Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.416
Filtrar
1.
Neuron ; 112(9): 1373-1375, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697018

RESUMO

Maternal well-being is important for the development of the fetus, with a key influence on its nervous system. In this issue of Neuron, Krontira et al.1 implicate glucocorticoids, the stress hormones, in the regulation of neural stem cell identity and proliferation, with long-lasting consequences on brain architecture and educational attainment.


Assuntos
Glucocorticoides , Neurogênese , Humanos , Glucocorticoides/farmacologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/citologia , Células-Tronco Neurais/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 4181-4197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766656

RESUMO

Purpose: The committed differentiation fate regulation has been a difficult problem in the fields of stem cell research, evidence showed that nanomaterials could promote the differentiation of stem cells into specific cell types. Layered double hydroxide (LDH) nanoparticles possess the regulation function of stem cell fate, while the underlying mechanism needs to be investigated. In this study, the process of embryonic stem cells (ESCs) differentiate to neural progenitor cells (NPCs) by magnesium aluminum LDH (MgAl-LDH) was investigated. Methods: MgAl-LDH with diameters of 30, 50, and 100 nm were synthesized and characterized, and their effects on the cytotoxicity and differentiation of NPCs were detected in vitro. Dot blot and MeRIP-qPCR were performed to detect the level of m6A RNA methylation in nanoparticles-treated cells. Results: Our work displayed that LDH nanoparticles of three different sizes were biocompatible with NPCs, and the addition of MgAl-LDH could significantly promote the process of ESCs differentiate to NPCs. 100 nm LDH has a stronger effect on promoting NPCs differentiation compared to 30 nm and 50 nm LDH. In addition, dot blot results indicated that the enhanced NPCs differentiation by MgAl-LDH was closely related to m6A RNA methylation process, and the major modification enzyme in LDH controlled NPCs differentiation may be the m6A RNA methyltransferase METTL3. The upregulated METTL3 by LDH increased the m6A level of Sox1 mRNA, enhancing its stability. Conclusion: This work reveals that MgAl-LDH nanoparticles can regulate the differentiation of ESCs into NPCs by increasing m6A RNA methylation modification of Sox1.


Assuntos
Diferenciação Celular , Nanopartículas , Células-Tronco Neurais , Diferenciação Celular/efeitos dos fármacos , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Camundongos , Nanopartículas/química , Metilação/efeitos dos fármacos , Hidróxidos/química , Hidróxidos/farmacologia , Metiltransferases/metabolismo , Metiltransferases/genética , Tamanho da Partícula , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Adenosina/farmacologia , Adenosina/química , Adenosina/análogos & derivados , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Hidróxido de Magnésio/química , Hidróxido de Magnésio/farmacologia
3.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736654

RESUMO

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Assuntos
Cloridrato de Fingolimode , Hidrogéis , Células-Tronco Neurais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/administração & dosagem , Células-Tronco Neurais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Modelos Animais de Doenças , Feminino , Medula Espinal/efeitos dos fármacos
4.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38700092

RESUMO

Pre-eclampsia (PE) is a hypertensive disorder of pregnancy which is associated with increased risk of neurodevelopmental disorders in exposed offspring. The pathophysiological mechanisms mediating this relationship are currently unknown, and one potential candidate is the anti-angiogenic factor soluble Fms-like tyrosine kinase 1 (sFlt-1), which is highly elevated in PE. While sFlt-1 can impair angiogenesis via inhibition of VEGFA signalling, it is unclear whether it can directly affect neuronal development independently of its effects on the vasculature. To test this hypothesis, the current study differentiated the human neural progenitor cell (NPC) line ReNcell® VM into a mixed culture of mature neurons and glia, and exposed them to sFlt-1 during development. Outcomes measured were neurite growth, cytotoxicity, mRNA expression of nestin, MBP, GFAP, and ßIII-tubulin, and neurosphere differentiation. sFlt-1 induced a significant reduction in neurite growth and this effect was timing- and dose-dependent up to 100 ng/ml, with no effect on cytotoxicity. sFlt-1 (100 ng/ml) also reduced ßIII-tubulin mRNA and neuronal differentiation of neurospheres. Undifferentiated NPCs and mature neurons/glia expressed VEGFA and VEGFR-2, required for endogenous autocrine and paracrine VEGFA signalling, while sFlt-1 treatment prevented the neurogenic effects of exogenous VEGFA. Overall, these data provide the first experimental evidence for a direct effect of sFlt-1 on neurite growth and neuronal differentiation in human neurons through inhibition of VEGFA signalling, clarifying our understanding of the potential role of sFlt-1 as a mechanism by which PE can affect neuronal development.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Neurônios , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/citologia , Diferenciação Celular/efeitos dos fármacos , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Linhagem Celular Tumoral , Transdução de Sinais
5.
Bull Exp Biol Med ; 176(5): 576-580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38724808

RESUMO

We performed a comparative in vitro study of the involvement of NF-κB, PI3K, cAMP, ERK1/2, p38, JAKs, STAT3, JNK, and p53-dependent intracellular signaling in the functioning of neural stem cells (NSC) under the influence of basic fibroblast growth factor (FGF) and FGF receptor agonist, diterpene alkaloid songorine. The significant differences in FGFR-mediated intracellular signaling in NSC were revealed for these ligands. In both cases, stimulation of progenitor cell proliferation occurs with the participation of NF-κB, PI3K, ERK1/2, JAKs, and STAT3, while JNK and p53, on the contrary, inhibit cell cycle progression. However, under the influence of songorin, cAMP- and p38-mediated cascades are additionally involved in the transmission of the NSC division-activating signal. In addition, unlike FGF, the alkaloid stimulates progenitor cell differentiation by activating ERK1/2, p38, JNK, p53, and STAT3.


Assuntos
Diferenciação Celular , Proliferação de Células , Diterpenos , Células-Tronco Neurais , Receptores de Fatores de Crescimento de Fibroblastos , Fator de Transcrição STAT3 , Transdução de Sinais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Animais , Fator de Transcrição STAT3/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/agonistas , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Diferenciação Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/agonistas , Fosfatidilinositol 3-Quinases/metabolismo , Alcaloides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Janus Quinases/metabolismo , AMP Cíclico/metabolismo , Células Cultivadas , Ratos
6.
Biosensors (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38785686

RESUMO

Combinatorial drug therapy has emerged as a critically important strategy in medical research and patient treatment and involves the use of multiple drugs in concert to achieve a synergistic effect. This approach can enhance therapeutic efficacy while simultaneously mitigating adverse side effects. However, the process of identifying optimal drug combinations, including their compositions and dosages, is often a complex, costly, and time-intensive endeavor. To surmount these hurdles, we propose a novel microfluidic device capable of simultaneously generating multiple drug concentration gradients across an interlinked array of culture chambers. This innovative setup allows for the real-time monitoring of live cell responses. With minimal effort, researchers can now explore the concentration-dependent effects of single-agent and combination drug therapies. Taking neural stem cells (NSCs) as a case study, we examined the impacts of various growth factors-epithelial growth factor (EGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF)-on the differentiation of NSCs. Our findings indicate that an overdose of any single growth factor leads to an upsurge in the proportion of differentiated NSCs. Interestingly, the regulatory effects of these growth factors can be modulated by the introduction of additional growth factors, whether singly or in combination. Notably, a reduced concentration of these additional factors resulted in a decreased number of differentiated NSCs. Our results affirm that the successful application of this microfluidic device for the generation of multi-drug concentration gradients has substantial potential to revolutionize drug combination screening. This advancement promises to streamline the process and accelerate the discovery of effective therapeutic drug combinations.


Assuntos
Ensaios de Triagem em Larga Escala , Células-Tronco Neurais , Células-Tronco Neurais/efeitos dos fármacos , Humanos , Diferenciação Celular , Dispositivos Lab-On-A-Chip , Fator de Crescimento Derivado de Plaquetas , Fator de Crescimento Epidérmico , Avaliação Pré-Clínica de Medicamentos , Combinação de Medicamentos , Fatores de Crescimento de Fibroblastos
7.
Acta Biomater ; 180: 308-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615813

RESUMO

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Assuntos
Matriz Extracelular , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Neurogênese , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Remielinização , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Neurogênese/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Matriz Extracelular/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Ratos , Feminino , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
8.
Biofabrication ; 16(3)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38565133

RESUMO

Spinal cord injury (SCI) can cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds have emerged as a promising approach to treat SCI by promoting anti-inflammatory effects, axon regrowth, and motor function restoration. Here, in this study, we performed a coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid, carboxymethyl chitosan, and matrigel blend were used as a matrix for NSC growth and to facilitate the fabrication process. During thein vitrodifferentiation culture, it was found that NSC microfibers could differentiate into neurons and astrocytes with higher efficiency compared to NSC cultured in petri dishes. Furthermore, duringin vivotransplantation, NSC microfibers were coated with polylactic acid nanosheets by electrospinning for reinforcement. The coated NSC nanofibers exhibited higher anti-inflammatory effect and lesion cavity filling rate compared with the control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized at the lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating that the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with superior outcomes.


Assuntos
Axônios , Diferenciação Celular , Células-Tronco Neurais , Neurônios , Traumatismos da Medula Espinal , Alicerces Teciduais , Animais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Axônios/efeitos dos fármacos , Axônios/fisiologia , Axônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Alicerces Teciduais/química , Ratos Sprague-Dawley , Hidrogéis/química , Hidrogéis/farmacologia , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Células Cultivadas , Regeneração Nervosa/efeitos dos fármacos , Nanofibras/química , Ratos , Feminino
9.
Food Chem Toxicol ; 188: 114684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663761

RESUMO

Exposure to mercury and its organic form methylmercury (MeHg), is of great concern for the developing nervous system. Despite available literature on MeHg neurotoxicity, there is still uncertainty about its mechanisms of action and the doses that trigger developmental effects. Our study combines two alternative methodologies, the human neural stem cells (NSC) and the zebrafish (ZF) embryo, to address the neurotoxic effects of early exposure to nanomolar concentrations of MeHg. Our results show linear or nonmonotonic (hormetic) responses depending on studied parameters. In ZF, we observed a hormetic response in locomotion and larval rotation, but a concentration-dependent response for sensory organ size and habituation. We also observed a possible delayed response as MeHg had greater effects on larval activity at 5 days than at 24 h. In NSC cells, some parameters show a clear dose dependence, such as increased apoptosis and differentiation to glial cells or decreased neuronal precursors; while others show a hormetic response: neuronal differentiation or cell proliferation. This study shows that the ZF model was more susceptible than NSC to MeHg neurotoxicity. The combination of different models has improved the understanding of the underlying mechanisms of toxicity and possible compensatory mechanisms at the cellular and organismal level.


Assuntos
Embrião não Mamífero , Compostos de Metilmercúrio , Células-Tronco Neurais , Peixe-Zebra , Compostos de Metilmercúrio/toxicidade , Peixe-Zebra/embriologia , Animais , Células-Tronco Neurais/efeitos dos fármacos , Humanos , Embrião não Mamífero/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
10.
Chemosphere ; 358: 142124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677614

RESUMO

Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.


Assuntos
Proliferação de Células , Quinase 5 Dependente de Ciclina , Metformina , Neocórtex , Metformina/farmacologia , Animais , Feminino , Gravidez , Neocórtex/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/metabolismo , Ratos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Diferenciação Celular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Phytomedicine ; 128: 155362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522312

RESUMO

BACKGROUND: Stroke is a leading cause of disability and death worldwide. Currently, there is a lack of clinically effective treatments for the brain damage following ischemic stroke. Catalpol is a bioactive compound derived from the traditional Chinese medicine Rehmannia glutinosa and shown to be protective in various neurological diseases. However, the potential roles of catalpol against ischemic stroke are still not completely clear. PURPOSE: This study aimed to further elucidate the protective effects of catalpol against ischemic stroke. METHODS: A rat permanent middle cerebral artery occlusion (pMCAO) and oxygen-glucose deprivation (OGD) model was established to assess the effect of catalpol in vivo and in vitro, respectively. Behavioral tests were used to examine the effects of catalpol on neurological function of ischemic rats. Immunostaining was performed to evaluate the proliferation, migration and differentiation of neural stem cells (NSCs) as well as the angiogenesis in each group. The protein level of related molecules was detected by western-blot. The effects of catalpol on cultured NSCs as well as brain microvascular endothelial cells (BMECs) subjected to OGD in vitro were also examined by similar methods. RESULTS: Catalpol attenuated the neurological deficits and improved neurological function of ischemic rats. It stimulated the proliferation of NSCs in the subventricular zone (SVZ), promoted their migration to the ischemic cortex and differentiation into neurons or glial cells. At the same time, catalpol increased the cerebral vessels density and the number of proliferating cerebrovascular endothelial cells in the infracted cortex of ischemic rats. The level of SDF-1α and CXCR4 in the ischemic cortex was found to be enhanced by catalpol treatment. Catalpol was also shown to promote the proliferation and migration of cultured NSCs as well as the proliferation of BMECs subjected to OGD insult in vitro. Interestingly, the impact of catalpol on cultured cells was inhibited by CXCR4 inhibitor AMD3100. Moreover, the culture medium of BMECs containing catalpol promoted the proliferation of NSCs, which was also suppressed by AMD3100. CONCLUSION: Our data demonstrate that catalpol exerts neuroprotective effects by promoting neurogenesis and angiogenesis via the SDF-1α/CXCR4 pathway, suggesting the therapeutic potential of catalpol in treating cerebral ischemia.


Assuntos
Quimiocina CXCL12 , Glucosídeos Iridoides , AVC Isquêmico , Neurogênese , Ratos Sprague-Dawley , Receptores CXCR4 , Rehmannia , Animais , Glucosídeos Iridoides/farmacologia , Receptores CXCR4/metabolismo , Neurogênese/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Masculino , Rehmannia/química , AVC Isquêmico/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Células-Tronco Neurais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos , Fármacos Neuroprotetores/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Angiogênese
12.
Neuron ; 112(9): 1426-1443.e11, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442714

RESUMO

Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.


Assuntos
Córtex Cerebral , Glucocorticoides , Neurogênese , Proteína com Dedos de Zinco da Leucemia Promielocítica , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Humanos , Animais , Camundongos , Glucocorticoides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Feminino , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Gravidez , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Masculino
13.
ACS Biomater Sci Eng ; 10(5): 3148-3163, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38227432

RESUMO

The central nervous system (CNS) has a limited regenerative capacity because a hostile environment prevents tissue regeneration after damage or injury. Neural stem/progenitor cells (NSPCs) are considered a potential resource for CNS repair, which raises the issue of adequate cultivation and expansion procedures. Cationic charge supports the survival and adhesion of NSPCs. Typically, tissue culture plates with cationic coatings, such as poly-l-ornithine (PLO), have been used to culture these cell types (NSPCs). Yet presently, little is known about the impact of cationic charge concentration on the viability, proliferation, and differentiation capacity of NSPCs. Therefore, we have recently developed well-defined, fully synthetic hydrogel systems G1 (gel 1) to G6 (gel 6) that allow for the precise control of the concentration of the cationic trimethylaminoethyl acrylate (TMAEA) molecule associated with the polymer in a range from 0.06 to 0.91 µmol/mg. When murine NSPCs were cultured on these gels under differentiation conditions, we observed a strong correlation of cationic charge concentration with NSPC survival. In particular, neurons were preferentially formed on gels with a higher cationic charge concentration, whereas astrocytes and oligodendrocytes favored weakly charged or even neutral gel surfaces. To test the properties of the gels under proliferative conditions, the NSPCs were cultivated in the presence of fibroblast growth factor 2 (FGF2). The cytokine significantly increased the number of NSPCs but delayed the differentiation toward neurons and glia cells. Thus, the hydrogels are compatible with the survival, expansion, and differentiation of NSPCs and may be useful to create supportive environments in transplantation approaches.


Assuntos
Cátions , Diferenciação Celular , Proliferação de Células , Hidrogéis , Células-Tronco Neurais , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Camundongos , Cátions/química , Cátions/farmacologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Neurônios/efeitos dos fármacos , Neurônios/citologia
14.
Brain Behav Immun ; 110: 43-59, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36781081

RESUMO

BACKGROUND: Prenatal exposure to elevated interleukin (IL)-6 levels is associated with increased risk for psychiatric disorders with a putative neurodevelopmental origin, such as schizophrenia (SZ), autism spectrum condition (ASC) and bipolar disorder (BD). Although rodent models provide causal evidence for this association, we lack a detailed understanding of the cellular and molecular mechanisms in human model systems. To close this gap, we characterized the response of human induced pluripotent stem cell (hiPSC-)derived microglia-like cells (MGL) and neural progenitor cells (NPCs) to IL-6 in monoculture. RESULTS: We observed that human forebrain NPCs did not respond to acute IL-6 exposure in monoculture at both protein and transcript levels due to the absence of IL6R expression and soluble (s)IL6Ra secretion. By contrast, acute IL-6 exposure resulted in STAT3 phosphorylation and increased IL6, JMJD3 and IL10 expression in MGL, confirming activation of canonical IL6Ra signaling. Bulk RNAseq identified 156 up-regulated genes (FDR < 0.05) in MGL following acute IL-6 exposure, including IRF8, REL, HSPA1A/B and OXTR, which significantly overlapped with an up-regulated gene set from human post-mortem brain tissue from individuals with schizophrenia. Acute IL-6 stimulation significantly increased MGL motility, consistent with gene ontology pathways highlighted from the RNAseq data and replicating rodent model indications that IRF8 regulates microglial motility. Finally, IL-6 induces MGLs to secrete CCL1, CXCL1, MIP-1α/ß, IL-8, IL-13, IL-16, IL-18, MIF and Serpin-E1 after 3 h and 24 h. CONCLUSION: Our data provide evidence for cell specific effects of acute IL-6 exposure in a human model system, ultimately suggesting that microglia-NPC co-culture models are required to study how IL-6 influences human cortical neural progenitor cell development in vitro.


Assuntos
Interleucina-6 , Microglia , Células-Tronco Neurais , Receptores de Interleucina-6 , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Interleucina-6/efeitos adversos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Receptores de Interleucina-6/metabolismo
15.
Toxicology ; 487: 153461, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805303

RESUMO

Cyanobacterial blooms are known sources of environmentally-occurring retinoid compounds, including all-trans and 9-cis retinoic acids (RAs). The developmental hazard for aquatic organisms has been described, while the implications for human health hazard assessment are not yet sufficiently characterized. Here, we employ a human neural stem cell model that can differentiate in vitro into a mixed culture of neurons and glia. Cells were exposed to non-cytotoxic 8-1000 nM all-trans or 9-cis RA for 9-18 days (DIV13 and DIV22, respectively). Impact on biomarkers was analyzed on gene expression (RT-qPCR) and protein level (western blot and proteomics) at both time points; network patterning (immunofluorescence) on DIV22. RA exposure significantly concentration-dependently increased gene expression of retinoic acid receptors and the metabolizing enzyme CYP26A1, confirming the chemical-specific response of the model. Expression of thyroid hormone signaling-related genes remained mostly unchanged. Markers of neural progenitors/stem cells (PAX6, SOX1, SOX2, NESTIN) were decreased with increasing RA concentrations, though a basal population remained. Neural markers (DCX, TUJ1, MAP2, NeuN, SYP) remained unchanged or were decreased at high concentrations (200-1000 nM). Conversely, (astro-)glial marker S100ß was increased concentration-dependently on DIV22. Together, the biomarker analysis indicates an RA-dependent promotion of glial cell fates over neural differentiation, despite the increased abundance of neural protein biomarkers during differentiation. Interestingly, RA exposure induced substantial changes to the cell culture morphology: while low concentrations resulted in a network-like differentiation pattern, high concentrations (200-1000 nM RA) almost completely prevented such network patterning. After functional confirmation for implications in network function, such morphological features could present a proxy for network formation assessment, an apical key event in (neuro-)developmental Adverse Outcome Pathways. The described application of a human in vitro model for (developmental) neurotoxicity to emerging environmentally-relevant retinoids contributes to the evidence-base for the use of differentiating human in vitro models for human health hazard and risk assessment.


Assuntos
Alitretinoína , Células-Tronco Neurais , Tretinoína , Humanos , Alitretinoína/toxicidade , Diferenciação Celular , Células-Tronco Neurais/efeitos dos fármacos , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Retinoides/farmacologia , Tretinoína/toxicidade
16.
J Ethnopharmacol ; 299: 115684, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058480

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The classic traditional Chinese compound Naoluoxintong (NLXT) has been proven an effective remedy for ischemic stroke (IS). The protective effect of NLXT on neural stem cells (NSCs), however, remains unclear. AIM OF THE STUDY: To investigate the protective effect of NLXT on NSCs in rats with middle cerebral artery occlusion (MCAO) and the effect of Nestin expression in vivo. MATERIALS AND METHODS: Sprague-Dawley (SD) rats were randomly divided into three groups: the sham-operated group, the MCAO model group and the NLXT group. The MCAO model in rats was established by modified Longa wire embolization method. The sham-operated group, the model group and the NLXT groups were divided into three subgroups according to the sampling time points of 1 d, 3 d and 7 d after successful model-making. Immunofluorescence staining, including bromodeoxyuridine (BrdU)/glial fibrillary acidic protein (GFAP), ß-tubulinIII/GFAP, BrdU/doublecortin (DCX) and BrdU/neuronal nuclei (NeuN), was used to detect the proliferation and survival of NSCs in the hippocampal after drug administration. Protein expression of Nestin, DCX, GFAP and NeuN in the hippocampal was detected by Western blot (WB). RESULTS: Immunofluorescence experiment of Nestin labeled: on the first day, a few Nestin-positive cells were found in the hippocampal DG area. Afterwards, the number of Nestin-labeled positive cells in the model group increased, while the number of cells in the sham group did not fluctuate significantly. The number of positive cells in each administration group increased more than that in the model and normal group. ß-tubulin III/GFAP double-labeled: a small amount of double labeled cells was expressed in the normal group, and the number subsequently fluctuated little. In the model group, ß-tubulin III/GFAP positive cells increased initially after acute ischemia, and gradually decreased afterwards. In the NLXT-treated group, ß-Tubulin III positive cells were significantly increased on day 1, 3 and 7, while GFAP positive cells had little change. BrdU/DCX double-labeled: initially, a small number of BrdU/DCX-labeled positive cells were observed in the normal group and the model group, but there was no increasing trend over time. The positive cells in the NLXT group increased over time, and those in the seven-day group were significantly higher than those in the one-day and three-day groups. BrdU/NEUN double-labeled: in the normal group, BrdU/NEUN positive cells were enriched and distributed regularly. The number of positive cells in the model group was small and decreased gradually with time, and the decrease was most obvious on the third day. The number of positive cells in the NLXT group was significantly higher than that in the model group, and the number of positive cells in the seven-day group was significantly higher than that in the one-day and three-day groups. WB results reflected those three proteins, Nestin, NeuN and DCX, showed an increase in expression, except GFAP, which showed a decreasing trend. CONCLUSIONS: Preliminarily, NLXT can promote the migration and differentiation of NSCs. It may have a protective effect on the brain by promoting repair of brain tissue damage through upregulation of Nestin after IS.


Assuntos
Medicamentos de Ervas Chinesas , Nestina , Células-Tronco Neurais , Animais , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Medicamentos de Ervas Chinesas/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Nestina/efeitos dos fármacos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Tubulina (Proteína)/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(28): e2206415119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867768

RESUMO

Chemotherapy-induced cognitive impairment (CICI) has emerged as a significant medical problem without therapeutic options. Using the platinum-based chemotherapy cisplatin to model CICI, we revealed robust elevations in the adenosine A2A receptor (A2AR) and its downstream effectors, cAMP and CREB, by cisplatin in the adult mouse hippocampus, a critical brain structure for learning and memory. Notably, A2AR inhibition by the Food and Drug Administration-approved A2AR antagonist KW-6002 prevented cisplatin-induced impairments in neural progenitor proliferation and dendrite morphogenesis of adult-born neurons, while improving memory and anxiety-like behavior, without affecting tumor growth or cisplatin's antitumor activity. Collectively, our study identifies A2AR signaling as a key pathway that can be therapeutically targeted to prevent cisplatin-induced cognitive impairments.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antineoplásicos , Comprometimento Cognitivo Relacionado à Quimioterapia , Cisplatino , Neurogênese , Purinas , Receptor A2A de Adenosina , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/prevenção & controle , Cisplatino/efeitos adversos , Cognição/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Purinas/administração & dosagem , Purinas/uso terapêutico , Receptor A2A de Adenosina/metabolismo
18.
Antiviral Res ; 202: 105313, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367280

RESUMO

After decades of being considered non-pathogenic, Zika virus (ZIKV) emerged as an important threat to human health during the epidemic of 2015-2016. ZIKV infections are usually asymptomatic, but can cause Guillain-Barré syndrome in adults and microcephaly in newborns. As there are currently no approved antiviral drugs against ZIKV, we tested anti-ZIKV activity of compounds from the NIH Clinical Collection for which we previously showed antiviral activity against the related dengue virus. One of the top hits from the screen was lacidipine, a 1,4-dihydropyridine calcium antagonist that is approved as an antihypertensive drug. Our data show that lacidipine is antiviral against ZIKV (strain H/PF/2013) in both Vero cells and induced pluripotent stem cell (iPSC)-derived human neural progenitor cells with IC50 values of 3.0 µM and <50 nM, respectively. The antiviral effect was also observed against four other ZIKV strains from the African and Asian lineages. Time-of-addition and replicon assays indicated that lacidipine acts at the post-entry stage of the viral replication cycle, inhibiting viral genome replication. Lacidipine altered the subcellular distribution of free cholesterol and neutral lipids, suggesting that the antiviral effect of lacidipine is mediated by altered trafficking of lipids. Together, these results identify lacidipine as a novel inhibitor of ZIKV replication that likely disturbs trafficking of lipids needed for replication organelle formation.


Assuntos
Bloqueadores dos Canais de Cálcio , Di-Hidropiridinas , Células-Tronco Neurais , Infecção por Zika virus , Animais , Antivirais/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio , Chlorocebus aethiops , Di-Hidropiridinas/farmacologia , Humanos , Recém-Nascido , Lipídeos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/virologia , Células-Tronco , Células Vero , Replicação Viral , Zika virus , Infecção por Zika virus/tratamento farmacológico
19.
Med Sci Monit ; 28: e933830, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35250022

RESUMO

BACKGROUND Ischemic cerebrovascular disease leads to the activation and differentiation of neural stem cells (NSCs) into mature neurons and glia cells to repair nerve damage. Astragalus flavone (ASF) has shown its potential role in proliferation and differentiation into dopamine neurons of NSCs. MATERIAL AND METHODS Cerebral infarction models were constructed to determine the effects of ASF on NSCs in vivo and in vitro. RESULTS ASF therapy had the ability to reduce the neurologic function scores and the cerebral infarction volume of the cerebral infarction model. Moreover, ASF was able to increase BrdU-positive cells and promote the expression of Nestin, ß-Tubulin III, and O4, while decreasing the expression of GFAP. qRT-PCR and western blot assays showed ASF promoted the expression of Mash1, Math1, and Ngn2 mRNA and protein in cerebral infarction rats. Meanwhile, ASF (20 µg/ml) was able to increase EdU-positive cells and promote the expression of Nestin, ß-Tubulin III, and O4 of NSCs at day14 in vitro. In normoxia, ASF obviously promoted the expression of Mash1, Ngn1, and Ngn2 mRNA and proteins, but in hypoxia, ASF promoted the expression of Notch1 and Math1 mRNA and proteins and inhibited the expression of Ngn1 and Ngn2 mRNA and proteins. CONCLUSIONS ASF therapy can improve the neurologic functions and reduce the cerebral infarction volume in a cerebral infarction model. Moreover, ASF promoted the proliferation of NSCs and induced differentiation into neurons and oligodendrocytes, which might be involved in regulating factors in Notch signaling.


Assuntos
Infarto Cerebral/patologia , Flavonas/farmacologia , Células-Tronco Neurais/classificação , Neurogênese/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Infarto Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais
20.
Science ; 375(6582): eabe8244, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175820

RESUMO

Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.


Assuntos
Disruptores Endócrinos/toxicidade , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Efeitos Tardios da Exposição Pré-Natal , Transcriptoma/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Pré-Escolar , Estrogênios/metabolismo , Feminino , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Locomoção/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/genética , Organoides , Fenóis/análise , Fenóis/toxicidade , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Gravidez , Medição de Risco , Hormônios Tireóideos/metabolismo , Xenopus laevis , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA