Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.996
Filtrar
1.
J Neuroeng Rehabil ; 21(1): 91, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812014

RESUMO

BACKGROUND: The most challenging aspect of rehabilitation is the repurposing of residual functional plasticity in stroke patients. To achieve this, numerous plasticity-based clinical rehabilitation programs have been developed. This study aimed to investigate the effects of motor imagery (MI)-based brain-computer interface (BCI) rehabilitation programs on upper extremity hand function in patients with chronic hemiplegia. DESIGN: A 2010 Consolidated Standards for Test Reports (CONSORT)-compliant randomized controlled trial. METHODS: Forty-six eligible stroke patients with upper limb motor dysfunction participated in the study, six of whom dropped out. The patients were randomly divided into a BCI group and a control group. The BCI group received BCI therapy and conventional rehabilitation therapy, while the control group received conventional rehabilitation only. The Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) score was used as the primary outcome to evaluate upper extremity motor function. Additionally, functional magnetic resonance imaging (fMRI) scans were performed on all patients before and after treatment, in both the resting and task states. We measured the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), z conversion of ALFF (zALFF), and z conversion of ReHo (ReHo) in the resting state. The task state was divided into four tasks: left-hand grasping, right-hand grasping, imagining left-hand grasping, and imagining right-hand grasping. Finally, meaningful differences were assessed using correlation analysis of the clinical assessments and functional measures. RESULTS: A total of 40 patients completed the study, 20 in the BCI group and 20 in the control group. Task-related blood-oxygen-level-dependent (BOLD) analysis showed that when performing the motor grasping task with the affected hand, the BCI group exhibited significant activation in the ipsilateral middle cingulate gyrus, precuneus, inferior parietal gyrus, postcentral gyrus, middle frontal gyrus, superior temporal gyrus, and contralateral middle cingulate gyrus. When imagining a grasping task with the affected hand, the BCI group exhibited greater activation in the ipsilateral superior frontal gyrus (medial) and middle frontal gyrus after treatment. However, the activation of the contralateral superior frontal gyrus decreased in the BCI group relative to the control group. Resting-state fMRI revealed increased zALFF in multiple cerebral regions, including the contralateral precentral gyrus and calcarine and the ipsilateral middle occipital gyrus and cuneus, and decreased zALFF in the ipsilateral superior temporal gyrus in the BCI group relative to the control group. Increased zReHo in the ipsilateral cuneus and contralateral calcarine and decreased zReHo in the contralateral middle temporal gyrus, temporal pole, and superior temporal gyrus were observed post-intervention. According to the subsequent correlation analysis, the increase in the FMA-UE score showed a positive correlation with the mean zALFF of the contralateral precentral gyrus (r = 0.425, P < 0.05), the mean zReHo of the right cuneus (r = 0.399, P < 0.05). CONCLUSION: In conclusion, BCI therapy is effective and safe for arm rehabilitation after severe poststroke hemiparesis. The correlation of the zALFF of the contralateral precentral gyrus and the zReHo of the ipsilateral cuneus with motor improvements suggested that these values can be used as prognostic measures for BCI-based stroke rehabilitation. We found that motor function was related to visual and spatial processing, suggesting potential avenues for refining treatment strategies for stroke patients. TRIAL REGISTRATION: The trial is registered in the Chinese Clinical Trial Registry (number ChiCTR2000034848, registered July 21, 2020).


Assuntos
Interfaces Cérebro-Computador , Imagens, Psicoterapia , Imageamento por Ressonância Magnética , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Masculino , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Pessoa de Meia-Idade , Extremidade Superior/fisiopatologia , Imagens, Psicoterapia/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/complicações , Idoso , Adulto , Imaginação/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia
2.
Proc Natl Acad Sci U S A ; 121(23): e2318641121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38814872

RESUMO

A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.


Assuntos
Córtex Cerebral , Cognição , Imageamento por Ressonância Magnética , Humanos , Cognição/fisiologia , Cognição/efeitos dos fármacos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adolescente , Criança , Conectoma/métodos , Alprazolam/farmacologia , Receptores de GABA-A/metabolismo , Adulto Jovem
3.
J Psychiatry Neurosci ; 49(3): E182-E191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38816028

RESUMO

BACKGROUND: Esketamine is a version of ketamine that has been approved for treatment-resistant depression, but our previous studies showed a link between non-medical use of ketamine and brain structural and functional alterations, including dorsal prefrontal grey matter reduction among chronic ketamine users. In this study, we sought to determine cortical thickness abnormalities following long-term, non-medical use of ketamine. METHODS: We acquired structural brain images for patients with ketamine use disorder and drug-free healthy controls. We used FreeSurfer software to measure cortical thickness for 68 brain regions. We compared cortical thickness between the 2 groups using analysis of covariance with covariates of age, gender, educational level, smoking, drinking, and whole-brain mean cortical thickness. RESULTS: We included images from 95 patients with ketamine use disorder and 169 controls. Compared with healthy controls, patients with ketamine use disorder had widespread decreased cortical thickness, with the most extensive reductions in the frontal (including the dorsolateral prefrontal cortex) and parietal (including the precuneus) lobes. Increased cortical thickness was not observed among ketamine users relative to comparison participants. Estimated total lifetime ketamine consumption was correlated with reductions in the right inferior parietal and the right rostral middle frontal cortical thickness. LIMITATIONS: We conducted a retrospective cross-sectional study, but longitudinal studies are needed to further validate decreased cortical thickness after nonmedical use of ketamine. CONCLUSION: This study provided evidence that, compared with healthy controls, chronic ketamine users have widespread reductions in cortical thickness. Our study underscores the importance of the long-term effects of ketamine on brain structure and serves as a reference for the antidepressant use of ketamine.


Assuntos
Córtex Cerebral , Ketamina , Imageamento por Ressonância Magnética , Transtornos Relacionados ao Uso de Substâncias , Humanos , Ketamina/administração & dosagem , Masculino , Feminino , Adulto , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Adulto Jovem , Espessura Cortical do Cérebro , Pessoa de Meia-Idade
4.
J Affect Disord ; 345: 410-418, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706461

RESUMO

A persistent and influential barrier to effective cognitive-behavioral therapy (CBT) for patients with hoarding disorder (HD) is treatment retention and compliance. Recent research has suggested that HD patients have abnormal brain activity identified by functional magnetic resonance (fMRI) in regions often engaged for executive functioning (e.g., right superior frontal gyrus, anterior insula, and anterior cingulate), which raises questions about whether these abnormalities could relate to patients' ability to attend, understand, and engage in HD treatment. We examined data from 74 HD-diagnosed adults who completed fMRI-measured brain activity during a discarding task designed to elicit symptom-related brain dysfunction, exploring which regions' activity might predict treatment compliance variables, including treatment engagement (within-session compliance), homework completion (between-session compliance), and treatment attendance. Brain activity that was significantly related to within- and between-session compliance was found largely in insula, parietal, and premotor areas. No brain regions were associated with treatment attendance. The results add to findings from prior research that have found prefrontal, cingulate, and insula activity abnormalities in HD by suggesting that some aspects of HD brain dysfunction might play a role in preventing the engagement needed for therapeutic benefit.


Assuntos
Terapia Cognitivo-Comportamental , Transtorno de Acumulação , Imageamento por Ressonância Magnética , Psicoterapia de Grupo , Humanos , Transtorno de Acumulação/terapia , Transtorno de Acumulação/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Cooperação do Paciente/estatística & dados numéricos , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Idoso , Função Executiva/fisiologia , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem
5.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38706137

RESUMO

Schizophrenia has been considered to exhibit sex-related clinical differences that might be associated with distinctly abnormal brain asymmetries between sexes. One hundred and thirty-two antipsychotic-naïve first-episode patients with schizophrenia and 150 healthy participants were recruited in this study to investigate whether cortical asymmetry would exhibit sex-related abnormalities in schizophrenia. After a 1-yr follow-up, patients were rescanned to obtain the effect of antipsychotic treatment on cortical asymmetry. Male patients were found to show increased lateralization index while female patients were found to exhibit decreased lateralization index in widespread regions when compared with healthy participants of the corresponding sex. Specifically, the cortical asymmetry of male and female patients showed contrary trends in the cingulate, orbitofrontal, parietal, temporal, occipital, and insular cortices. This result suggested male patients showed a leftward shift of asymmetry while female patients showed a rightward shift of asymmetry in these above regions that related to language, vision, emotion, and cognition. Notably, abnormal lateralization indices remained stable after antipsychotic treatment. The contrary trends in asymmetry between female and male patients with schizophrenia together with the persistent abnormalities after antipsychotic treatment suggested the altered brain asymmetries in schizophrenia might be sex-related disturbances, intrinsic, and resistant to the effect of antipsychotic therapy.


Assuntos
Antipsicóticos , Córtex Cerebral , Lateralidade Funcional , Imageamento por Ressonância Magnética , Esquizofrenia , Caracteres Sexuais , Humanos , Feminino , Masculino , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Adulto Jovem , Antipsicóticos/uso terapêutico , Lateralidade Funcional/fisiologia , Adolescente , Mapeamento Encefálico
6.
Hum Brain Mapp ; 45(7): e26703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716714

RESUMO

The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.


Assuntos
Rede de Modo Padrão , Emoções , Imageamento por Ressonância Magnética , Rememoração Mental , Semântica , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Emoções/fisiologia , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Rememoração Mental/fisiologia , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico , Reconhecimento Visual de Modelos/fisiologia
7.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741271

RESUMO

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Assuntos
Infartos do Tronco Encefálico , Cerebelo , Imageamento por Ressonância Magnética , Vias Neurais , Ponte , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Ponte/diagnóstico por imagem , Ponte/fisiopatologia , Infartos do Tronco Encefálico/fisiopatologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Idoso , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
8.
Med Sci Monit ; 30: e943802, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38741355

RESUMO

BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.


Assuntos
Córtex Cerebral , Coma , Estado de Consciência , Imagem de Tensor de Difusão , Hipóxia-Isquemia Encefálica , Tálamo , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Tálamo/fisiopatologia , Tálamo/diagnóstico por imagem , Hipóxia-Isquemia Encefálica/fisiopatologia , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Adulto , Estado de Consciência/fisiologia , Imagem de Tensor de Difusão/métodos , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Estudos Retrospectivos , Coma/fisiopatologia , Coma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/diagnóstico por imagem , Idoso
9.
Hum Brain Mapp ; 45(7): e26666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726831

RESUMO

Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.


Assuntos
Imageamento por Ressonância Magnética , Meditação , Rede Nervosa , Humanos , Reprodutibilidade dos Testes , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Adulto , Masculino , Feminino , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem
10.
J Headache Pain ; 25(1): 76, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730344

RESUMO

Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.


Assuntos
Córtex Insular , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/fisiopatologia , Neuralgia do Trigêmeo/diagnóstico , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiopatologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem
11.
Brain Behav ; 14(5): e3529, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747741

RESUMO

BACKGROUND AND AIMS: Stress ulcer (SU) is a common complication in patients with acute ischemic stroke. The relationship of infarction location and the incidence of SU was unclear. Herein, we aim to investigate the association between ischemic insular damage and the development of SU. METHODS: Data were retrieved from the SPARK study (Effect of Cardiac Function on Short-Term Functional Prognosis in Patients with Acute Ischemic Stroke). We included the patients who had experienced an ischemic stroke within 7 days. The diagnosis of SU was based on clinical manifestations, including hematemesis, bloody nasogastric tube aspirate, or hematochezia. Evaluation of ischemic insular damage was conducted through magnetic resonance imaging. Cyclo-oxygenase regression analysis and Kaplan-Meier survival curves were used to assess the relationship between ischemic insular damage and the occurrence of SU. RESULTS: Among the 1357 patients analyzed, 110 (8.1%) developed SUs during hospitalization, with 69 (6.7%) experiencing infarctions in the anterior circulation. After adjusting for potential confounders, patients with ischemic insular damage exhibited a 2.16-fold higher risk of developing SUs compared to those without insular damage (p = .0206). Notably, among patients with infarctions in the anterior circulation, those with insular damage had a 2.21-fold increased risk of SUs (p = .0387). Moreover, right insular damage was associated with a higher risk of SUs compared to left insular damage or no insular damage (p for trend = .0117). Kaplan-Meier curves demonstrated early separation among groups, persisting throughout the follow-up period (all p < .0001). CONCLUSIONS: This study identified a significant independent correlation between ischemic insular damage, particularly on the right side, and the development of SU during hospitalization, indicating the need to consider prophylactic acid-suppressive treatment for patients with ischemic insular damage.


Assuntos
AVC Isquêmico , Humanos , Masculino , Feminino , AVC Isquêmico/complicações , AVC Isquêmico/epidemiologia , AVC Isquêmico/diagnóstico por imagem , Idoso , Pessoa de Meia-Idade , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/epidemiologia , Úlcera/patologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38748531

RESUMO

Brain-heart interactions (BHI) are critical for generating and processing emotions, including anxiety. Understanding specific neural correlates would be instrumental for greater comprehension and potential therapeutic interventions of anxiety disorders. While prior work has implicated the pontine structure as a central processor in cardiac regulation in anxiety, the distributed nature of anxiety processing across the cortex remains elusive. To address this, we performed a whole-brain-heart analysis using the full frequency directed transfer function to study resting-state spectral differences in BHI between high and low anxiety groups undergoing fMRI scans. Our findings revealed a hemispheric asymmetry in low-frequency interplay (0.05 Hz - 0.15 Hz) characterized by ascending BHI to the left insula and descending BHI from the right insula. Furthermore, we provide evidence supporting the "pacemaker hypothesis", highlighting the pons' function in regulating cardiac activity. Higher frequency interplay (0.2 Hz - 0.4Hz) demonstrate a preference for ascending interactions, particularly towards ventral prefrontal cortical activity in high anxiety groups, suggesting the heart's role in triggering a cognitive response to regulate anxiety. These findings highlight the impact of anxiety on BHI, contributing to a better understanding of its effect on the resting-state fMRI signal, with further implications for potential therapeutic interventions in treating anxiety disorders.


Assuntos
Ansiedade , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Ansiedade/psicologia , Ansiedade/fisiopatologia , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Coração/diagnóstico por imagem , Frequência Cardíaca/fisiologia , Lateralidade Funcional/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Transtornos de Ansiedade/diagnóstico por imagem , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia
13.
PLoS One ; 19(5): e0303983, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781264

RESUMO

Despite accumulating evidence that blood flow restriction (BFR) training promotes muscle hypertrophy and strength gain, the underlying neurophysiological mechanisms have rarely been explored. The primary goal of this study is to investigate characteristics of cerebral cortex activity during BFR training under different pressure intensities. 24 males participated in 30% 1RM squat exercise, changes in oxygenated hemoglobin concentration (HbO) in the primary motor cortex (M1), pre-motor cortex (PMC), supplementary motor area (SMA), and dorsolateral prefrontal cortex (DLPFC), were measured by fNIRS. The results showed that HbO increased from 0 mmHg (non-BFR) to 250 mmHg but dropped sharply under 350 mmHg pressure intensity. In addition, HbO and functional connectivity were higher in M1 and PMC-SMA than in DLPFC. Moreover, the significant interaction effect between pressure intensity and ROI for HbO revealed that the regulation of cerebral cortex during BFR training was more pronounced in M1 and PMC-SMA than in DLPFC. In conclusion, low-load resistance training with BFR triggers acute responses in the cerebral cortex, and moderate pressure intensity achieves optimal neural benefits in enhancing cortical activation. M1 and PMC-SMA play crucial roles during BFR training through activation and functional connectivity regulation.


Assuntos
Córtex Cerebral , Córtex Motor , Treinamento Resistido , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Treinamento Resistido/métodos , Adulto Jovem , Córtex Cerebral/fisiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Córtex Cerebral/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem
14.
Transl Psychiatry ; 14(1): 206, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782961

RESUMO

Interoception is the perception of afferent information that arises from anywhere and everywhere within the body. Recently, interoceptive accuracy could be enhanced by cognitive training. Given that the anterior insula cortex (AIC) is a key node of interoception, we hypothesized that resting functional connectivity (RSFC) from AIC was involved in an effect of interoceptive training. To address this issue, we conducted a longitudinal intervention study using interoceptive training and obtained RSFC using fMRI before and after the intervention. A heartbeat perception task evaluated interoceptive accuracy. Twenty-two healthy volunteers (15 females, age 19.9 ± 2.0 years) participated. After the intervention, interoceptive accuracy was enhanced, and anxiety levels and somatic symptoms were reduced. Also, RSFC from AIC to the dorsolateral prefrontal cortex (DLPFC), superior marginal gyrus (SMG), anterior cingulate cortex (ACC), and brain stem, including nucleus tractus solitarius (NTS) were enhanced, and those from AIC to the visual cortex (VC) were decreased according to enhanced interoceptive accuracy. The neural circuit of AIC, ACC, and NTS is involved in the bottom-up process of interoception. The neural circuit of AIC, DLPFC, and SMG is involved in the top-down process of interoception, which was thought to represent the cognitive control of emotion. The findings provided a better understanding of neural underpinnings of the effect of interoceptive training on somatic symptoms and anxiety levels by enhancing both bottom-up and top-down processes of interoception, which has a potential contribution to the structure of psychotherapies based on the neural mechanism of psychosomatics.


Assuntos
Córtex Insular , Interocepção , Imageamento por Ressonância Magnética , Humanos , Feminino , Interocepção/fisiologia , Masculino , Córtex Insular/fisiologia , Córtex Insular/diagnóstico por imagem , Adulto Jovem , Adulto , Ansiedade/fisiopatologia , Estudos Longitudinais , Vias Neurais/fisiologia , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem
15.
Neuroimage ; 293: 120616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697587

RESUMO

Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject's representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.


Assuntos
Córtex Cerebral , Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Conectoma/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Córtex Cerebral/anatomia & histologia , Aprendizado de Máquina , Feminino , Masculino , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Reprodutibilidade dos Testes
16.
Curr Biol ; 34(10): R496-R498, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772336

RESUMO

A new study leveraging advances in high-field fMRI provides evidence that superficial cortical layers in humans play a crucial role in signaling prediction errors, a finding that is consistent with the predictive processing framework.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Córtex Cerebral/fisiologia , Córtex Cerebral/diagnóstico por imagem , Mapeamento Encefálico/métodos
17.
Hum Brain Mapp ; 45(7): e26692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712767

RESUMO

In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/anatomia & histologia , Neuroimagem/métodos , Neuroimagem/normas , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Masculino , Feminino , Adulto , Distribuição Normal , Espessura Cortical do Cérebro
18.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200253, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788180

RESUMO

BACKGROUND AND OBJECTIVES: The diagnosis of multiple sclerosis (MS) can be challenging in clinical practice because MS presentation can be atypical and mimicked by other diseases. We evaluated the diagnostic performance, alone or in combination, of the central vein sign (CVS), paramagnetic rim lesion (PRL), and cortical lesion (CL), as well as their association with clinical outcomes. METHODS: In this multicenter observational study, we first conducted a cross-sectional analysis of the CVS (proportion of CVS-positive lesions or simplified determination of CVS in 3/6 lesions-Select3*/Select6*), PRL, and CL in MS and non-MS cases on 3T-MRI brain images, including 3D T2-FLAIR, T2*-echo-planar imaging magnitude and phase, double inversion recovery, and magnetization prepared rapid gradient echo image sequences. Then, we longitudinally analyzed the progression independent of relapse and MRI activity (PIRA) in MS cases over the 2 years after study entry. Receiver operating characteristic curves were used to test diagnostic performance and regression models to predict diagnosis and clinical outcomes. RESULTS: The presence of ≥41% CVS-positive lesions/≥1 CL/≥1 PRL (optimal cutoffs) had 96%/90%/93% specificity, 97%/84%/60% sensitivity, and 0.99/0.90/0.77 area under the curve (AUC), respectively, to distinguish MS (n = 185) from non-MS (n = 100) cases. The Select3*/Select6* algorithms showed 93%/95% specificity, 97%/89% sensitivity, and 0.95/0.92 AUC. The combination of CVS, CL, and PRL improved the diagnostic performance, especially when Select3*/Select6* were used (93%/94% specificity, 98%/96% sensitivity, 0.99/0.98 AUC; p = 0.002/p < 0.001). In MS cases (n = 185), both CL and PRL were associated with higher MS disability and severity. Longitudinal analysis (n = 61) showed that MS cases with >4 PRL at baseline were more likely to experience PIRA at 2-year follow-up (odds ratio 17.0, 95% confidence interval: 2.1-138.5; p = 0.008), whereas no association was observed between other baseline MRI measures and PIRA, including the number of CL. DISCUSSION: The combination of CVS, CL, and PRL can improve MS differential diagnosis. CL and PRL also correlated with clinical measures of poor prognosis, with PRL being a predictor of disability accrual independent of clinical/MRI activity.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Humanos , Feminino , Masculino , Adulto , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/diagnóstico , Pessoa de Meia-Idade , Estudos Transversais , Prognóstico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Veias Cerebrais/diagnóstico por imagem , Veias Cerebrais/patologia , Progressão da Doença , Estudos Longitudinais
19.
Neurocase ; 30(1): 1-7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38758704

RESUMO

A research participant was monitored over nearly two decades at Mayo Clinic, undergoing annual neurologic assessments, neuropsychological tests, and multimodal imaging. Initially, he was cognitively normal but developed symptoms consistent with Posterior Cortical Atrophy (PCA) during the study. Early tests indicated mild, yet normal-range declines in language and visuospatial skills. FDG-PET scans revealed increased metabolism in posterior brain regions long before symptoms appeared. Advanced analysis using a novel in-house machine-learning tool predicted concurrent Alzheimer's disease and dementia with Lewy bodies. Autopsy confirmed a mixed neurodegenerative condition with significant Alzheimer's pathology and dense neocortical Lewy bodies. This case underscores the value of longitudinal imaging in predicting complex neurodegenerative diseases, offering vital insights into the early neurocognitive changes associated with PCA and dementia with Lewy bodies.


Assuntos
Atrofia , Doença por Corpos de Lewy , Tomografia por Emissão de Pósitrons , Humanos , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/diagnóstico por imagem , Masculino , Atrofia/patologia , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Idoso , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Sintomas Prodrômicos , Testes Neuropsicológicos
20.
Nat Commun ; 15(1): 4503, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802334

RESUMO

The emergence of glioblastoma in cortical tissue initiates early and persistent neural hyperexcitability with signs ranging from mild cognitive impairment to convulsive seizures. The influence of peritumoral synaptic density, expansion dynamics, and spatial contours of excess glutamate upon higher order neuronal network modularity is unknown. We combined cellular and widefield imaging of calcium and glutamate fluorescent reporters in two glioblastoma mouse models with distinct synaptic microenvironments and infiltration profiles. Functional metrics of neural ensembles are dysregulated during tumor invasion depending on the stage of malignant progression and tumor cell proximity. Neural activity is differentially modulated during periods of accelerated and inhibited tumor expansion. Abnormal glutamate accumulation precedes and outpaces the spatial extent of baseline neuronal calcium signaling, indicating these processes are uncoupled in tumor cortex. Distinctive excitability homeostasis patterns and functional connectivity of local and remote neuronal populations support the promise of precision genetic diagnosis and management of this devastating brain disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Rede Nervosa , Glioblastoma/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/fisiopatologia , Glioblastoma/genética , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Camundongos , Humanos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Masculino , Cálcio/metabolismo , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA