Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Respir Res ; 25(1): 273, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997751

RESUMO

BACKGROUND: Fibroblast differentiation to a myofibroblast phenotype is a feature of airway remodeling in asthma. Lung fibroblasts express the integrin receptor α4ß7 and fibronectin induces myofibroblast differentiation via this receptor. OBJECTIVES: To investigate the role of the ß7 integrin receptor subunit and α4ß7 integrin complex in airway remodeling and airway hyperresponsiveness (AHR) in a murine model of chronic allergen exposure. METHODS: C57BL/6 wild type (WT) and ß7 integrin null mice (ß7 -/-) were sensitized (days 1,10) and challenged with ovalbumin (OVA) three times a week for one or 4 weeks. Similar experiments were performed with WT mice in the presence or absence of α4ß7 blocking antibodies. Bronchoalveolar (BAL) cell counts, AHR, histological evaluation, soluble collagen content, Transforming growth factor-ß (TGFß) and Interleukin-13 (IL13) were measured. Phenotype of fibroblasts cultured from WT and ß7 -/- saline (SAL) and OVA treated mice was evaluated. RESULTS: Eosinophil numbers were similar in WT vs ß7-/- mice. Prolonged OVA exposure in ß7-/- mice was associated with reduced AHR, lung collagen content, peribronchial smooth muscle, lung tissue TGFß and IL13 expression as compared to WT. Similar findings were observed in WT mice treated with α4ß7 blocking antibodies. Fibroblast migration was enhanced in response to OVA in WT but not ß7 -/- fibroblasts. α-SMA and fibronectin expression were reduced in ß7-/- fibroblasts relative to WT. CONCLUSIONS: The ß7 integrin subunit and the α4ß7 integrin complex modulate AHR and airway remodeling in a murine model of allergen exposure. This effect is, at least in part, explained by inhibition of fibroblast activation and is independent of eosinophilic inflammation.


Assuntos
Remodelação das Vias Aéreas , Cadeias beta de Integrinas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Animais , Remodelação das Vias Aéreas/fisiologia , Remodelação das Vias Aéreas/imunologia , Camundongos , Ovalbumina/toxicidade , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Alérgenos/imunologia , Alérgenos/toxicidade , Células Cultivadas , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/patologia , Pulmão/metabolismo , Pulmão/imunologia , Pulmão/patologia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/imunologia , Fator de Crescimento Transformador beta/metabolismo
2.
MAbs ; 16(1): 2365891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889315

RESUMO

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Assuntos
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Cadeias beta de Integrinas/imunologia , Cadeias beta de Integrinas/química , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Integrina alfaV/imunologia , Integrina alfaV/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Ligação Proteica , Especificidade de Anticorpos
3.
Head Face Med ; 20(1): 37, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890650

RESUMO

BACKGROUND: The treatment of oral squamous cell carcinoma (OSCC) remains challenging and survival rates have not been improved significantly over the past decades. Integrins have been recognized driving the cancer progression and high expression levels cause poor outcomes in patients afflicted with OSCC. Integrin αvß6 and its subunit integrin beta 6 (ITGB6) were discovered to enhance the invasiveness by providing beneficial effects on downstream pathways promoting the cancer progression. The objective of this study was to establish a CRISPR/Cas9-mediated knock out of ITGB6 in the human OSCC cell line HN and investigate the effects on the migration and proliferation ability. METHODS: ITGB6 knock out was performed using the CRISPR/Cas9-system, RNPs, and lipofection. Monoclonal cell clones were achieved by limiting dilution and knock out verification was carried out by sanger sequencing and FACS on protein level. The effects of the knock out on the proliferation and migration ability were evaluated by using MTT and scratch assays. In addition, in silico TCGA analysis was utilized regarding the effects of ITGB6 on overall survival and perineural invasion. RESULTS: In silico analysis revealed a significant impact of ITGB6 mRNA expression levels on the overall survival of patients afflicted with OSCC. Additionally, a significantly higher rate of perineural invasion was discovered. CRISPR/Cas9-mediated knock out of ITGB6 was performed in the OSCC cell line HN, resulting in the generation of a monoclonal knock out clone. The knock out clone exhibited a significantly reduced migration and proliferation ability when compared to the wildtype. CONCLUSIONS: ITGB6 is a relevant factor in the progression of OSCC and can be used for the development of novel treatment strategies. The present study is the first to establish a monoclonal CRISPR/Cas9-mediated ITGB6 knockout cell clone derived from an OSCC cell line. It suggests that ITGB6 has a significant impact on the proliferative and migratory capacity in vitro.


Assuntos
Sistemas CRISPR-Cas , Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Cadeias beta de Integrinas , Neoplasias Bucais , Humanos , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Cadeias beta de Integrinas/genética , Técnicas de Inativação de Genes , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Invasividade Neoplásica/genética , Regulação Neoplásica da Expressão Gênica
4.
Cell Mol Immunol ; 21(7): 723-737, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806623

RESUMO

Type 2 innate lymphoid cells (ILC2s) have emerged as key regulators of the immune response in renal inflammatory diseases such as lupus nephritis. However, the mechanisms underlying ILC2 adhesion and migration in the kidney remain poorly understood. Here, we revealed the critical role of integrin α4ß7 in mediating renal ILC2 adhesion and function. We found that integrin α4ß7 enables the retention of ILC2s in the kidney by binding to VCAM-1, E-cadherin, or fibronectin on structural cells. Moreover, integrin α4ß7 knockdown reduced the production of the reparative cytokine amphiregulin (Areg) by ILC2s. In lupus nephritis, TLR7/9 signaling within the kidney microenvironment downregulates integrin α4ß7 expression, leading to decreased Areg production and promoting the egress of ILC2s. Notably, IL-33 treatment upregulated integrin α4ß7 and Areg expression in ILC2s, thereby enhancing survival and reducing inflammation in lupus nephritis. Together, these findings highlight the potential of targeting ILC2 adhesion as a therapeutic strategy for autoimmune kidney diseases.


Assuntos
Anfirregulina , Integrina alfa4 , Cadeias beta de Integrinas , Nefrite Lúpica , Linfócitos , Nefrite Lúpica/imunologia , Anfirregulina/imunologia , Linfócitos/imunologia , Integrina alfa4/genética , Integrina alfa4/imunologia , Humanos , Feminino , Animais , Camundongos , Modelos Animais de Doenças , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/imunologia , Adesão Celular/imunologia , Movimento Celular/imunologia , Rim/efeitos dos fármacos , Rim/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Ligação Proteica/imunologia , Interleucina-33/farmacologia , Transdução de Sinais
5.
Cancer Lett ; 592: 216953, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38729557

RESUMO

TGFBR2, a key regulator of the TGFß signaling pathway, plays a crucial role in gastric cancer (GC) metastasis through its endosomal recycling process. Despite its importance, the mechanisms governing this process remain unclear. Here, we identify integrin ß5 (ITGB5) as a critical mediator that promotes TGFBR2 endosomal recycling. Our study reveals elevated expression of ITGB5 in GC, particularly in metastatic cases, correlating with poor patient outcomes. Knockdown of ITGB5 impairs GC cell metastasis both in vitro and in vivo. Mechanistically, ITGB5 facilitates epithelial-mesenchymal transition mediated by TGFß signaling, thereby enhancing GC metastasis. Acting as a scaffold, ITGB5 interacts with TGFBR2 and SNX17, facilitating SNX17-mediated endosomal recycling of TGFBR2 and preventing lysosomal degradation, thereby maintaining its surface distribution on tumor cells. Notably, TGFß signaling directly upregulates ITGB5 expression, establishing a positive feedback loop that exacerbates GC metastasis. Our findings shed light on the role of ITGB5 in promoting GC metastasis through SNX17-mediated endosomal recycling of TGFBR2, providing insights for the development of targeted cancer therapies.


Assuntos
Endossomos , Transição Epitelial-Mesenquimal , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Neoplasias Gástricas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Endossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Metástase Neoplásica , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
6.
Pharmacol Res ; 203: 107142, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522759

RESUMO

ZLDI-8 is an A disintegrin and metalloproteinase domain 17 (ADAM17) inhibitor that suppresses the shedding of Notch1 to the Notch1 intracellular domain (NICD). In previous studies, we found that ZLDI-8 was able to sensitize HCC to sorafenib, but the mechanism of action remains unclear. The sensitizing effects of ZLDI-8 were tested both in vitro and in vivo. EMT-related factors, sorafenib sensitivity-related proteins and ECM-related gene expression were assessed using immunohistochemistry, RTPCR and Western blotting. Knockdown assays were conducted to determine the relationship between the Notch and Integrin pathways. CoIP assays, nuclear and cytoplasmic fractionation and immunofluorescence colocalization were applied to explore the interaction between the Notch and Integrin pathways. Appropriate statistical analysis methods were used to assess the significance of the experimental results and to ensure the scientific validity and reliability of the experimental design. We found that ECM- and EMT-related proteins were downregulated after ZLDI-8 treatment (P<0.05). ZLDI-8 significantly downregulated Integrinß1 and Integrinß3 in HCC in vitro and in vivo (P<0.05), possibly through Foxc2-dependent regulation. Mechanistically, interfering with the expression of both Integrin-linked kinase (ILK) and the NICD may downregulate the expression of proteins targeted by sorafenib, thereby sensitizing cells to sorafenib. The retroregulation of Integrinß by ILK may occur through the interaction between the NICD and ILK and may be the result of the translocation of the complexus. Our study indicates that blocking the Notch pathway may affect Integrinß through crosstalk between the Notch1 and Integrinß/ILK signaling pathways, thus providing a potential therapeutic strategy for HCC.


Assuntos
Proteína ADAM17 , Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptor Notch1 , Sorafenibe , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Humanos , Animais , Receptor Notch1/metabolismo , Receptor Notch1/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proteína ADAM17/metabolismo , Proteína ADAM17/antagonistas & inibidores , Camundongos Nus , Masculino , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos
7.
Apoptosis ; 29(5-6): 570-585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38127283

RESUMO

Integrin ß6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvß6. Importantly, ITGB6 determines αvß6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.


Assuntos
Antígenos de Neoplasias , Fibrose , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fibrose/genética , Fibrose/metabolismo , Animais , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Integrinas/metabolismo , Integrinas/genética , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia
8.
Respir Res ; 24(1): 165, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344798

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare but fatal cardiopulmonary disease mainly characterized by pulmonary vascular remodeling. Aberrant expression of circRNAs has been reported to play a crucial role in pulmonary vascular remodeling. The existing literature predominantly centers on studies that examined the sponge mechanism of circRNAs. However, the mechanism of circRNAs in regulating PAH-related protein remains largely unknown. This study aimed to investigate the effect of circItgb5 on pulmonary vascular remodeling and the underlying functional mechanism. MATERIALS AND METHODS: High-throughput circRNAs sequencing was used to detect circItgb5 expression in control and PDGF-BB-treated pulmonary arterial smooth muscle cells (PASMCs). Localization of circItgb5 in PASMCs was determined via the fluorescence in situ hybridization assay. Sanger sequencing was applied to analyze the circularization of Itgb5. The identification of proteins interacting with circItgb5 was achieved through a RNA pull-down assay. To assess the impact of circItgb5 on PASMCs proliferation, an EdU assay was employed. Additionally, the cell cycle of PASMCs was examined using a flow cytometry assay. Western blotting was used to detect biomarkers associated with the phenotypic switch of PASMCs. Furthermore, a monocrotaline (MCT)-induced PAH rat model was established to explore the effect of silencing circItgb5 on pulmonary vascular remodeling. RESULTS: CircItgb5 was significantly upregulated in PDGF-BB-treated PASMCs and was predominately localized in the cytoplasm of PASMCs. In vivo experiments revealed that the knockdown of circItgb5 attenuated MCT-induced pulmonary vascular remodeling and right ventricular hypertrophy. In vitro experiments revealed that circItgb5 promoted the transition of PASMCs to synthetic phenotype. Mechanistically, circItgb5 sponged miR-96-5p to increase mTOR level and interacted with Uba1 protein to activate the Ube2n/Mdm2/ACE2 pathway. CONCLUSIONS: CircItgb5 promoted the transition of PASMCs to synthetic phenotype by interacting with miR-96-5p and Uba1 protein. Knockdown of circItgb5 mitigated pulmonary arterial pressure, pulmonary vascular remodeling and right ventricular hypertrophy. Overall, circItgb5 has the potential for application as a therapeutic target for PAH.


Assuntos
Hipertensão Pulmonar , Cadeias beta de Integrinas , RNA Circular , Animais , Masculino , Ratos , Células Cultivadas , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , MicroRNAs/metabolismo , Monocrotalina , Mioblastos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-sis , Ratos Sprague-Dawley , RNA Circular/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Remodelação Vascular , Cadeias beta de Integrinas/genética
9.
Adv Clin Exp Med ; 32(12): 1413-1422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37212774

RESUMO

BACKGROUND: The regulatory effect of integrin ß6 (ITGB6) on sweat gland cells in primary palmar hyperhidrosis (PPH) remains unclear. OBJECTIVES: This study investigated the involvement of ITGB6 in the pathogenesis of PPH. MATERIAL AND METHODS: Sweat gland tissues were collected from PPH patients and healthy volunteers. The expression levels of ITGB6 in sweat gland tissues were detected with quantitative polymerase chain reaction (qPCR), western blot and immunohistochemical staining. Sweat gland cells were extracted from PPH patients, and identified with immunofluorescence staining of CEA and CK7. The expression of aquaporin 5 (AQP5) and Na-K-Cl cotransporter 1 (NKCC1) in primary sweat gland cells that overexpress ITGB6 were also detected. Through a series of bioinformatic methods, differentially expressed genes in sweat gland tissues were examined and validated via comparing PPH samples and controls. The key proteins and biological functions enriched in PPH were determined using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: The ITGB6 was upregulated in sweat gland tissues of PPH patients compared to that of healthy volunteers. The CEA and CK7 were positively expressed in sweat gland cells extracted from PPH patients. The overexpression of ITGB6 upregulated AQP5 and NKCC1 protein expression in the sweat gland cells of PPH patients. A total of 562 differentially expressed mRNAs were identified using high-throughput sequencing (394 upregulated, 168 downregulated), which were mainly active in the chemokine and Wnt signaling pathways. After verification with qPCR and western blot, the overexpression of ITGB6 significantly upregulated CXCL3, CXCL5, CXCL10, and CXCL11, and downregulated Wnt2 mRNA and protein expression in sweat gland cells. CONCLUSIONS: The ITGB6 is upregulated in PPH patients. It may be involved in the pathogenesis of PPH by upregulating AQP5, NKCC1, CXCL3, CXCL5, CXCL10, and CXCL11, and downregulating Wnt2 expression in sweat glands.


Assuntos
Hiperidrose , Glândulas Sudoríparas , Humanos , Regulação para Cima , Glândulas Sudoríparas/metabolismo , Glândulas Sudoríparas/patologia , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Aquaporina 5/genética , Aquaporina 5/metabolismo , Hiperidrose/genética , Hiperidrose/metabolismo , Hiperidrose/patologia
10.
Hepatol Commun ; 6(7): 1786-1802, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35238496

RESUMO

Lenvatinib is a multikinase inhibitor approved as a first-line therapy for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common, and the underlying mechanisms governing this resistance are largely unknown. In this study, we established two lenvatinib-resistant (LR) HCC cell lines and identified integrin subunit beta 8 (ITGB8) as a critical contributor to lenvatinib resistance in HCC. The elevated expression of ITGB8 was observed in LR HCC cells. Furthermore, silencing of ITGB8 reversed lenvatinib resistance in vitro and in vivo, whereas ectopic expression of ITGB8 in lenvatinib-sensitive parental HCC cells exhibited increased resistance to lenvatinib. Mechanistically, ITGB8 regulated lenvatinib resistance through an HSP90-mediated stabilization of AKT and enhanced AKT signaling. In support of this model, either an AKT inhibitor MK-2206 or an HSP90 inhibitor 17-AAG resensitized LR HCC cells to lenvatinib treatment. Conclusion: Collectively, our results establish a crucial role of ITGB8 in lenvatinib resistance, and suggest that targeting the ITGB8/HSP90/AKT axis is a promising therapeutic strategy in patients with HCC exhibiting lenvatinib resistance.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Cadeias beta de Integrinas , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Cadeias beta de Integrinas/genética , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia , Proteínas Proto-Oncogênicas c-akt/genética , Quinolinas
11.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217866

RESUMO

In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin ß8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the ß8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the ß8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFßs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFß-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/ß-catenin signaling. These results reveal that the ß8 integrin cytoplasmic domain is essential for the regulation of TGFß-dependent gene expression in endothelial cells and suggest that cross-talk between TGFßs and Wnt pathways is crucial for neurovascular development.


Assuntos
Células Endoteliais , Cadeias beta de Integrinas , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Mamíferos/metabolismo , Camundongos , Fator de Crescimento Transformador beta/metabolismo
12.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209065

RESUMO

Striae distensae (SD) or stretch marks are common linear scars of atrophic skin with disintegrating extracellular matrix (ECM) structures. Although fibroblasts contribute to the construction of ECM structure in SD, some studies have reported that mast cell degranulation causes the disruption of ECM in early SD lesions. Lagerstroemia indica flower (LIF) has traditionally been used in India as a diuretic. However, little is known about the effect and molecular action of Lagerstroemia indica flower extract (LIFE) on alleviating SD. This study evaluated the effects of LIFE on mast cell degranulation and the synthesis of ECM components in fibroblasts. LIFE inhibits the adhesion of rat basophilic leukemia (RBL) cells, RBL-2H3 on fibronectin (FN) and the expression of integrin, a receptor for FN, thereby reducing focal adhesion kinase (FAK) phosphorylation. In addition, LIFE attenuated the allergen-induced granules and cytokine interleukin 3 (IL-3) through the adhesion with FN. Moreover, the conditioned medium (CM) of activated mast cells decreases the synthesis of ECM components, and LIFE restores the abnormal expressions induced by activated mast cells. These results demonstrate that LIFE suppresses FN-induced mast cell activation and promotes the synthesis of ECM components in fibroblast, which indicates that LIFE may be a useful cosmetic agent for SD treatment.


Assuntos
Flores/química , Lagerstroemia/química , Mastócitos/efeitos dos fármacos , Mastócitos/fisiologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biomarcadores , Adesão Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Linhagem Celular , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Expressão Gênica , Imunoglobulina E/imunologia , Cadeias alfa de Integrinas/genética , Cadeias beta de Integrinas/genética , Fosforilação , Ligação Proteica/efeitos dos fármacos , Estrias de Distensão
13.
Exp Cell Res ; 411(2): 113003, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979108

RESUMO

Intestinal fibrosis is one of the most severe complications of inflammatory bowel disease (IBD) and frequently requires surgery due to intestinal obstruction. Integrin αvß6, which is mainly regulated by the integrin ß6 subunit gene (ITGB6), is a special integrin subtype expressed only in epithelial cells. In our previous study, we found integrin αvß6 can promote the development of IBD, but the role of integrin αvß6 in intestinal fibrosis remains unclear. In this study, we observed a gradual increase of ITGB6 mRNA expression from normal region to stenotic region of IBD patients' intestinal specimens. Next, we established a dextran sulfate sodium (DSS)-induced intestinal fibrosis model and a heterotopic intestinal transplant model, and found intestinal fibrosis was decreased in ITGB6-deficient mice compared to wild-type (WT) mice. Furthermore, we performed RNA-sequencing and KEGG pathway analysis on intestinal tissues from ITGB6-overexpressing transgenic mice and WT mice, and found multiple pathways containing ITGB6, are related to the activation of focal adhesion kinase (FAK); finding was confirmed by Western blot. At last, we generated a heterotopic intestinal transplant model found the FAK/AKT pathway was inhibited in ITGB6-deficient mice. In conclusion, our data demonstrate that integrin αvß6 promotes the pathogenesis of intestinal fibrosis by FAK/AKT pathway, making integrin αvß6 a potential therapeutic target to prevent this condition.


Assuntos
Antígenos de Neoplasias/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Integrinas/metabolismo , Animais , Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Modelos Animais de Doenças , Feminino , Fibrose , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Integrinas/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Theriogenology ; 180: 130-136, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34973644

RESUMO

Ruminants have a superficial implantation pattern. The extended conceptus attaches to the receptive endometrium to form the cotyledonary placenta. During the attachment, a large number of events occur at the maternal-fetal interface. However, the related molecular mechanisms have not been fully understood. Integrin beta8 (ITGB8) is a subunit of integrin beta involved in embryo implantation. In this study, we determined peri-implantation expression and regulation of ITGB8 in goat uterus. The mRNA and protein levels of ITGB8 were both high in goat endometrial luminal epithelium (LE) and superficial glandular epithelium (sGE) during the adhesion period (Days 16-19 of pregnancy). Such expression profile was opposite to that of microRNA-187 (miR-187). Then, we validated that miR-187 targeted the 3' untranslated region (UTR) of ITGB8 in primary goat endometrial epithelial cells (EECs). In EECs, inhibition of miR-187 resulted in not only up-regulated ITGB8 level but also reduced cell proliferation and focal adhesion kinase (FAK) activity. Moreover, ITGB8 and miR-187 were regulated by interferon tau (IFNT). Altogether, in goat, the miR-187/ITGB8 axis may be involved in conceptus attachment and is downstream of IFNT. Our results will help us better understand the mechanisms of ruminant implantation and may provide a useful tool to improve the reproduction ratio for ruminants.


Assuntos
Cabras , Cadeias beta de Integrinas , Interferon Tipo I , Útero , Animais , Implantação do Embrião , Endométrio , Feminino , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Gravidez
15.
Biochem Biophys Res Commun ; 586: 143-149, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844120

RESUMO

UNC-52/perlecan is a basement membrane (BM) proteoglycan playing an essential role in the muscle cell attachment of C. elegans. The UNC-52 protein contains two RGD (Arg-Gly-Asp) motifs in domains III and IV, a well-characterized tripeptide known for binding to mammalian ß integrin. To investigate the role of the RGD motif in UNC-52/perlecan, we created two mutations in the 2021RGD2023 motif: one mutation changed the RGD to an RGE, and the other deleted the RGD motif. The RGE2023 caused defective actin filaments and aberrant localization of PAT-3 ß integrin and TLN-1/talin. Additionally, the in-frame deletion of RGD2023 resulted in a paralyzed and arrested at two-fold embryonic stages (Pat) phenotype, which is the identical phenotype of the pat-3 ß integrin null allele. These results indicate that RGD2023 is a potential ligand for cell binding and is essential for development and survival. Furthermore, our analysis reveals that the RGD of an invertebrate BM molecule is a potential cell-binding motif, suggesting that the function of the RGD motif is conserved among species.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Cadeias beta de Integrinas/genética , Proteínas de Membrana/genética , Oligopeptídeos/metabolismo , Proteoglicanas/genética , Talina/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada , Embrião não Mamífero , Regulação da Expressão Gênica , Cadeias beta de Integrinas/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Ligação Proteica , Proteoglicanas/metabolismo , Transdução de Sinais , Talina/metabolismo
16.
Mucosal Immunol ; 15(1): 109-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34433904

RESUMO

T and B cells employ integrin α4ß7 to migrate to intestine under homeostatic conditions. Whether those cells differentially rely on α4ß7 for homing during inflammatory conditions has not been fully examined. This may have implications for our understanding of the mode of action of anti-integrin therapies in inflammatory bowel disease (IBD). Here, we examined the role of α4ß7 integrin during chronic colitis using IL-10-/- mice, ß7-deficient IL-10-/-, IgA-deficient IL-10-/- mice, and antibody blockade of MAdCAM-1. We found that α4ß7 was predominantly expressed by B cells. ß7 deficiency and MAdCAM-1 blockade specifically depleted antibody secreting cells (ASC) (not T cells) from the colonic LP, leading to a fecal pan-immunoglobulin deficit, severe colitis, and alterations of microbiota composition. Colitis was not due to defective regulation, as dendritic cells (DC), regulatory T cells, retinaldehyde dehydrogenase (RALDH) expression, activity, and regulatory T/B-cell cytokines were all comparable between the strains/treatment. Finally, an IgA deficit closely recapitulated the clinical phenotype and altered microbiota composition of ß7-deficient IL-10-/- mice. Thus, a luminal IgA deficit contributes to accelerated colitis in the ß7-deficient state. Given the critical/nonredundant dependence of IgA ASC on α4ß7:MAdCAM-1 for intestinal homing, B cells may represent unappreciated targets of anti-integrin therapies.


Assuntos
Células Produtoras de Anticorpos/imunologia , Moléculas de Adesão Celular/metabolismo , Colite/imunologia , Microbioma Gastrointestinal/imunologia , Doenças Inflamatórias Intestinais/imunologia , Integrina alfa4/metabolismo , Cadeias beta de Integrinas/metabolismo , Intestinos/fisiologia , Mucoproteínas/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Humanos , Imunoglobulina A/metabolismo , Imunomodulação , Cadeias beta de Integrinas/genética , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Cell Biol Int ; 46(1): 96-105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34519117

RESUMO

The formation of embryonic muscle fibers determines the amount of postnatal muscles and is regulated by a variety of signaling pathways and transcription factors. Previously, by using chromatin immunoprecipitation-sequencing and RNA-Seq techniques, we identified a large number of genes that are regulated by H3K27me3 in porcine embryonic skeletal muscles. Among these genes, we found that ITGB6 is regulated by H3K27me3. However, its function in muscle development is unknown. In this study, we first verified that ITGB6 was differentially regulated by H3K27me3 and that its expression levels were upregulated in porcine skeletal muscles at embryonic Days 33, 65, and 90. Then, we performed gain- or loss-of-function studies on porcine skeletal muscle satellite cells to study the role of ITGB6 in porcine skeletal muscle development. The proliferation of porcine skeletal muscle satellite cells was studied through real-time polymerase chain reaction, Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, Western blot, and flow cytometry analyses. We found that the ITGB6 gene was regulated by H3K27me3 during muscle development and had an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells.


Assuntos
Proliferação de Células , Cadeias beta de Integrinas/metabolismo , Desenvolvimento Muscular , Células Satélites de Músculo Esquelético/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Cadeias beta de Integrinas/genética , Metilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Sus scrofa , Fatores de Tempo
18.
Exp Cell Res ; 408(2): 112862, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626585

RESUMO

Macrophage receptor with collagenous structure (MARCO) is a member of the class A scavenger receptor family which is expressed on the cell surface of macrophages. It is well known that MARCO avidly binds to unopsonized pathogens, leading to its ingestion by macrophages. However, the role of MARCO in the recognition and phagocytosis of tumor cells by macrophages remains poorly understood. In this study, we used lentiviral technology to knockdown and overexpress MARCO and investigated the ability of macrophages to phagocytose tumor cells. Our results showed that MARCO expression was correlated with the ability of macrophages to carry on phagocytosis. MARCO knockdown led to significant decreases in the number of engulfment pseudopodia of macrophages and inhibition of the phagocytosis of tumor cells. On the other hand, MARCO overexpression elevated activity of SYK, PI3K and Rac1 in macrophages, which led to changes in macrophage morphology and enhanced phagocytosis by promoting formation of stress fibers and pseudopodia. By Co-IP analysis we showed that MARCO directly binds to the ß5 integrin of SL4 tumor cells. In summary, these results demonstrated the important role for MARCO in demonstrated tumor cells uptake and clearance by macrophages.


Assuntos
Cadeias beta de Integrinas/genética , Neoplasias/genética , Fagocitose/genética , Receptores Imunológicos/genética , Receptores Depuradores/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Quinase Syk/genética , Proteínas rac1 de Ligação ao GTP/genética
19.
Cell Stress Chaperones ; 26(6): 989-1000, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34553319

RESUMO

The present study aims to evaluate culture temperature-dependent variation in survival, growth characteristics and expression of stress, pluripotency, apoptosis, and adhesion markers in enriched caprine male germline stem cells (cmGSCs). For this, testes from pre-pubertal bucks (4-5 months; n = 4) were used to isolated cells by a two-step enzymatic digestion method. After enrichment of cmGSCs by multiple methods (differential platting, Percoll density gradient centrifugation, and MACS), viability of CD90+ cells was assessed before co-cultured onto the Sertoli cell feeder layer at different temperatures (35.5, 37.0, 38.5, and 40.0 °C). The culture characteristics of cells were compared with MTT assay (viability); cluster-forming activity assay, SA-ß1-gal assay (senescence), BrdU assay (proliferation), and transcript expression analyses by qRT-PCR. Moreover, the co-localization of pluripotency markers (UCHL-1, PLZF, and DBA) was examined by a double-immunofluorescence method. The cells grown at 37.0 °C showed faster proliferation with a significantly (p < 0.05) higher number of viable cells and greater number of cell clusters, besides higher expression of pluripotency markers. The transcript expression of HSPs (more noticeably HSP72 than HSP73), anti-oxidative enzymes (GPx and CuZnSOD), and adhesion molecule (ß1-integrin) was significantly (p < 0.05) downregulated when grown at 35.0, 38.5, or 40.0 °C compared with 37.0 °C. The expression of pluripotency-specific transcripts was significantly (p < 0.05) lower in cmGSCs grown at the culture temperature lower (35.5 °C) or higher (38.5 °C and 40.0 °C) than 37.0 °C. Overall, the culture temperature significantly affects the proliferation, growth characteristics, and expression of heat stress, pluripotency, and adhesion-specific markers in pre-pubertal cmGSCs. These results provide an insight to develop strategies for the improved cultivation and downstream applications of cmGSCs.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Células Germinativas/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Animais , Sobrevivência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/metabolismo , Cabras/crescimento & desenvolvimento , Cabras/metabolismo , Proteínas de Choque Térmico HSP72 , Cadeias beta de Integrinas/genética , Masculino , Células-Tronco Pluripotentes/metabolismo , Células de Sertoli/citologia , Superóxido Dismutase-1/genética , Temperatura , Testículo/metabolismo
20.
J Immunol ; 207(9): 2245-2254, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561227

RESUMO

Targeting interactions between α4ß7 integrin and endothelial adhesion molecule MAdCAM-1 to inhibit lymphocyte migration to the gastrointestinal tract is an effective therapy in inflammatory bowel disease (IBD). Following lymphocyte entry into the mucosa, a subset of these cells expresses αEß7 integrin, which is expressed on proinflammatory lymphocytes, to increase cell retention. The factors governing lymphocyte migration into the intestinal mucosa and αE integrin expression in healthy subjects and IBD patients remain incompletely understood. We evaluated changes in factors involved in lymphocyte migration and differentiation within tissues. Both ileal and colonic tissue from active IBD patients showed upregulation of ICAM-1, VCAM-1, and MAdCAM-1 at the gene and protein levels compared with healthy subjects and/or inactive IBD patients. ß1 and ß7 integrin expression on circulating lymphocytes was similar across groups. TGF-ß1 treatment induced expression of αE on both ß7+ and ß7- T cells, suggesting that cells entering the mucosa independently of MAdCAM-1/α4ß7 can become αEß7+ ITGAE gene polymorphisms did not alter protein induction following TGF-ß1 stimulation. Increased phospho-SMAD3, which is directly downstream of TGF-ß, and increased TGF-ß-responsive gene expression were observed in the colonic mucosa of IBD patients. Finally, in vitro stimulation experiments showed that baseline ß7 expression had little effect on cytokine, chemokine, transcription factor, and effector molecule gene expression in αE+ and αE- T cells. These findings suggest cell migration to the gut mucosa may be altered in IBD and α4ß7-, and α4ß7+ T cells may upregulate αEß7 in response to TGF-ß once within the gut mucosa.


Assuntos
Antígenos CD/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Cadeias alfa de Integrinas/metabolismo , Cadeias beta de Integrinas/metabolismo , Mucosa Intestinal/imunologia , Receptores de Retorno de Linfócitos/metabolismo , Linfócitos T/imunologia , Adulto , Idoso , Movimento Celular , Feminino , Humanos , Cadeias beta de Integrinas/genética , Masculino , Pessoa de Meia-Idade , Transdução de Sinais , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA