Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.532
Filtrar
1.
Mol Biol Rep ; 51(1): 650, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734811

RESUMO

BACKGROUND: Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS: PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.


Assuntos
Apoptose , Capsaicina , Proliferação de Células , Proteínas de Choque Térmico HSP70 , Melanócitos , Mitocôndrias , Transdução de Sinais , Serina-Treonina Quinases TOR , Receptor 4 Toll-Like , Vitiligo , Receptor 4 Toll-Like/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Serina-Treonina Quinases TOR/metabolismo , Vitiligo/metabolismo , Vitiligo/tratamento farmacológico , Capsaicina/farmacologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Melanócitos/metabolismo , Melanócitos/efeitos dos fármacos , Linhagem Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Autofagia/efeitos dos fármacos
2.
Sci Rep ; 14(1): 10964, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744871

RESUMO

Due to vincristine sulfate's (VCR sulfate) toxicity and non-specific targeting, which might adversely damage healthy cells, its clinical application is restricted. In this study, we loaded VCR sulfate on exosomes generated from mesenchymal stem cells (MSCs) to enhance its targeted distribution. Exosomes are able to deliver molecules to specific cells and tissues and have therapeutic potential. In this study, we isolated exosomes from MSCs, and using probe-sonication approach loaded them with VCR sulfate. Using SRB assay, the cytotoxicity of VCR sulfate-Exo was assessed in T47D breast cancer cells, and the results were contrasted with those of free VCR sulfate. Then We labeled markers (CD44+/CD24-) in the cell line to assess the targeting effectiveness of VCR sulfate-Exo using flow cytometry. Our results showed that the cytotoxicity of VCR sulfate-Exo was nearly the same as that of VCR sulfate. Flow cytometry analysis revealed that VRC sulfate-Exo was more effectively targeted to MSCs than free VCR sulfate. Our study shows that loading VCR sulfate to MSCs-derived exosomes can improve their targeted delivery and lessen their side effects. Additional research is required to determine VCR sulfate-Exo's in vivo effectiveness and safety and improve the loading and delivery strategies.


Assuntos
Neoplasias da Mama , Exossomos , Células-Tronco Mesenquimais , Células-Tronco Neoplásicas , Vincristina , Exossomos/metabolismo , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Vincristina/farmacologia , Portadores de Fármacos/química
3.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710741

RESUMO

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Transdução de Sinais , Proteína Smad2 , Proteína Smad3 , Fator de Crescimento Transformador beta3 , Quinases Associadas a rho , Quinases Associadas a rho/metabolismo , Fosforilação , Diferenciação Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacologia , Amidas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
4.
Eur J Med Res ; 29(1): 270, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704575

RESUMO

BACKGROUND: This study aims to investigate the effects of a conditioned medium (CM) from human umbilical cord mesenchymal stem cells (HuMSCs) cultivated in gelatin sponge (GS-HuMSCs-CM) on hair growth in a mouse model. METHODS: CM was collected from the HuMSCs cultivated in a monolayer or in a gelatin sponge. Vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), keratinocyte growth factor (KGF), and hepatocyte growth factor (HGF) levels in CMs were measured by enzyme-linked immunosorbent assays (ELISAs). A hair loss model by a C57 BL/6J mouse was prepared. The effects of GS-HuMSCs-CM and HuMSCs on hair regrowth in mice were investigated by intradermal injection in the depilated back skin with normal saline (NS) as the control. The time for hair regrowth and full covering in depilated areas was observed, and the hair growth was evaluated histologically and by grossly measuring hair length and diameter. RESULTS: Compared with monolayer cultured cells, the three-dimensional (3D) culture of HuMSCs in gelatin sponge drastically increased VEGF, IGF-1, KGF, and HGF production. GS-HuMSCs-CM and HuMSCs injection both promoted hair regeneration in mice, while GS-HuMSCs-CM presented more enhanced effects in hair length, hair diameter, and growth rate. GS-HuMSCs-CM significantly promoted angiogenesis in injected skin areas, which might also contribute to faster hair regrowth. CONCLUSION: GS-HuMSCs-CM exerted significant effects on inducing hair growth and promoted skin angiogenesis in C57BL/6J mice.


Assuntos
Cabelo , Fator de Crescimento Insulin-Like I , Células-Tronco Mesenquimais , Cordão Umbilical , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Humanos , Meios de Cultivo Condicionados/farmacologia , Camundongos , Cordão Umbilical/citologia , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Gelatina/química , Alicerces Teciduais/química , Camundongos Endogâmicos C57BL , Células Cultivadas , Fator 7 de Crescimento de Fibroblastos/metabolismo
5.
Biol Open ; 13(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742438

RESUMO

Bone is increasingly recognized as a target for diabetic complications. In order to evaluate the direct effects of high glucose on bone, we investigated the global transcriptional changes induced by hyperglycemia in osteoblasts in vitro. Rat bone marrow-derived mesenchymal stromal cells were differentiated into osteoblasts for 10 days, and prior to analysis, they were exposed to hyperglycemia (25 mM) for the short-term (1 or 3 days) or long-term (10 days). Genes and pathways regulated by hyperglycemia were identified using mRNA sequencing and verified with qPCR. Genes upregulated by 1-day hyperglycemia were, for example, related to extracellular matrix organization, collagen synthesis and bone formation. This stimulatory effect was attenuated by 3 days. Long-term exposure impaired osteoblast viability, and downregulated, for example, extracellular matrix organization and lysosomal pathways, and increased intracellular oxidative stress. Interestingly, transcriptional changes by different exposure times were mostly unique and only 89 common genes responding to glucose were identified. In conclusion, short-term hyperglycemia had a stimulatory effect on osteoblasts and bone formation, whereas long-term hyperglycemia had a negative effect on intracellular redox balance, osteoblast viability and function.


Assuntos
Regulação da Expressão Gênica , Glucose , Osteoblastos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Animais , Glucose/metabolismo , Ratos , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Hiperglicemia/metabolismo , Hiperglicemia/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Transcriptoma , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Sobrevivência Celular/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos
6.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731499

RESUMO

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Carbono , Reação de Maillard , Células-Tronco Mesenquimais , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Carbono/química , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Pontos Quânticos/química , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Enxofre/química
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732109

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Assuntos
Diferenciação Celular , Melatonina , Células-Tronco Mesenquimais , Melatonina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Tecido Adiposo/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/metabolismo , Sinapsinas/metabolismo
8.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732164

RESUMO

Cold atmospheric pressure plasma (CAP) offers a variety of therapeutic possibilities and induces the formation of reactive chemical species associated with oxidative stress. Mesenchymal stem/stromal cells (MSCs) play a central role in tissue regeneration, partly because of their antioxidant properties and ability to migrate into regenerating areas. During the therapeutic application, MSCs are directly exposed to the reactive species of CAP. Therefore, the investigation of CAP-induced effects on MSCs is essential. In this study, we quantified the amount of ROS due to the CAP activation of the culture medium. In addition, cell number, metabolic activity, stress signals, and migration were analyzed after the treatment of MSCs with a CAP-activated medium. CAP-activated media induced a significant increase in ROS but did not cause cytotoxic effects on MSCs when the treatment was singular and short-term (one day). This single treatment led to increased cell migration, an essential process in wound healing. In parallel, there was an increase in various cell stress proteins, indicating an adaptation to oxidative stress. Repeated treatments with the CAP-activated medium impaired the viability of the MSCs. The results shown here provide information on the influence of treatment frequency and intensity, which could be necessary for the therapeutic application of CAP.


Assuntos
Pressão Atmosférica , Movimento Celular , Meios de Cultura , Células-Tronco Mesenquimais , Estresse Oxidativo , Gases em Plasma , Espécies Reativas de Oxigênio , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Humanos , Gases em Plasma/farmacologia , Movimento Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Meios de Cultura/química , Meios de Cultura/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
9.
J Cell Biochem ; 125(5): e30565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591469

RESUMO

Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.


Assuntos
Adipogenia , Diferenciação Celular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
10.
ACS Biomater Sci Eng ; 10(5): 3188-3202, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592024

RESUMO

Chronic wound repair is a clinical treatment challenge. The development of multifunctional hydrogels is of great significance in the key aspects of treating chronic wounds, including reducing oxidative stress, promoting angiogenesis, and improving the natural remodeling of extracellular matrix and immune regulation. In this study, we prepared a composite hydrogel, sodium alginate (SA)@MnO2/recombinant humanized collagen III (RHC)/mesenchymal stem cells (MSCs), composed of SA, MnO2 nanoparticles, RHC, and MSCs. The hydrogel has high mechanical properties and good biocompatibility. In vitro, SA@MnO2/RHC/MSCs hydrogel effectively enhanced the formation of intricate tubular structures and angiogenesis and showed synergistic effects on cell proliferation and migration. In vivo, the SA@MnO2/RHC/MSCs hydrogel enhanced diabetes wound healing, rapid re-epithelization, favorable collagen deposition, and abundant wound angiogenesis. These findings demonstrated that the combined effects of SA, MnO2, RHC, and MSCs synergistically accelerate healing, resulting in a reduced healing time. These observed healing effects demonstrated the potential of this multifunctional hydrogel to transform chronic wound care and improve patient outcomes.


Assuntos
Hidrogéis , Compostos de Manganês , Células-Tronco Mesenquimais , Óxidos , Cicatrização , Cicatrização/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Animais , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Óxidos/química , Óxidos/farmacologia , Diabetes Mellitus Experimental , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Alginatos/química , Alginatos/farmacologia , Masculino , Camundongos
11.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673956

RESUMO

For a wide range of chronic autoimmune and inflammatory diseases in both adults and children, synthetic glucocorticoids (GCs) are one of the most effective treatments. However, besides other adverse effects, GCs inhibit bone mass at multiple levels, and at different ages, especially in puberty. Although extensive studies have investigated the mechanism of GC-induced osteoporosis, their target cell populations still be obscure. Here, our data show that the osteoblast subpopulation among Gli1+ metaphyseal mesenchymal progenitors (MMPs) is responsive to GCs as indicated by lineage tracing and single-cell RNA sequencing experiments. Furthermore, the proliferation and differentiation of Gli1+ MMPs are both decreased, which may be because GCs impair the oxidative phosphorylation(OXPHOS) and aerobic glycolysis of Gli1+ MMPs. Teriparatide, as one of the potential treatments for GCs in bone mass, is sought to increase bone volume by increasing the proliferation and differentiation of Gli1+ MMPs in vivo. Notably, our data demonstrate teriparatide ameliorates GC-caused bone defects by targeting Gli1+ MMPs. Thus, Gli1+ MMPs will be the potential mesenchymal progenitors in response to diverse pharmaceutical administrations in regulating bone formation.


Assuntos
Glucocorticoides , Células-Tronco Mesenquimais , Osteoporose , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/induzido quimicamente , Osteoporose/metabolismo , Osteoporose/patologia , Teriparatida/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética
12.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675525

RESUMO

Traumatic brain injury (TBI) leads to structural damage in the brain, and is one of the major causes of disability and death in the world. Herein, we developed a composite injectable hydrogel (HA/Gel) composed of hyaluronic acid (HA) and gelatin (Gel), loaded with vascular endothelial growth factor (VEGF) and salvianolic acid B (SAB) for treatment of TBI. The HA/Gel hydrogels were formed by the coupling of phenol-rich tyramine-modified HA (HA-TA) and tyramine-modified Gel (Gel-TA) catalyzed by horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2). SEM results showed that HA/Gel hydrogel had a porous structure. Rheological test results showed that the hydrogel possessed appropriate rheological properties, and UV spectrophotometry results showed that the hydrogel exhibited excellent SAB release performance. The results of LIVE/DEAD staining, CCK-8 and Phalloidin/DAPI fluorescence staining showed that the HA/Gel hydrogel possessed good cell biocompatibility. Moreover, the hydrogels loaded with SAB and VEGF (HA/Gel/SAB/VEGF) could effectively promote the proliferation of bone marrow mesenchymal stem cells (BMSCs). In addition, the results of H&E staining, CD31 and α-SMA immunofluorescence staining showed that the HA/Gel/SAB/VEGF hydrogel possessed good in vivo biocompatibility and pro-angiogenic ability. Furthermore, immunohistochemical results showed that the injection of HA/Gel/SAB/VEGF hydrogel to the injury site could effectively reduce the volume of defective tissues in traumatic brain injured mice. Our results suggest that the injection of HA/Gel hydrogel loaded with SAB and VEGF might provide a new approach for therapeutic brain tissue repair after traumatic brain injury.


Assuntos
Benzofuranos , Lesões Encefálicas Traumáticas , Depsídeos , Gelatina , Ácido Hialurônico , Hidrogéis , Fator A de Crescimento do Endotélio Vascular , Animais , Hidrogéis/química , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Gelatina/química , Ácido Hialurônico/química , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Benzofuranos/química , Benzofuranos/farmacologia , Benzofuranos/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Masculino , Proliferação de Células/efeitos dos fármacos
13.
ACS Biomater Sci Eng ; 10(5): 3255-3267, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684056

RESUMO

Osteoporosis is a metabolic disease characterized by bone density and trabecular bone loss. Bone loss may affect dental implant osseointegration in patients with osteoporosis. To promote implant osseointegration in osteoporotic patients, we further used a nonthermal atmospheric plasma (NTAP) treatment device previously developed by our research group. After the titanium implant (Ti) is placed into the device, the working gas flow and the electrode switches are turned on, and the treatment is completed in 30 s. Previous studies showed that this NTAP device can remove carbon contamination from the implant surface, increase the hydroxyl groups, and improve its wettability to promote osseointegration in normal conditions. In this study, we demonstrated the tremendous osteogenic enhancement effect of NTAP-Ti in osteoporotic conditions in rats for the first time. Compared to Ti, the proliferative potential of osteoporotic bone marrow mesenchymal stem cells on NTAP-Ti increased by 180% at 1 day (P = 0.004), while their osteogenic differentiation increased by 149% at 14 days (P < 0.001). In addition, the results indicated that NTAP-Ti significantly improved osseointegration in osteoporotic rats in vivo. Compared to the Ti, the bone volume fraction (BV/TV) and trabecular number (Tb.N) values of NTAP-Ti in osteoporotic rats, respectively, increased by 18% (P < 0.001) and 25% (P = 0.007) at 6 weeks and the trabecular separation (Tb.Sp) value decreased by 26% (P = 0.02) at 6 weeks. In conclusion, this study proved a novel NTAP irradiation titanium implant that can significantly promote osseointegration in osteoporotic conditions.


Assuntos
Células-Tronco Mesenquimais , Osseointegração , Osteogênese , Osteoporose , Gases em Plasma , Ratos Sprague-Dawley , Titânio , Titânio/farmacologia , Animais , Osteogênese/efeitos dos fármacos , Osteoporose/patologia , Osteoporose/terapia , Osteoporose/tratamento farmacológico , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Osseointegração/efeitos dos fármacos , Feminino , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Próteses e Implantes
14.
Int Immunopharmacol ; 133: 112124, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38663312

RESUMO

The impaired osteogenic capability of bone marrow mesenchymal stem cells (BMSCs) caused by persistent inflammation is the main pathogenesis of inflammatory bone diseases. Recent studies show that metabolism is disturbed in osteogenically differentiated BMSCs in response to Lipopolysaccharide (LPS) treatment, while the mechanism involved remains incompletely revealed. Herein, we demonstrated that BMSCs adapted their metabolism to regulate acetyl-coenzyme A (acetyl-CoA) availability and RNA acetylation level, ultimately affecting osteogenic differentiation. The mitochondrial dysfunction and impaired osteogenic potential upon inflammatory conditions accompanied by the reduced acetyl-CoA content, which in turn suppressed N4-acetylation (ac4C) level. Supplying acetyl-CoA by sodium citrate (SC) addition rescued ac4C level and promoted the osteogenic capacity of LPS-treated cells through the ATP citrate lyase (ACLY) pathway. N-acetyltransferase 10 (NAT10) inhibitor remodelin reduced ac4C level and consequently impeded osteogenic capacity. Meanwhile, the osteo-promotive effect of acetyl-CoA-dependent ac4C might be attributed to fatty acid oxidation (FAO), as evidenced by activating FAO by L-carnitine supplementation counteracted remodelin-induced inhibition of osteogenesis. Further in vivo experiments confirmed the promotive role of acetyl-CoA in the endogenous bone regeneration in rat inflammatory mandibular defects. Our study uncovered a metabolic-epigenetic axis comprising acetyl-CoA and ac4C modification in the process of inflammatory osteogenesis of BMSCs and suggested a new target for bone tissue repair in the context of inflammatory bone diseases.


Assuntos
Acetilcoenzima A , Diferenciação Celular , Lipopolissacarídeos , Células-Tronco Mesenquimais , Osteogênese , Animais , Osteogênese/efeitos dos fármacos , Acetilcoenzima A/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular/efeitos dos fármacos , Acetilação , Células Cultivadas , Ratos , Masculino , Ratos Sprague-Dawley , ATP Citrato (pro-S)-Liase/metabolismo , Acetiltransferases/metabolismo , Acetiltransferases/genética
15.
J Photochem Photobiol B ; 255: 112907, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677259

RESUMO

OBJECTIVE: The objective of this study is to investigate the variances in transcriptome gene expression of normal oral mucosa-derived mesenchymal stem cell (OM-MSC), oral leukoplakia-derived MSC (OLK-MSC) and oral squamous cell carcinoma-derived MSC(OSCC-MSC). as Additionally, the study aims to compare the in vitro proliferation, migration, invasion ability, and response to photodynamic therapy (PDT) of these three MSC, HOK, DOK, leuk1, and Cal27 cell lines. METHODS: HOK, DOK, leuk1, Cal27 cells were cultured in vitro. 3 MSC cells were obtained from OM, OLK, OSCC tissue (n = 3) and identified through flow cytometry. They were also cultured in vitro for osteogenic and lipogenic-induced differentiation. Based on the Illumina HiSeq high-throughput sequencing platform, OM-MSC, OLK-MSC, OSCC-MSC (n = 3) were subjected to transcriptome sequencing, functional annotation, and enrichment analysis of differentially expressed genes and related genes. CCK8 assay, wound healing assay, and transwell assay were performed to compare the proliferation, migration, and invasion of the seven types of cells. The 7 cells were incubated with 0, 0.125 mM, 0.25 mM, 0.5 mM, 1 mM, and 2 mM of the photosensitizer (5-aminolevulinic acid, 5-ALA) in vitro. Subsequently, they were irradiated with a 150 mM, 635 nm laser for 1 min, and the cell activity was detected using the CCK8 assay after 24 h. The mitochondrial changes in the 7 cells before and after the treatment of PDT were detected using the JC-10 probe, and the changes in ATP content were measured before and after the PDT treatment. RESULTS: OM-MSC, OLK-MSC, and OSCC-MSC expressed positive MSC surface markers. After osteogenic and lipogenic-induced differentiation culture, stained calcium nodules and lipid droplets were visible, meeting the identification criteria of MSC. Pathway enrichment analysis revealed that the differentially expressed genes (DEGs) of OSCC-MSC compared to OLK-MSC were primarily associated with the PI3K-Akt signaling pathway and tumor-related pathways. OSCC-MSC exhibited stronger migratory and invasive abilities compared to Cal27. The IC50 values required for OM, OLK, and OSCC-derived MSC were lower than those required for epithelial cells treated with PDT, which were 1.396 mM, 0.9063 mM, and 2.924 mM, respectively. Cell membrane and mitochondrial disruption were observed in seven types of cells after 24 h of PDT treatment. However, HOK, DOK, leuk1, and Cal27 cells had an ATP content increased. CONCLUSIONS: OLK, OSCC epithelial cells require higher concentrations of 5-ALA for PDT treatment than MSC of the same tissue origin. The concentration of 5-ALA required increases with increasing cell malignancy. Differences in the response of epithelial cells and MSC to PDT treatment may have varying impacts on OLK recurrence and malignancy.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Células Epiteliais , Leucoplasia Oral , Células-Tronco Mesenquimais , Mucosa Bucal , Neoplasias Bucais , Fotoquimioterapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Mucosa Bucal/patologia , Mucosa Bucal/citologia , Leucoplasia Oral/patologia , Leucoplasia Oral/terapia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/terapia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Ácido Aminolevulínico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
16.
Proc Inst Mech Eng H ; 238(5): 537-549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561625

RESUMO

Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.


Assuntos
Diferenciação Celular , Dimetilpolisiloxanos , Células-Tronco Mesenquimais , Osteogênese , Transdução de Sinais , Sirtuína 1 , Propriedades de Superfície , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos
17.
Colloids Surf B Biointerfaces ; 238: 113891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615392

RESUMO

The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity. The newly constructed functional 3DTi (UV/Ti-Cu) achieved stable and controllable Cu doping, sustained Cu2+ releasing, and increased surface hydrophilicity. By performing cellular experiments, we determined that the safe dose range of Cu ion implantation was less than 5×1016 ions/cm2. The implanted Cu2+ enhanced the ALP activity and the apatite formation ability of bone marrow stromal cells (BMSCs) while slightly decreasing proliferation ability. When combined with UV photofunctionalization, cell adhesion and proliferation were significantly promoted and bone mineralization was further increased. Meanwhile, UV/Ti-Cu was conducive to the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, theoretically facilitating vascular coupling osteogenesis. In conclusion, UV/Ti-Cu is a novel attempt to apply two coatless techniques for the surface modification of 3DTi. In addition, it is considered a potential bone substrate for repairing bone defects.


Assuntos
Ligas , Adesão Celular , Cobre , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Osteogênese , Impressão Tridimensional , Titânio , Raios Ultravioleta , Titânio/química , Titânio/farmacologia , Ligas/química , Ligas/farmacologia , Osteogênese/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Adesão Celular/efeitos dos fármacos , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Propriedades de Superfície , Íons/química , Proliferação de Células/efeitos dos fármacos , Próteses e Implantes , Células Cultivadas , Angiogênese
18.
Stem Cell Res Ther ; 15(1): 121, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664697

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a possible innovative alternative. METHODS: In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells (CM-hUCESC) in TNBC. RESULTS: The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed in a mouse tumor xenograft model showing that the combination of both products has a significant effect in reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC and soluble factors, such as TIMP-1 and - 2. CONCLUSIONS: In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may decrease chemotherapy-related toxicity.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Paclitaxel , Secretoma , Neoplasias de Mama Triplo Negativas , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Secretoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Colo do Útero/metabolismo , Colo do Útero/patologia , Colo do Útero/efeitos dos fármacos
19.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 158-163, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678608

RESUMO

Dermal papilla cell (DPC) belongs to a specialized mesenchymal stem cell for hair follicle regeneration. Maintaining the ability of DPCs to stimulate hair in vitro culture is important for hair follicle morphogenesis and regeneration. As the third generation of platelet concentrate, injectable platelet-rich fibrin (i-PRF) is a novel biomaterial containing many growth factors and showing promising effects on tissue reconstruction. We aimed to explore the influences of i-PRF on the proliferative, migratory, as well as trichogenic ability of DPCs and compared the effects of i-PRF and platelet-rich plasma (PRP), the first generation of platelet concentrate. Both PRP and i-PRF facilitated DPCs proliferation, and migration, along with trichogenic inductivity as well as stimulated the TGF-ß/Smad pathway, while the impacts of i-PRF were more significant than PRP. A small molecule inhibitor of TGF-beta receptor I, Galunisertib, was also applied to treat DPCs, and it rescued the impacts of i-PRF on the proliferative, migratory, trichogenic inductivity, and proteins-associated with TGF-ß/Smad pathway in DPCs. These findings revealed that i-PRF had better effects than PRP in enhancing the proliferative, migratory, and hair-inducing abilities of DPCs by the TGF-ß/Smad pathway, which indicated the beneficial role of i-PRF in hair follicle regeneration.


Assuntos
Movimento Celular , Proliferação de Células , Folículo Piloso , Fibrina Rica em Plaquetas , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Proteínas Smad/metabolismo , Humanos , Fibrina Rica em Plaquetas/metabolismo , Movimento Celular/efeitos dos fármacos , Derme/citologia , Derme/metabolismo , Derme/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Plasma Rico em Plaquetas/metabolismo , Injeções
20.
ACS Appl Mater Interfaces ; 16(17): 21450-21462, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649157

RESUMO

Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degeneration. Unfortunately, currently available clinical drugs are mainly analgesics and cannot alleviate the development of OA. Kartogenin (KGN) has been found to promote the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes for the treatment of cartilage damage in early OA. However, KGN, as a small hydrophobic molecule, is rapidly cleared from the synovial fluid after intra-articular injection. This study synthesized a KGN-loaded nanocarrier based on PLGA/polydopamine core/shell structure to treat OA. The fluorescence signal of KGN@PLGA/PDA-PEG-E7 nanoparticles lasted for 4 weeks, ensuring long-term sustained release of KGN from a single intra-articular injection. In addition, the polyphenolic structure of PDA enables it to effectively scavenge reactive oxygen species, and the BMSC-targeting peptide E7 (EPLQLKM) endows KGN@PLGA/PDA-PEG-E7 NPs with an effective affinity for BMSCs. As a result, the KGN@PLGA/PDA-PEG-E7 nanoparticles could effectively induce cartilage in vitro and protect the cartilage and subchondral bone in a rat ACLT model. This therapeutic strategy could also be extended to the delivery of other drugs, targeting other tissues to treat joint diseases.


Assuntos
Anilidas , Indóis , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Ratos Sprague-Dawley , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Ratos , Injeções Intra-Articulares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Polímeros/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Indóis/química , Indóis/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Masculino , Portadores de Fármacos/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA