Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Rep ; 14(1): 10087, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698192

RESUMO

Detrimental decision-making is a major problem among violent offenders. Non-invasive brain stimulation offers a promising method to directly influence decision-making and has already been shown to modulate risk-taking in non-violent controls. We hypothesize that anodal transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex beneficially modulates the neural and behavioral correlates of risk-taking in a sample of violent offenders. We expect offenders to show more risky decision-making than non-violent controls and that prefrontal tDCS will induce stronger changes in the offender group. In the current study, 22 male violent offenders and 24 male non-violent controls took part in a randomized double-blind sham-controlled cross-over study applying tDCS over the right dorsolateral prefrontal cortex. Subsequently, participants performed the Balloon Analogue Risk Task (BART) during functional magnetic resonance imaging (fMRI). Violent offenders showed significantly less optimal decision-making compared to non-violent controls. Active tDCS increased prefrontal activity and improved decision-making only in violent offenders but not in the control group. Also, in offenders only, prefrontal tDCS influenced functional connectivity between the stimulated area and other brain regions such as the thalamus. These results suggest baseline dependent effects of tDCS and pave the way for treatment options of disadvantageous decision-making behavior in this population.


Assuntos
Criminosos , Tomada de Decisões , Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Assunção de Riscos , Estimulação Transcraniana por Corrente Contínua , Violência , Humanos , Masculino , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Criminosos/psicologia , Tomada de Decisões/fisiologia , Violência/psicologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Método Duplo-Cego , Adulto Jovem , Estudos Cross-Over , Córtex Pré-Frontal Dorsolateral/fisiologia
2.
J Affect Disord ; 356: 414-423, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640975

RESUMO

BACKGROUND: Amotivation is a typical feature in major depressive disorder (MDD), which produces reduced willingness to exert effort. The dorsolateral prefrontal cortex (DLPFC) is a crucial structure in goal-directed actions and therefore is a potential target in modulating effortful motivation. However, it remains unclear whether the intervention is effective for patients with MDD. METHODS: We employed transcranial magnetic stimulation (TMS), computational modelling and event-related potentials (ERPs) to reveal the causal relationship between the left DLPFC and motivation for effortful rewards in MDD. Fifty patients underwent both active and sham TMS sessions, each followed by performing an Effort-Expenditure for Rewards Task, during which participants chose and implemented between low-effort/low-reward and high-effort/high-reward options. RESULTS: The patients showed increased willingness to exert effort for rewards during the DLPFC facilitated session, compared with the sham session. They also had a trend in larger P3 amplitude for motivated attention toward chosen options, larger CNV during preparing for effort exertion, and larger SPN during anticipating a high reward. Besides, while behavior indexes for effortful choices were negatively related to depression severity in the sham session, this correlation was weakened in the active stimulation session. CONCLUSIONS: These findings provide behavioral, computational, and neural evidence for the left DLPFC on effortful motivation for rewards. Facilitated DLPFC improves motor preparation and value anticipation after making decisions especially for highly effortful rewards in MDD. Facilitated DLPFC also has a potential function in enhancing motivated attention during cost-benefit trade-off. This neuromodulation effect provides a potential treatment for improving motivation in clinics.


Assuntos
Transtorno Depressivo Maior , Córtex Pré-Frontal Dorsolateral , Motivação , Recompensa , Estimulação Magnética Transcraniana , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/psicologia , Motivação/fisiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Córtex Pré-Frontal Dorsolateral/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia , Atenção/fisiologia
3.
Neuroimage ; 292: 120612, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38648868

RESUMO

Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.


Assuntos
Inibição Psicológica , Imageamento por Ressonância Magnética , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Teste de Stroop , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Função Executiva/fisiologia , Mapeamento Encefálico/métodos , Córtex Motor/fisiologia , Córtex Motor/diagnóstico por imagem
4.
J Cogn Neurosci ; 36(6): 1172-1183, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579250

RESUMO

Humans can flexibly adjust their executive control to resolve conflicts. Conflict adaptation and conflict resolution are crucial aspects of conflict processing. Functional neuroimaging studies have associated the dorsolateral prefrontal cortex (DLPFC) with conflict processing, but its causal role remains somewhat controversial. Moreover, the neuroanatomical basis of conflict processing has not been thoroughly examined. In this study, the Stroop task, a well-established measure of conflict, was employed to investigate (1) the neuroanatomical basis of conflict resolution and conflict adaptation with the voxel-based morphometry analysis, (2) the causal role of DLPFC in conflict processing with the application of the continuous theta burst stimulation to DLPFC. The results revealed that the Stroop effect was correlated to the gray matter volume of the precuneus, postcentral gyrus, and cerebellum, and the congruency sequence effect was correlated to the gray matter volume of superior frontal gyrus, postcentral gyrus, and lobule paracentral gyrus. These findings indicate the neuroanatomical basis of conflict resolution and adaptation. In addition, the continuous theta burst stimulation over the right DLPFC resulted in a significant reduction in the Stroop effect of RT after congruent trials compared with vertex stimulation and a significant increase in the Stroop effect of accuracy rate after incongruent trials than congruent trials, demonstrating the causal role of right DLPFC in conflict adaptation. Moreover, the DLPFC stimulation did not affect the Stroop effect of RT and accuracy rate. Overall, our study offers further insights into the neural mechanisms underlying conflict resolution and adaptation.


Assuntos
Conflito Psicológico , Córtex Pré-Frontal Dorsolateral , Imageamento por Ressonância Magnética , Teste de Stroop , Ritmo Teta , Estimulação Magnética Transcraniana , Humanos , Masculino , Adulto Jovem , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Ritmo Teta/fisiologia , Substância Cinzenta/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Adaptação Psicológica/fisiologia , Lateralidade Funcional/fisiologia , Mapeamento Encefálico , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Tempo de Reação/fisiologia
5.
Hum Brain Mapp ; 45(6): e26679, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647038

RESUMO

Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, ß1, and ß2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased ß1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and ß band oscillations and may have relevance for pain therapies.


Assuntos
Dor Aguda , Eletroencefalografia , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Dor Aguda/fisiopatologia , Dor Aguda/terapia , Adulto , Adulto Jovem , Eletroencefalografia/métodos , Limiar da Dor/fisiologia , Temperatura Alta , Córtex Motor/fisiopatologia , Córtex Motor/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiopatologia
6.
Neuropsychologia ; 198: 108882, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38599569

RESUMO

Several studies have analyzed the effects of transcranial direct current stimulation on verbal fluency tasks in non-clinical populations. Nevertheless, the reported effects on verbal fluency are inconsistent. In addition, the effect of other techniques such as transcranial random noise stimulation (tRNS) on verbal fluency enhancement has yet to be studied in healthy multilingual populations. This study aims to explore the effects of tRNS on verbal fluency in healthy multilingual individuals. Fifty healthy multilingual (Spanish, English and Basque) adults were randomly assigned to a tRNS or sham group. Electrodes were placed on the left dorsolateral prefrontal cortex and left inferior frontal gyrus. All participants performed phonemic and semantic verbal fluency tasks before, during (online assessment) and immediately after (offline assessment) stimulation in three different languages. The results showed significantly better performance by participants who received tRNS in the phonemic verbal fluency tasks in Spanish (in the online and offline assessment) and English (in the offline assessment). No differences between conditions were found in Basque nor semantic verbal fluency. These findings suggests that tRNS on the left prefrontal cortex could help improve phonemic, yet not semantic, fluency in healthy multilingual adults.


Assuntos
Multilinguismo , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Fonética , Comportamento Verbal/fisiologia , Semântica , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia
7.
Neuroimage ; 292: 120620, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641257

RESUMO

Social pain, a multifaceted emotional response triggered by interpersonal rejection or criticism, profoundly impacts mental well-being and social interactions. While prior research has implicated the right ventrolateral prefrontal cortex (rVLPFC) in mitigating social pain, the precise neural mechanisms and downstream effects on subsequent social attitudes remain elusive. This study employed transcranial magnetic stimulation (TMS) integrated with fMRI recordings during a social pain task to elucidate these aspects. Eighty participants underwent either active TMS targeting the rVLPFC (n = 41) or control stimulation at the vertex (n = 39). Our results revealed that TMS-induced rVLPFC facilitation significantly reduced self-reported social pain, confirming the causal role of the rVLPFC in social pain relief. Functional connectivity analyses demonstrated enhanced interactions between the rVLPFC and the dorsolateral prefrontal cortex, emphasizing the collaborative engagement of prefrontal regions in emotion regulation. Significantly, we observed that negative social feedback led to negative social attitudes, whereas rVLPFC activation countered this detrimental effect, showcasing the potential of the rVLPFC as a protective buffer against adverse social interactions. Moreover, our study uncovered the impact role of the hippocampus in subsequent social attitudes, a relationship particularly pronounced during excitatory TMS over the rVLPFC. These findings offer promising avenues for improving mental health within the intricate dynamics of social interactions. By advancing our comprehension of the neural mechanisms underlying social pain relief, this research introduces novel intervention strategies for individuals grappling with social distress. Empowering individuals to modulate rVLPFC activation may facilitate reshaping social attitudes and successful reintegration into communal life.


Assuntos
Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Adulto Jovem , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Adulto , Atitude , Interação Social , Dor/fisiopatologia , Dor/psicologia , Mapeamento Encefálico/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem
8.
Asian J Psychiatr ; 95: 103994, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547573

RESUMO

BACKGROUND: About 30% of patients diagnosed with major depressive disorder fail with the mainstream pharmacological treatment. Patients who do not achieve clinical remission of symptoms, even with two different antidepressants, are classified with treatment-resistant depression (TDR). This condition imposes an additional burden with increased Disability Adjusted Life Years. Therefore, complementary treatments, such as neuromodulation, are necessary. The transcranial focused ultrasound (tFUS) has emerged in the past few years as a reliable method for non-invasive neuromodulation in humans and may help treat TRD. This study aims to propose a research protocol for a non-inferiority randomized clinical trial of TDR with tFUS. METHODS: Patients with documented TRD will be screened upon entering the TRD outpatient clinic at UFMG (Brazil). One hundred patients without a clinical history of other psychiatric illness, anatomical abnormalities on magnetic resonance imaging (MRI), or treatment with electroconvulsive therapy will be invited to participate. Patients will be randomized (1:1) into two groups: 1) treatment with a previously established protocol of transcranial magnetic stimulation; and 2) treatment with a similar protocol using the stimulation. Besides regular consultations in the outpatient clinic, both groups will attend 7 protocolled spaced days of brain stimulation targeted at the left dorsolateral prefrontal cortex. They will also be submitted to 4 sessions of image studies (2 MRIs, 2 positron-emission tomography), 3 of neuropsychological assessments (at baseline, 1 week and 2 months after treatment), the Montgomery-Åsberg Depression Rating Scale to analyze the severity of depressive symptoms. DISCUSSION: This clinical trial intends to verify the safety and clinical efficacy of tFUS stimulation of the dorsolateral prefrontal cortex of patients with TRD, compared with a previously established neuromodulation method.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Córtex Pré-Frontal Dorsolateral , Humanos , Transtorno Depressivo Resistente a Tratamento/terapia , Córtex Pré-Frontal Dorsolateral/fisiologia , Adulto , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/diagnóstico por imagem , Avaliação de Resultados em Cuidados de Saúde , Pessoa de Meia-Idade , Estudos de Equivalência como Asunto , Resultado do Tratamento , Córtex Pré-Frontal/diagnóstico por imagem
10.
Brain Stimul ; 17(2): 152-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38336340

RESUMO

BACKGROUND: Multiple-session home-based self-applied transcranial direct current stimulation (M-HB-self-applied-tDCS) has previously been found to effectively reduce chronic pain and enhance cognitive function. However, the effectiveness of this method for disordered eating behavior still needs to be studied. OBJECTIVE: This study aimed to assess whether 20 sessions of M-HB-self-applied-tDCS, administered over four weeks to either the left dorsolateral prefrontal cortex (L-DLPFC) or primary motor cortex (M1), could improve various aspects of eating behavior, anthropometric measures, and adherence. METHODS: We randomly assigned 102 fibromyalgia patients between the ages of 30 and 65 to one of four tDCS groups: L-DLPFC (anodal-(a)-tDCS, n = 34; sham-(s)-tDCS, n = 17) or M1 (a-tDCS, n = 34; s-tDCS, n = 17). Patients self-administered 20-min tDCS sessions daily with 2 mA under remote supervision following in-person training. RESULTS: Generalized linear models revealed significant effects of M-HB-self-applied-tDCS compared to s-tDCS on uncontrolled eating (UE) (Wald χ2 = 5.62; df = 1; P = 0.018; effect size, ES = 0.55), and food craving (Wald χ2 = 5.62; df = 1; P = 0.018; ES = 0.57). Regarding fibromyalgia symptoms, we found a differentiated impact of a-tDCS on M1 compared to DLPFC in reducing food cravings. Additionally, M-HB-a-tDCS significantly reduced emotional eating and waist size. In contrast, M1 stimulation was more effective in improving fibromyalgia symptoms. The global adherence rate was high, at 88.94%. CONCLUSION: These findings demonstrate that M-HB-self-applied-tDCS is a suitable approach for reducing uncontrolled and emotional eating, with greater efficacy in L-DLPFC. Furthermore, these results revealed the influence of fibromyalgia symptoms on M-HB-self-applied-tDCS's, with M1 being particularly effective in mitigating food cravings and reducing fibromyalgia symptoms.


Assuntos
Comportamento Alimentar , Fibromialgia , Estimulação Transcraniana por Corrente Contínua , Humanos , Fibromialgia/terapia , Feminino , Estimulação Transcraniana por Corrente Contínua/métodos , Pessoa de Meia-Idade , Adulto , Masculino , Comportamento Alimentar/fisiologia , Córtex Motor/fisiologia , Córtex Motor/fisiopatologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Resultado do Tratamento , Idoso
12.
Nat Hum Behav ; 7(12): 2169-2181, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37500783

RESUMO

Leaders can launch hostile attacks on out-groups and organize in-group defence. Whether groups settle the conflict in their favour depends, however, on whether followers align with leader's initiatives. Yet how leader and followers coordinate during intergroup conflict remains unknown. Participants in small groups elected a leader and made costly contributions to intergroup conflict while dorsolateral prefrontal cortex (DLPFC) activity was simultaneously measured. Leaders were more sacrificial and their contribution influenced group survival to a greater extent during in-group defence than during out-group attacks. Leaders also had increased DLPFC activity when defending in-group, which predicted their comparatively strong contribution to conflict; followers reciprocated their leader's initiatives the more their DLPFC activity synchronized with that of their leader. When launching attacks, however, leaders and followers aligned poorly at behavioural and neural levels, which explained why out-group attacks often failed. Our results provide a neurobehavioural account of leader-follower coordination during intergroup conflict and reveal leader-follower behavioural/neural alignment as pivotal for groups settling conflicts in their favour.


Assuntos
Córtex Pré-Frontal Dorsolateral , Liderança , Comportamento de Massa , Comportamento Social , Humanos , Córtex Pré-Frontal Dorsolateral/fisiologia
13.
Brain Stimul ; 15(5): 1292-1299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126864

RESUMO

BACKGROUND: HD-tDCS is capable to increase the focality of neuromodulation and has been recently applied to improve endurance performance in healthy subjects. OBJECTIVE/HYPOTHESIS: Whether these putative advantages could be exploited in active subjects with type 1 diabetes mellitus (T1D) remains questionable. METHODS: In a double-blind, randomized crossover order, 11 high-level cyclists (27 ± 4.3 years; weight: 65.5 ± 8.6 kg; height: 180 ± 8 cm; VO2peak: 67.5 ± 2.9 mL min-1 kg-1) with T1D underwent either HD-tDCS (F3, F4) or control (SHAM) and completed a constant-load trial (CLT) at 75% of the 2nd ventilatory threshold plus a 15-km cycling time-trial (TT). RESULTS: After HD-tDCS, the total time to cover the TT was 3.8% faster (P < 0.01), associated with a higher mean power output (P < 0.01), and a higher rate of power/perception of effort (P < 0.01) and power/heart rate at iso-time (P < 0.05) than the SHAM condition. Physiological parameters during CLT and TT did not differ in both conditions. CONCLUSIONS: These findings suggest that upregulation of the prefrontal cortex could enhance endurance performance in high-level cyclists with T1D, without altering physiological and perceptual responses at moderate intensity. Present data open to future applications of HD-tDCS to a wider population of active T1D-subjects.


Assuntos
Desempenho Atlético , Diabetes Mellitus Tipo 1 , Córtex Pré-Frontal Dorsolateral , Estimulação Transcraniana por Corrente Contínua , Humanos , Diabetes Mellitus Tipo 1/terapia , Córtex Pré-Frontal Dorsolateral/fisiologia , Método Duplo-Cego , Córtex Pré-Frontal/fisiologia , Adulto Jovem , Adulto , Ciclismo , Atletas , Desempenho Atlético/fisiologia
14.
Sci Rep ; 12(1): 1669, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102203

RESUMO

Real-time fMRI neurofeedback (rt-fMRI NF) is a promising non-invasive technique that enables volitional control of usually covert brain processes. While most rt-fMRI NF studies so far have demonstrated the ability of the method to evoke changes in brain activity and improve symptoms of mental disorders, a recently evolving field is network-based functional connectivity (FC) rt-fMRI NF. However, FC rt-fMRI NF has methodological challenges such as respirational artefacts that could potentially bias the training if not controlled. In this randomized, double-blind, yoke-controlled, pre-registered FC rt-fMRI NF study with healthy participants (N = 40) studied over three training days, we tested the feasibility of an FC rt-fMRI NF approach with online global signal regression (GSR) to control for physiological artefacts for up-regulation of connectivity in the dorsolateral prefrontal-striatal network. While our pre-registered null hypothesis significance tests failed to reach criterion, we estimated the FC training effect at a medium effect size at the end of the third training day after rigorous control of physiological artefacts in the offline data. This hints at the potential of FC rt-fMRI NF for the development of innovative transdiagnostic circuit-specific interventional approaches for mental disorders and the effect should now be confirmed in a well-powered study.


Assuntos
Mapeamento Encefálico/métodos , Corpo Estriado/diagnóstico por imagem , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neurorretroalimentação , Volição , Adulto , Artefatos , Corpo Estriado/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Método Duplo-Cego , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
15.
Sci Rep ; 12(1): 2581, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173179

RESUMO

Depressive disorders contribute heavily to global disease burden; This is possibly because patients are often treated homogeneously, despite having heterogeneous symptoms with differing underlying neural mechanisms. A novel treatment that can directly influence the neural circuit relevant to an individual patient's subset of symptoms might more precisely and thus effectively aid in the alleviation of their specific symptoms. We tested this hypothesis in a proof-of-concept study using fMRI functional connectivity neurofeedback. We targeted connectivity between the left dorsolateral prefrontal cortex/middle frontal gyrus and the left precuneus/posterior cingulate cortex, because this connection has been well-established as relating to a specific subset of depressive symptoms. Specifically, this connectivity has been shown in a data-driven manner to be less anticorrelated in patients with melancholic depression than in healthy controls. Furthermore, a posterior cingulate dominant state-which results in a loss of this anticorrelation-is expected to specifically relate to an increase in rumination symptoms such as brooding. In line with predictions, we found that, with neurofeedback training, the more a participant normalized this connectivity (restored the anticorrelation), the more related (depressive and brooding symptoms), but not unrelated (trait anxiety), symptoms were reduced. Because these results look promising, this paradigm next needs to be examined with a greater sample size and with better controls. Nonetheless, here we provide preliminary evidence for a correlation between the normalization of a neural network and a reduction in related symptoms. Showing their reproducibility, these results were found in two experiments that took place several years apart by different experimenters. Indicative of its potential clinical utility, effects of this treatment remained one-two months later.Clinical trial registration: Both experiments reported here were registered clinical trials (UMIN000015249, jRCTs052180169).


Assuntos
Transtornos de Ansiedade/prevenção & controle , Conectoma/métodos , Depressão/prevenção & controle , Córtex Pré-Frontal Dorsolateral/fisiologia , Rede Nervosa/fisiologia , Neurorretroalimentação/métodos , Adulto , Transtornos de Ansiedade/patologia , Transtornos de Ansiedade/psicologia , Mapeamento Encefálico , Estudos de Casos e Controles , Depressão/patologia , Depressão/psicologia , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Integr Neurosci ; 21(1): 34, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164470

RESUMO

This research explored how the manipulation of interoceptive attentiveness (IA) can influence the frontal (dorsolateral prefrontal cortex (DLPFC) and somatosensory cortices) activity associated with the emotional regulation and sensory response of observing pain in others. 20 individuals were asked to observe face versus hand, painful/non-painful stimuli in an individual versus social condition while brain hemodynamic response (oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) components) was measured via functional Near-Infrared Spectroscopy (fNIRS). Images represented either a single person (individual condition) or two persons in social interaction (social condition) both for the pain and body part set of stimuli. The participants were split into experimental (EXP) and control (CNT) groups, with the EXP explicitly required to concentrate on its interoceptive correlates while observing the stimuli. Quantitative statistical analyses were applied to both oxy- and deoxy-Hb data. Firstly, significantly higher brain responsiveness was detected for pain in comparison to no-pain stimuli in the individual condition. Secondly, a left/right hemispheric lateralization was found for the individual and social condition, respectively, in both groups. Besides, both groups showed higher DLPFC activation for face stimuli presented in the individual condition compared to hand stimuli in the social condition. However, face stimuli activation prevailed for the EXP group, suggesting the IA phenomenon has certain features, namely it manifests itself in the individual condition and for pain stimuli. We can conclude that IA promoted the recruitment of internal adaptive regulatory strategies by engaging both DLPFC and somatosensory regions towards emotionally relevant stimuli.


Assuntos
Córtex Pré-Frontal Dorsolateral/fisiologia , Empatia/fisiologia , Face , Lateralidade Funcional/fisiologia , Mãos , Interocepção/fisiologia , Dor/fisiopatologia , Percepção Social , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico , Córtex Pré-Frontal Dorsolateral/diagnóstico por imagem , Feminino , Humanos , Masculino , Dor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
17.
J Pain ; 23(2): 305-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500109

RESUMO

The aim of the study was to determine whether transcranial direct current stimulation (tDCS) reduced pain and signs of central sensitization induced by low frequency electrical stimulation in healthy volunteers. Thirty-nine participants received tDCS stimulation under 4 different conditions: anodal tDCS of the primary motor cortex (M1), anodal tDCS of the dorsolateral prefrontal cortex (DLPFC), anodal tDCS over M1 and DLPFC concurrently, and sham tDCS. Participants were blind to the tDCS condition. The order of the conditions was randomized among participants. Pain ratings to pinpricks, the current level that evoked moderate pain, and pain induced by low frequency electrical stimulation were assessed in the forearm by an experimenter who was blind to the tDCS conditions. Anodal tDCS at M1 increased the current level that evoked moderate pain compared to sham and other conditions. Anodal tDCS of DLPFC completely abolished secondary hyperalgesia. Unexpectedly, however, concurrent anodal tDCS over M1 and DLPFC did not reduce pain or hyperalgesia more than M1 alone or DLPFC alone. Overall, these findings suggest that anodal tDCS over M1 suppresses pain, and that anodal tDCS over DLPFC modulates secondary hyperalgesia (a sign of central sensitization) in healthy participants. PERSPECTIVE: Anodal transcranial current stimulation (atDCS) at the left motor cortex and the dorsolateral prefrontal cortex increased the electrically-evoked pain threshold and reduced secondary hyperalgesia in healthy participants. Replication of this study in chronic pain populations may open more avenues for chronic pain treatment.


Assuntos
Córtex Pré-Frontal Dorsolateral/fisiologia , Hiperalgesia/terapia , Córtex Motor/fisiologia , Limiar da Dor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Estimulação Elétrica , Feminino , Voluntários Saudáveis , Humanos , Hiperalgesia/etiologia , Masculino , Avaliação de Resultados em Cuidados de Saúde
18.
Neurosci Lett ; 766: 136346, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785310

RESUMO

OBJECTIVES: This study aimed to evaluate the effect of anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) in addition to visuomotor training (VMT) on choice reaction time (CRT) and cognitive function in amateur soccer players. DESIGN: Single-center, randomized, placebo-controlled, double-blind, parallel-group study. SETTING: Neuroscience and Motor Control Laboratory. PARTICIPANTS: Thirty Brazilian male amateur soccer players, aged 18-30 years. MAIN OUTCOME MEASURES: Participants were allocated to the intervention or control groups. Both groups performed VMT, but the intervention group additionally underwent anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC; F3). The cathodal electrode was positioned in the right supraorbital region (Fp2). The tDCS was applied at 2 mA for 20 min for five consecutive sessions (24 h intervals). The VMT protocol was delivered during the application of tDCS and was composed of kicking a ball for 10 min (between the fifth and fifteenth minutes of the 20 min of tDCS application). The primary outcome was assessed based on changes in CRT during reaching (non-trained limb) and kicking (trained limb) tasks. Secondary outcomes were overall cognitive function measured by the Trail Making Test part A (TMT-A) and part B (TMT-B), and Digit Span Test forward (DSF) and backward (DSB) scores. All outcomes were evaluated before and after the intervention. RESULTS: In the primary outcomes, compared with the control group, the anodal tDCS combined with VMT group had greater reduction in CRT for the rectus femoris (p = 0.007) adjusted for age and baseline performance (F (1,26) = 22,23; p < 0,001) and for the triceps (p = 0.039) adjusted for training frequency (days/week) and baseline performance (F (1,26) = 5,70; p = 0,016). No differences were observed in the CRT of other muscles (anterior deltoid [p = 0.181], brachial biceps [p = 0.130], and vastus medialis [p = 0.074]). And, there were no differences between the groups in terms of cognitive function (TMT-A [p = 0.062]; TMT-B [p = 0.320]; DSF [p = 0.102]; DSB [p = 0.345]). CONCLUSION: Anodal tDCS over the left DLPFC in addition to visuomotor training of a functional task can be an efficient tool for athletes to decrease the CRT of the rectus femoris (trained limb) and triceps (non-trained limb); however, there were no differences between the groups in the others muscles (anterior deltoid, brachial biceps, and vastus medialis), and in terms of cognitive function.


Assuntos
Comportamento de Escolha/fisiologia , Cognição/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Tempo de Reação/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adolescente , Adulto , Atletas , Método Duplo-Cego , Humanos , Masculino , Músculo Esquelético/fisiologia , Condicionamento Físico Humano/métodos , Futebol , Adulto Jovem
19.
Brain Res ; 1774: 147722, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774867

RESUMO

Transcranial direct current stimulation (tDCS) has received considerable attention as a new option to facilitate cognitive ability or rehabilitation in healthy populations or in individuals with neuropsychiatric disorders. However, the tDCS effect varies widely, possibly because individual differences in initial performance have frequently been ignored in previous research. Here, we aimed to examine the influence of initial performance on inhibitory control after tDCS. Fifty-six participants were randomly divided into three groups: anodal, cathodal and sham stimulation. The go/no-go task, stop-signal task and Stroop task were performed to measure inhibitory control before and immediately after tDCS. tDCS was applied to the F4 site (international 10-20 system), corresponding to the right dorsolateral prefrontal cortex (rDLPFC), for 20 min with an intensity of 1.5 mA. Neither anodal nor cathodal stimulation had significant effects on the performance of these three tasks at the group level in comparison with sham stimulation. However, the analyses at the individual level only showed a negative relationship between baseline performance and the magnitude of change in go/no-go task performance following cathodal tDCS, indicating the dependence of the change amount on initial performance, with greater gains (or losses) observed in individuals with poorer (or better) initial performance. Together, the initial performance modulates the proactive inhibitory effect of cathodal tDCS of the rDLPFC. Additionally, the rDLPFC plays a crucial role in proactive inhibition.


Assuntos
Atenção/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Inibição Psicológica , Estimulação Transcraniana por Corrente Contínua , Adolescente , Humanos , Masculino , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Adulto Jovem
20.
Hum Brain Mapp ; 43(4): 1381-1393, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34826160

RESUMO

The Self-Attention Network (SAN) has been proposed to describe the underlying neural mechanism of the self-prioritization effect, yet the roles of the key nodes in the SAN-the left posterior superior temporal sulcus (LpSTS) and the dorsolateral prefrontal cortex (DLPFC)-still need to be clarified. One hundred and nine participants were randomly assigned into the LpSTS group, the DLPFC group, or the sham group. We used the transcranial magnetic stimulation (TMS) technique to selectively disrupt the functions of the corresponding targeted region, and observed its impacts on self-prioritization effect based on the difference between the performance of the self-matching task before and after the targeted stimulation. We analyzed both model-free performance measures and HDDM-based performance measures for the self-matching task. The results showed that the inhibition of LpSTS could lead to reduced performance in processing self-related stimuli, which establishes a causal role for the LpSTS in self-related processing and provide direct evidence to support the SAN framework. However, the results of the DLPFC group from HDDM analysis were distinct from the results based on response efficiency. Our investigation further the understanding of the differentiated roles of key nodes in the SAN in supporting the self-salience in information processing.


Assuntos
Atenção/fisiologia , Mapeamento Encefálico/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Ego , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Social , Lobo Temporal/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA