Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
1.
Neurobiol Dis ; 200: 106619, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079581

RESUMO

It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex. To determine whether region-specific structural or molecular changes accompany this differential plasticity following hearing loss, in the present study we utilized Golgi-Cox staining to assess dendritic organization and synaptic density, as well as Western blotting to measure changes in synaptic signaling proteins in these cortical regions. We show that following noise exposure, impaired gamma phase coherence within the prefrontal cortex is accompanied by alterations in pyramidal cell dendritic morphology and decreased expression of proteins involved in GABAergic (GAD65) and glutamatergic (NR2B) neurotransmission; findings that were not observed in the auditory cortex, where gamma phase coherence remained unchanged post-noise exposure. In contrast to the noise-induced effects we observed in the prefrontal cortex, plasticity in the auditory cortex was characterized by an increase in NR2B suggesting increased excitability, as well as increases in the synaptic proteins PSD95 and synaptophysin within the auditory cortex. Overall, our results highlight the disparate effect of noise-induced hearing loss on auditory and higher-level brain regions as well as potential structural and molecular mechanisms by which hearing loss may contribute to impaired cognitive and sensory functions mediated by the prefrontal and auditory cortices.


Assuntos
Córtex Auditivo , Perda Auditiva Provocada por Ruído , Córtex Pré-Frontal , Perda Auditiva Provocada por Ruído/fisiopatologia , Perda Auditiva Provocada por Ruído/patologia , Perda Auditiva Provocada por Ruído/metabolismo , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Córtex Auditivo/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Animais , Masculino , Plasticidade Neuronal/fisiologia , Glutamato Descarboxilase/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Dendritos/patologia , Dendritos/metabolismo , Ritmo Gama/fisiologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos
2.
Cereb Cortex ; 34(13): 146-160, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696608

RESUMO

Autism spectrum disorder is a neurodevelopmental disability that includes sensory disturbances. Hearing is frequently affected and ranges from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid is associated with increased risk of autism spectrum disorder in humans and timed valproic acid exposure is a biologically relevant and validated animal model of autism spectrum disorder. Valproic acid-exposed rats have fewer neurons in their auditory brainstem and thalamus, fewer calbindin-positive neurons, reduced ascending projections to the midbrain and thalamus, elevated thresholds, and delayed auditory brainstem responses. Additionally, in the auditory cortex, valproic acid exposure results in abnormal responses, decreased phase-locking, elevated thresholds, and abnormal tonotopic maps. We therefore hypothesized that in utero, valproic acid exposure would result in fewer neurons in auditory cortex, neuronal dysmorphology, fewer calbindin-positive neurons, and reduced connectivity. We approached this hypothesis using morphometric analyses, immunohistochemistry, and retrograde tract tracing. We found thinner cortical layers but no changes in the density of neurons, smaller pyramidal and non-pyramidal neurons in several regions, fewer neurons immunoreactive for calbindin-positive, and fewer cortical neurons projecting to the inferior colliculus. These results support the widespread impact of the auditory system in autism spectrum disorder and valproic acid-exposed animals and emphasize the utility of simple, noninvasive auditory screening for autism spectrum disorder.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Calbindinas , Modelos Animais de Doenças , Ácido Valproico , Animais , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Ácido Valproico/toxicidade , Feminino , Calbindinas/metabolismo , Córtex Auditivo/patologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Gravidez , Neurônios/patologia , Neurônios/metabolismo , Ratos , Masculino , Vias Auditivas/patologia , Vias Auditivas/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos Sprague-Dawley , Anticonvulsivantes
3.
Otol Neurotol ; 45(4): e342-e350, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38361347

RESUMO

HYPOTHESIS: Unilateral congenital conductive hearing impairment in ear canal atresia leads to atrophy of the gray matter of the contralateral primary auditory cortex or changes in asymmetry pattern if left untreated in childhood. BACKGROUND: Unilateral ear canal atresia with associated severe conductive hearing loss results in deteriorated sound localization and difficulties in understanding of speech in a noisy environment. Cortical atrophy in the Heschl's gyrus has been reported in acquired sensorineural hearing loss but has not been studied in unilateral conductive hearing loss. METHODS: We obtained T1w and T2w FLAIR MRI data from 17 subjects with unilateral congenital ear canal atresia and 17 matched controls. Gray matter volume and thickness were measured in the Heschl's gyrus using Freesurfer. RESULTS: In unilateral congenital ear canal atresia, Heschl's gyrus exhibited cortical thickness asymmetry (right thicker than left, corrected p = 0.0012, mean difference 0.25 mm), while controls had symmetric findings. Gray matter volume and total thickness did not differ from controls with normal hearing. CONCLUSION: We observed cortical thickness asymmetry in congenital unilateral ear canal atresia but no evidence of contralateral cortex atrophy. Further research is needed to understand the implications of this asymmetry on central auditory processing deficits.


Assuntos
Córtex Auditivo , Humanos , Córtex Auditivo/patologia , Perda Auditiva Condutiva/patologia , Meato Acústico Externo , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
4.
Otolaryngol Head Neck Surg ; 169(6): 1409-1423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37522290

RESUMO

OBJECTIVE: To systematically search the literature and organize relevant advancements in the connection between tinnitus and the activity of different functional brain regions using functional magnetic resonance imaging (fMRI). DATA SOURCES: MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO), Web of Science, ProQuest Dissertations & Theses Global, Cochrane Database of Systematic Reviews, and PROSPERO from inception to April 2022. REVIEW METHODS: Studies with adult human subjects who suffer from tinnitus and underwent fMRI to relate specific regions of interest to tinnitus pathology or compensation were included. In addition, fMRI had to be performed with a paradigm of stimuli that would stimulate auditory brain activity. Exclusion criteria included non-English studies, animal studies, and studies that utilized a resting state magnetic resonance imaging or other imaging modalities. RESULTS: The auditory cortex may work to dampen the effects of central gain. Results from different studies show variable changes in the Heschl's gyrus (HG), with some showing increased activity and others showing inhibition and volume loss. After controlling for hyperacusis and other confounders, tinnitus does not seem to influence the inferior colliculus (IC) activation. However, there is decreased connectivity between the auditory cortex and IC. The cochlear nucleus (CN) generally shows increased activation in tinnitus patients. fMRI evidence indicates significant inhibition of thalamic gating. Activating the thalamus may be of important therapeutic potential. CONCLUSION: Patients with tinnitus have significantly altered neuronal firing patterns, especially within the auditory network, when compared to individuals without tinnitus. Tinnitus and hyperacusis commonly coexist, making differentiation of the effects of these 2 phenomena frequently difficult.


Assuntos
Córtex Auditivo , Zumbido , Adulto , Animais , Humanos , Córtex Auditivo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hiperacusia , Imageamento por Ressonância Magnética/métodos
5.
Magn Reson Med Sci ; 22(1): 95-101, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35296588

RESUMO

PURPOSE: The human primary auditory cortex is located in the Heschl's gyrus (HG). To assess the intrinsic MR property in the gray matter of the HG (GM-HG) with T1 and T2 values using a commercially available MR fingerprinting (MRF) technique. METHODS: The subjects were 10 healthy volunteers (with 20 HGs; mean age, 31.5 years old; range, 25-53 years old). Coronal T1 and T2 maps were obtained with commercially available MRF using a 3-Tesla MR system. Two radiologists measured the T1 and T2 values of the GM-HG, the GM in the superior temporal gyrus (GM-STG), and the GM in the middle temporal gyrus (GM-MTG) by drawing a ROI on coronal maps. RESULTS: For both radiologists, the mean T1 and T2 values of the GM-HG were significantly lower than those in the GM-STG or GM-MTG (P < 0.01). The interobserver reliability using the intraclass correlation coefficients (ICC) (2,1) showed strong agreement for the measurement of the T1 and T2 values (ICCs =⃥ 0.80 and 0.78 for T1 and T2 values, respectively). CONCLUSION: The T1 and T2 values on MRF for the GM-HG were lower than those for the GM-STG and GM-MTG, likely reflecting a higher myelin content and iron deposition in the GM-HG. Quantitative measurements using the MRF can clarify cortical properties with high reliability, which may indicate that MRF mapping provides new insights into the structure of the human cortical GM.


Assuntos
Córtex Auditivo , Humanos , Adulto , Pessoa de Meia-Idade , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/patologia , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Bainha de Mielina , Imagens de Fantasmas
6.
J Alzheimers Dis ; 89(4): 1385-1402, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36031901

RESUMO

BACKGROUND: Effective treatment of Alzheimer's disease (AD) will hinge on early detection. This has led to the search for early biomarkers that use non-invasive testing. One possible early biomarker is auditory temporal processing deficits, which reflect central auditory pathway dysfunction and precede cognitive and memory declines in AD. Gap detection is a measure of auditory temporal processing, is impaired in human AD, and is also impaired in the 5XFAD mouse model of AD. Gap detection deficits appear as early as postnatal day 60 in 5XFAD mice, months before cognitive deficits or cell death, supporting gap detection as an early biomarker. However, it remains unclear how gap detection deficits relate to the progression of amyloid pathology in the auditory system. OBJECTIVE: To determine the progression of amyloid pathology throughout the central auditory system and across age in 5XFAD mice. METHODS: We quantified intracellular and extracellular antibody labelling of Aß42 in 6 regions of the central auditory system from p14 to p150. RESULTS: Pathology appeared first in primary auditory cortex (A1) as intracellular accumulation of Aß42 in layer 5 pyramidal neurons by age p21. Extracellular plaques appeared later, by age p90, in A1, medial geniculate body, and inferior colliculus. Auditory brainstem structures showed minimal amyloid pathology. We also observed pathology in the caudal pontine reticular nucleus, a brainstem structure that is outside of the central auditory pathway but which is involved in the acoustic startle reflex. CONCLUSION: These results suggest that Aß42 accumulation, but not plaques, may impair gap detection.


Assuntos
Doença de Alzheimer , Amiloidose , Córtex Auditivo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/patologia , Vias Auditivas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Placa Amiloide/patologia
7.
Am J Audiol ; 31(3): 633-645, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35759574

RESUMO

PURPOSE: In this exploratory, open-label study, we used behavioral and brain imaging measures to assess the effectiveness of a smartphone application (ReSound Relief app), which aims to help reduce tinnitus-related distress. METHOD: Fourteen participants with a wide range of tinnitus-related symptoms and who were not currently undergoing any external treatment participated. They completed the 6-month study and reported different levels of engagement with the app. RESULTS: Across a range of tinnitus questionnaires, most participants showed either no change or decrease in tinnitus handicap. Resting-state and task-based functional magnetic resonance imaging (fMRI) data were collected at baseline and the end of the study. Resting-state fMRI of 12 participants revealed alterations in interregional connectivity of default mode, salience, emotion, auditory, and visual processing networks at the end of the intervention period compared to baseline. Ratings of affective sounds (as pleasant, neutral, or unpleasant) were assessed using fMRI, and comparison after 6 months of app usage revealed reduced activity in the left superior temporal gyrus (secondary auditory cortex), right superior occipital gyrus, and left posterior cingulate cortex. Our findings were not significant at a false discovery rate level of p < .05. CONCLUSIONS: The reported changes were not significant, possibly due to the small sample size, heterogeneity of the tinnitus handicap among subjects at the start of the project, and the length of the intervention period. Nevertheless, this study underscores the ease of usage of the app and the potential use of brain imaging to assess changes due to a passive, self-administered intervention for individuals with varying levels of tinnitus severity.


Assuntos
Córtex Auditivo , Aplicativos Móveis , Zumbido , Córtex Auditivo/patologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Zumbido/diagnóstico por imagem , Zumbido/terapia
8.
Neurobiol Aging ; 109: 1-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634748

RESUMO

Sensitivity to repetitions in sound amplitude and frequency is crucial for sound perception. As with other aspects of sound processing, sensitivity to such patterns may change with age, and may help explain some age-related changes in hearing such as segregating speech from background sound. We recorded magnetoencephalography to characterize differences in the processing of sound patterns between younger and older adults. We presented tone sequences that either contained a pattern (made of a repeated set of tones) or did not contain a pattern. We show that auditory cortex in older, compared to younger, adults is hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, indexing the processing of a sound pattern, is reduced. Hence, the sensitivity of neural populations in auditory cortex fundamentally differs between younger and older individuals, overresponding to sound onsets, while underresponding to patterns in sounds. This may help to explain some age-related changes in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in the presence of other sound.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Córtex Auditivo/patologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/patologia , Som , Estimulação Acústica , Adulto , Idoso , Feminino , Audição , Humanos , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Fala , Adulto Jovem
9.
Neurobiol Aging ; 111: 1-13, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34915240

RESUMO

Age-related sensorineural hearing loss (HL) leads to localized brain changes in the primary auditory cortex, long-range functional alterations, and is considered a risk factor for dementia. Nonhuman studies have repeatedly highlighted cross-modal brain plasticity in sensorial brain networks other than those primarily involved in the peripheral damage, thus in this study, the possible cortical alterations associated with HL have been analyzed using a whole-brain multimodal connectomic approach. Fifty-two HL and 30 normal hearing participants were examined in a 3T MRI study along with audiological and neurological assessments. Between-regions functional connectivity and whole-brain probabilistic tractography were calculated in a connectome-based manner and graph theory was used to obtain low-dimensional features for the analysis of brain connectivity at global and local levels. The HL condition was associated with a different functional organization of the visual subnetwork as revealed by a significant increase in global efficiency, density, and clustering coefficient. These functional effects were mirrored by similar (but more subtle) structural effects suggesting that a functional repurposing of visual cortical centers occurs to compensate for age-related loss of hearing abilities.


Assuntos
Conectoma/métodos , Plasticidade Neuronal , Presbiacusia/diagnóstico , Presbiacusia/fisiopatologia , Idoso , Córtex Auditivo/patologia , Córtex Auditivo/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Audição , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Córtex Visual/fisiopatologia
10.
J Neurotrauma ; 38(23): 3248-3259, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605670

RESUMO

In the present study, we have evaluated the blast-induced auditory neurodegeneration in chinchilla by correlating the histomorphometric changes with diffusion tensor imaging. The chinchillas were exposed to single unilateral blast-overpressure (BOP) at ∼172dB peak sound pressure level (SPL) and the pathological changes were compared at 1 week and 1 month after BOP. The functional integrity of the auditory system was assessed by auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). The axonal integrity was assessed using diffusion tensor imaging at regions of interests (ROIs) of the central auditory neuraxis (CAN) including the cochlear nucleus (CN), inferior colliculus (IC), and auditory cortex (AC). Post-BOP, cyto-architecture metrics such as viable cells, degenerating neurons, and apoptotic cells were quantified at the CAN ROIs using light microscopic studies using cresyl fast violet, hematoxylin and eosin, and modified Crossmon's trichrome stains. We observed mean ABR threshold shifts of 30- and 10-dB SPL at 1 week and 1 month after BOP, respectively. A similar pattern was observed in DPAOE amplitudes shift. In the CAN ROIs, diffusion tensor imaging studies showed a decreased axial diffusivity in CN 1 month after BOP and a decreased mean diffusivity and radial diffusivity at 1 week after BOP. However, morphometric measures such as decreased viable cells and increased degenerating neurons and apoptotic cells were observed at CN, IC, and AC. Specifically, increased degenerating neurons and reduced viable cells were high on the ipsilateral side when compared with the contralateral side. These results indicate that a single blast significantly damages structural and functional integrity at all levels of CAN ROIs.


Assuntos
Córtex Auditivo/patologia , Traumatismos por Explosões/patologia , Núcleo Coclear/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/patologia , Colículos Inferiores/patologia , Doenças Neurodegenerativas/patologia , Animais , Córtex Auditivo/diagnóstico por imagem , Traumatismos por Explosões/complicações , Traumatismos por Explosões/diagnóstico por imagem , Chinchila , Núcleo Coclear/diagnóstico por imagem , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/diagnóstico por imagem , Colículos Inferiores/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA