final step in the biosynthetic pathway leading to the production of cocaine in Erythoxylum coca. Here we report the identification of a member of the BAHD family of plant acyltransferases as cocaine synthase. The enzyme is capable of producing both cocaine and cinnamoylcocaine via the activated benzoyl- or cinnamoyl-Coenzyme A thioesters, respectively. Cocaine synthase activity is highest in young developing leaves, especially in the palisade parenchyma and spongy mesophyll. These data correlate well with the tissue distribution pattern of cocaine as visualized with antibodies. Matrix-assisted laser-desorption ionization mass spectral imaging revealed that cocaine and cinnamoylcocaine are differently distributed on the upper versus lower leaf surfaces. Our findings provide further evidence that tropane alkaloid biosynthesis in the Erythroxylaceae occurs in the above-ground portions of the plant in contrast with the Solanaceae, in which tropane alkaloid biosynthesis occurs in the roots.


Assuntos
Aciltransferases/metabolismo , Cocaína/biossíntese , Proteínas de Plantas/metabolismo , Catálise , Cocaína/análogos & derivados , Cocaína/análise , Erythroxylaceae/enzimologia , Erythroxylaceae/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/química
8.
J Proteome Res ; 13(7): 3397-409, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24924143

RESUMO

External supply of sucrose to carbon-starved Arabidopsis seedlings induced changes in phosphorylation of Brassinosteroid Signaling Kinase 8 (BSK8) at two different sites. Serine S(20) lies within a phosphorylation hotspot at the N-terminal region of the protein, while S(213) is located within the kinase domain of BSK8. Upon sucrose supply phosphorylation of BSK8(S20) and BSK8(S213) showed opposite behavior with increasing phosphorylation of S(213) and decreased phosphorylation of S(20) at 5 min after sucrose supply. Here we aim to systematically analyze the effects of BSK8 mutations on downstream cellular regulatory events and characterize molecular functions of BSK8 and its phosphorylation. Comparative phosphoproteomic profiling of a bsk8 knockout mutant and wild type revealed potential targets in sucrose metabolism. Activity of sucrose-phosphate synthase (SPS) was decreased by phosphorylation at S(152), and SPS phosphorylation inversely correlated with sucrose-induced BSK8 activity. Furthermore, BSK8 was found to interact with BSL2, a Kelch-type phosphatase. On the basis of a combination of kinase activity measurements, SPS activity assays, and phosphorylation site mutations in BSK8 at S(20) and S(213), we conclude that regulation of SPS by BSK8 occurs through activation of a phosphatase that in turn may dephosphorylate SPS and thus activates the enzyme.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Sequência de Aminoácidos , Arabidopsis/citologia , Células do Mesofilo/enzimologia , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Plântula/citologia , Plântula/enzimologia , Transdução de Sinais
9.
Eur J Immunol ; 44(8): 2425-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24825162

RESUMO

Lymph nodes (LNs) form the intersection between the vascular and lymphatic systems. Lymphocytes and antigen-presenting cells (APCs) traffic between these systems, but the barriers crossed during this trafficking in human LNs are poorly defined. We identified a population of cells in human LNs that lines the boundary between the parenchyma and lymphatic sinuses, consistent with descriptions of marginal reticular cells (MRCs) in murine LNs. Human MRCs are CD141(high) podoplanin(+), CD90(+), ICAM1(+), and VCAM1(+) but lack endothelial and hematopoietic cell markers, or alpha-smooth muscle actin. We then examined expression of the enzyme sphingosine-1-phosphate (S1P) lyase (SGPL1) relative to the boundary defined by MRCs. SGPL1 expression was almost exclusively restricted to cells on the parenchymal side of MRCs, consistent with a role in maintaining the S1P gradient between the sinuses and the parenchyma. Surprisingly the cells expressing SGPL1 in the parenchyma were CD68(+) APCs. CD68(+) APCs generated from human monocytes were able to internalize and irreversibly degrade S1P, and this activity was inhibited by the S1P analogue FTY720. This work provides a map of the key structures at the boundary where human lymphocytes egress into sinuses, and identifies a novel potential mechanism for the activity of S1P analogues in humans.


Assuntos
Aldeído Liases/biossíntese , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Linfonodos/enzimologia , Células do Mesofilo/enzimologia , Movimento Celular/fisiologia , Humanos , Linfonodos/citologia , Linfonodos/metabolismo , Sistema Linfático/citologia , Sistema Linfático/enzimologia , Sistema Linfático/metabolismo , Linfócitos/citologia , Linfócitos/enzimologia , Linfócitos/metabolismo , Lisofosfolipídeos/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Monócitos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
New Phytol ; 198(2): 536-545, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23356583

RESUMO

Nonhost resistance (NHR) of plants to fungal pathogens comprises different defense layers. Epidermal penetration resistance of Arabidopsis to Phakopsora pachyrhizi requires functional PEN1, PEN2 and PEN3 genes, whereas post-invasion resistance in the mesophyll depends on the combined functionality of PEN2, PAD4 and SAG101. Other genetic components of Arabidopsis post-invasion mesophyll resistance remain elusive. We performed comparative transcriptional profiling of wild-type, pen2 and pen2 pad4 sag101 mutants after inoculation with P. pachyrhizi to identify a novel trait for mesophyll NHR. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis and microscopic analysis confirmed the essential role of the candidate gene in mesophyll NHR. UDP-glucosyltransferase UGT84A2/bright trichomes 1 (BRT1) is a novel component of Arabidopsis mesophyll NHR to P. pachyrhizi. BRT1 is a putative cytoplasmic enzyme in phenylpropanoid metabolism. BRT1 is specifically induced in pen2 with post-invasion resistance to P. pachyrhizi. Silencing or mutation of BRT1 increased haustoria formation in pen2 mesophyll. Yet, the brt1 mutation did not affect NHR to P. pachyrhizi in wild-type plants. We assign a novel function to BRT1, which is important for post-invasion NHR of Arabidopsis to P. pachyrhizi. BRT1 might serve to confer durable resistance against P. pachyrhizi to soybean.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Basidiomycota/fisiologia , Resistência à Doença/imunologia , Glucosiltransferases/metabolismo , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ásia , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genótipo , Glucosiltransferases/genética , Interações Hospedeiro-Patógeno/imunologia , Malatos/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/microbiologia , Mutação/genética , Fenilpropionatos/metabolismo , Epiderme Vegetal/enzimologia , Epiderme Vegetal/microbiologia , Interferência de RNA
11.
J Plant Res ; 126(2): 233-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23073748

RESUMO

The C(4) grass Arundinella hirta exhibits a unique C(4) anatomy, with isolated Kranz cells (distinctive cells) and C(4)-type expression of photosynthetic enzymes in the leaf sheath and stem as well as in the leaf blade. The border zones between these organs are pale green. Those between the leaf blade and sheath and between the sheath and stem are called the lamina joint and sheath pulvinus, respectively, and are involved in gravity sensing. We investigated the structure and localization of C(3) and C(4) photosynthetic enzymes in these tissues. In both zones the epidermis lacked stomata. The inner tissue was composed of parenchyma cells and vascular bundles. The parenchyma cells were densely packed with small intercellular spaces and contained granal chloroplasts with large starch grains. No C(4)-type cellular differentiation was recognized. Western blot analysis showed that the lamina joint and pulvinus accumulated substantial amounts of phosphoenolpyruvate carboxylase (PEPC), pyruvate,Pi dikinase (PPDK), and ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco). Immunogold electron microscopy revealed PEPC in the cytosol and both PPDK and rubisco in the chloroplasts of parenchyma cells, suggesting the occurrence of C(3) and C(4) enzymes within a single type of chlorenchyma cell. These data indicate that the lamina joint and pulvinus have unique expression patterns of C(3) and C(4) enzymes, unlike those in C(4)-type anatomy.


Assuntos
Proteínas de Plantas/metabolismo , Poaceae/enzimologia , Pulvínulo/enzimologia , Cloroplastos/enzimologia , Citosol/enzimologia , Células do Mesofilo/citologia , Células do Mesofilo/enzimologia , Especificidade de Órgãos , Fosfoenolpiruvato Carboxilase/metabolismo , Fotossíntese , Epiderme Vegetal/citologia , Epiderme Vegetal/enzimologia , Folhas de Planta/química , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Caules de Planta/química , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Poaceae/citologia , Pulvínulo/citologia , Piruvato Ortofosfato Diquinase/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/enzimologia
12.
Plant Cell ; 24(7): 2979-91, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22805436

RESUMO

To adapt to different light intensities, photosynthetic organisms manipulate the flow of electrons through several alternative pathways at the thylakoid membrane. The enzyme ferredoxin:NADP(+) reductase (FNR) has the potential to regulate this electron partitioning because it is integral to most of these electron cascades and can associate with several different membrane complexes. However, the factors controlling relative localization of FNR to different membrane complexes have not yet been established. Maize (Zea mays) contains three chloroplast FNR proteins with totally different membrane association, and we found that these proteins have variable distribution between cells conducting predominantly cyclic electron transport (bundle sheath) and linear electron transport (mesophyll). Here, the crystal structures of all three enzymes were solved, revealing major structural differences at the N-terminal domain and dimer interface. Expression in Arabidopsis thaliana of maize FNRs as chimeras and truncated proteins showed the N-terminal determines recruitment of FNR to different membrane complexes. In addition, the different maize FNR proteins localized to different thylakoid membrane complexes on expression in Arabidopsis, and analysis of chlorophyll fluorescence and photosystem I absorbance demonstrates the impact of FNR location on photosynthetic electron flow.


Assuntos
Ferredoxina-NADP Redutase/química , Tilacoides/enzimologia , Zea mays/enzimologia , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/enzimologia , Arabidopsis/genética , Sequência de Bases , Clorofila/metabolismo , Cloroplastos/enzimologia , Cristalização , Transporte de Elétrons , Ferredoxina-NADP Redutase/isolamento & purificação , Ferredoxina-NADP Redutase/metabolismo , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Células do Mesofilo/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Folhas de Planta/química , Folhas de Planta/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Alinhamento de Sequência , Zea mays/química , Zea mays/genética
13.
Plant Physiol ; 160(1): 419-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22744982

RESUMO

In maize (Zea mays), Rubisco accumulates in bundle sheath but not mesophyll chloroplasts, but the mechanisms that underlie cell type-specific expression are poorly understood. To explore the coordinated expression of the chloroplast rbcL gene, which encodes the Rubisco large subunit (LS), and the two nuclear RBCS genes, which encode the small subunit (SS), RNA interference was used to reduce RBCS expression. This resulted in Rubisco deficiency and was correlated with translational repression of rbcL. Thus, as in C3 plants, LS synthesis depends on the presence of its assembly partner SS. To test the hypothesis that the previously documented transcriptional repression of RBCS in mesophyll cells is responsible for repressing LS synthesis in mesophyll chloroplasts, a ubiquitin promoter-driven RBCS gene was expressed in both bundle sheath and mesophyll cells. This did not lead to Rubisco accumulation in the mesophyll, suggesting that LS synthesis is impeded even in the presence of ectopic SS expression. To attempt to bypass this putative mechanism, a ubiquitin promoter-driven nuclear version of the rbcL gene was created, encoding an epitope-tagged LS that was expressed in the presence or absence of the Ubi-RBCS construct. Both transgenes were robustly expressed, and the tagged LS was readily incorporated into Rubisco complexes. However, neither immunolocalization nor biochemical approaches revealed significant accumulation of Rubisco in mesophyll cells, suggesting a continuing cell type-specific impairment of its assembly or stability. We conclude that additional cell type-specific factors limit Rubisco expression to bundle sheath chloroplasts.


Assuntos
Regulação da Expressão Gênica de Plantas , Células do Mesofilo/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Zea mays/enzimologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , Estabilidade Enzimática , Epitopos/genética , Epitopos/metabolismo , Genes de Plantas , Células do Mesofilo/citologia , Modelos Biológicos , Mutagênese Sítio-Dirigida , Fotossíntese , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Transcrição Gênica , Transgenes , Zea mays/genética
14.
J Biotechnol ; 161(1): 49-59, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22642881

RESUMO

One widely known drawback of enzymes is their instability in diverse conditions. The thermostability of enzymes is particularly relevant for industrial applications because operation at high temperatures has the advantage of a faster reaction rate. Protein stability is mainly determined in this study by intra-molecular hydrophobic interactions that have a collective and 3-dimensional clustering effect. To interpret the thermostability of enzymes, network analysis was introduced into the protein structure, and a network parameter of structural hierarchy, k of k-clique, was used to discern more developed hydrophobic interaction clusters in the protein structure. The favorable clustering conformations of hydrophobic residues, which seemed to be important for protein thermostability, were discovered by the application of a network analysis to hydrophobic interactions of GH11 xylanases. Coordinating higher k-clique hydrophobic interaction clusters through the site-directed mutagenesis of the model enzyme, Bacillus circulans xylanase, stabilized the local structure and thus improved thermostability, such that the enzyme half-life and melting temperature increased by 78 fold and 8.8 °C, respectively. This study highlights the advantages of interpreting collective hydrophobic interaction patterns and their structural hierarchy and the possibility of applying network analysis to the thermostabilization of enzymes.


Assuntos
Bacillus/enzimologia , Biotecnologia/métodos , Endo-1,4-beta-Xilanases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Células do Mesofilo/enzimologia , Modelos Moleculares , Estabilidade Proteica , Primers do DNA/genética , Endo-1,4-beta-Xilanases/genética , Cinética , Mutagênese Sítio-Dirigida , Temperatura
15.
Plant Cell Environ ; 35(9): 1663-71, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22489666

RESUMO

Chloroplast protrusions (CPs) are often observed under environmental stresses, but their role has not been elucidated. The formation of CPs was observed in the leaf of rice plants treated with 75 mm NaCl for 14 d. Some CPs were almost separated from the main chloroplast body. In some CPs, inner membrane structures and crystalline inclusions were included. Similar structures surrounded by double membranes were observed in the cytoplasm and vacuole. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was detected in CPs and the similar structures in the cytoplasm and vacuole. These results suggest that CP is one of the pathways of Rubisco exclusion from chloroplasts into the cytoplasm under salinity, and the exclusions could be transported to vacuole for their degradation.


Assuntos
Cloroplastos/enzimologia , Oryza/enzimologia , Folhas de Planta/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo , Cloreto de Sódio/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/ultraestrutura , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Células do Mesofilo/citologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Células do Mesofilo/ultraestrutura , Modelos Biológicos , Oryza/efeitos dos fármacos , Oryza/ultraestrutura , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Salinidade , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Vacúolos/ultraestrutura
16.
Plant Physiol ; 157(4): 1711-20, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976482

RESUMO

Serine hydroxymethyltransferases (SHMs) are important enzymes of cellular one-carbon metabolism and are essential for the photorespiratory glycine-into-serine conversion in leaf mesophyll mitochondria. In Arabidopsis (Arabidopsis thaliana), SHM1 has been identified as the photorespiratory isozyme, but little is known about the very similar SHM2. Although the mitochondrial location of SHM2 can be predicted, some data suggest that this particular isozyme could be inactive or not targeted into mitochondria. We report that SHM2 is a functional mitochondrial SHM. In leaves, the presequence of SHM2 selectively hinders targeting of the enzyme into mesophyll mitochondria. For this reason, the enzyme is confined to the vascular tissue of wild-type Arabidopsis, likely the protoxylem and/or adjacent cells, where it occurs together with SHM1. The resulting exclusion of SHM2 from the photorespiratory environment of mesophyll mitochondria explains why this enzyme cannot substitute for SHM1 in photorespiratory metabolism. Unlike the individual shm1 and shm2 null mutants, which require CO(2)-enriched air to inhibit photorespiration (shm1) or do not show any visible impairment (shm2), double-null mutants cannot survive in CO(2)-enriched air. It seems that SHM1 and SHM2 operate in a redundant manner in one-carbon metabolism of nonphotorespiring cells with a high demand of one-carbon units; for example, during lignification of vascular cells. We hypothesize that yet unknown kinetic properties of SHM2 might render this enzyme unsuitable for the high-folate conditions of photorespiring mesophyll mitochondria.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glicina Hidroximetiltransferase/metabolismo , Mitocôndrias/enzimologia , Feixe Vascular de Plantas/enzimologia , Transporte Proteico/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Respiração Celular , Quimera , Glicina Hidroximetiltransferase/genética , Lignina/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/metabolismo
17.
Prikl Biokhim Mikrobiol ; 47(4): 479-83, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21950125

RESUMO

Action of salicylic acid (SA) on the activity of membrane bound H(+)-ATPase and passive proton permeability of plasmalemma membrane vesicles (PMV) from parenchyma cells of potato tubers was detected. A correlation between SA action and germination of tubers and activity of plasmalemma H(+)-ATPase was revealed: the application of growth-stimulating concentrations of SA (10(-10)-10(-8) M) in the system in vitro resulted in activation of plasmalemma H(+)-ATPase, while the utilization of growth-inhibiting concentrations (10(-4), 10(-5) M) provoked inhibition of the enzyme activity. Addition of jasmonic acid (JA) to the incubation mix resulted in increase of SA effect on the accumulation of H+ in PMV.


Assuntos
Membrana Celular/enzimologia , Germinação/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Tubérculos/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Ácido Salicílico/farmacologia , Solanum tuberosum/enzimologia , Fracionamento Celular , Membrana Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Transporte de Íons/fisiologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Tubérculos/efeitos dos fármacos , Prótons , Transdução de Sinais/fisiologia , Solanum tuberosum/efeitos dos fármacos , Espectrometria de Fluorescência
18.
Plant Cell Environ ; 34(11): 1835-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21707653

RESUMO

The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Marketing , Floema/metabolismo , 4-Cloromercuriobenzenossulfonato/farmacologia , Radioisótopos de Carbono , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/enzimologia , Clonagem Molecular , Cucumis sativus/citologia , Cucumis sativus/ultraestrutura , Flores/efeitos dos fármacos , Fluoresceínas/metabolismo , Frutas/citologia , Frutas/enzimologia , Frutas/ultraestrutura , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/enzimologia , Células do Mesofilo/ultraestrutura , Microscopia Confocal , Modelos Biológicos , Floema/anatomia & histologia , Floema/citologia , Floema/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodesmos/efeitos dos fármacos , Plasmodesmos/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , beta-Frutofuranosidase/metabolismo
19.
J Exp Bot ; 62(9): 3021-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21459764

RESUMO

The transfer of C(4) plant traits into C(3) plants has long been a strategy for improving the photosynthetic performance of C(3) plants. The introduction of a pathway mimicking the C(4) photosynthetic pathway into the mesophyll cells of C(3) plants was only a realistic approach when transgenic technology was sufficiently well developed and widely adopted. Here an attempt to introduce a single-cell C(4)-like pathway in which CO(2) capture and release occur in the mesophyll cell, such as the one found in the aquatic plant Hydrilla verticillata (L.f.) Royle, into rice (Oryza sativa L.) is described. Four enzymes involved in this pathway were successfully overproduced in the transgenic rice leaves, and 12 different sets of transgenic rice that overproduce these enzymes independently or in combination were produced and analysed. Although none of these transformants has yet shown dramatic improvements in photosynthesis, these studies nonetheless have important implications for the evolution of C(4) photosynthetic genes and their metabolic regulation, and have shed light on the unique aspects of rice physiology and metabolism. This article summarizes the lessons learned during these attempts to engineer single-cell C(4) rice.


Assuntos
Engenharia Genética/métodos , Oryza/genética , Oryza/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/enzimologia , Cloroplastos/genética , Cloroplastos/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hydrocharitaceae/enzimologia , Hydrocharitaceae/genética , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malato Desidrogenase (NADP+)/genética , Malato Desidrogenase (NADP+)/metabolismo , Células do Mesofilo/enzimologia , Células do Mesofilo/metabolismo , Células do Mesofilo/fisiologia , Oryza/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fotossíntese/genética , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Brotos de Planta/enzimologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Ácido Pirúvico/metabolismo
20.
J Exp Bot ; 62(8): 2841-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21357771

RESUMO

Class III peroxidases (Prxs) are plant enzymes capable of using H(2)O(2) to oxidize a range of plant secondary metabolites, notably phenolic compounds. These enzymes are localized in the cell wall or in the vacuole, which is a target for secondary metabolite accumulation, but very little is known about the function of vacuolar Prxs. Here, the physiological role of the main leaf vacuolar Prx of the medicinal plant Catharanthus roseus, CrPrx1, was further investigated namely by studying its capacity to oxidize co-localized phenolic substrates at the expense of H(2)O(2). LC-PAD-MS analysis of the phenols from isolated leaf vacuoles detected the presence of three caffeoylquinic acids and four flavonoids in this organelle. These phenols or similar compounds were shown to be good CrPrx1 substrates, and the CrPrx1-mediated oxidation of 5-O-caffeoylquinic acid was shown to form a co-operative regenerating cycle with ascorbic acid. Interestingly, more than 90% of total leaf Prx activity was localized in the vacuoles, associated to discrete spots of the tonoplast. Prx activity inside the vacuoles was estimated to be 1809 nkat ml(-1), which, together with the determined concentrations for the putative vacuolar phenolic substrates, indicate a very high H(2)O(2) scavenging capacity, up to 9 mM s(-1). Accordingly, high light conditions, known to increase H(2)O(2) production, induced both phenols and Prx levels. Therefore, it is proposed that the vacuolar couple Prx/secondary metabolites represent an important sink/buffer of H(2)O(2) in green plant cells.


Assuntos
Catharanthus/enzimologia , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Fenóis/metabolismo , Plantas Medicinais/enzimologia , Vacúolos/enzimologia , Ácido Ascórbico/metabolismo , Catharanthus/efeitos da radiação , Catharanthus/ultraestrutura , Isoenzimas/metabolismo , Luz , Espectrometria de Massas , Células do Mesofilo/citologia , Células do Mesofilo/enzimologia , Células do Mesofilo/efeitos da radiação , Células do Mesofilo/ultraestrutura , Oxirredução/efeitos da radiação , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais , Folhas de Planta/enzimologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Plantas Medicinais/efeitos da radiação , Plantas Medicinais/ultraestrutura , Protoplastos/metabolismo , Espectrofotometria Ultravioleta , Especificidade por Substrato/efeitos da radiação , Fatores de Tempo , Vacúolos/efeitos da radiação , Vacúolos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA