Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 349: 1045-1051, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868358

RESUMO

Drug delivery to the suprachoroidal space (SCS®) has become a clinical reality after the 2021 FDA approval of CLS-TA, a triamcinolone acetonide injectable suspension for suprachoroidal use (XIPERE®), administered via a microneedle-based device, the SCS Microinjector®. Suprachoroidal (SC) delivery facilitates targeting, compartmentalization, and durability of small molecule suspensions, thereby potentially addressing some of the efficacy, safety, and treatment burden limitations of current retinal therapies. Herein, the design features of the SCS Microinjector are reviewed, along with the biomechanics of SC drug delivery. Also presented are preclinical evaluations of SC small molecule suspensions from 4 different therapeutic classes (plasma kallikrein inhibitor, receptor tyrosine kinase inhibitor, corticosteroid, complement factor D inhibitor), highlighting their potential for durability, targeted compartmentalization, and acceptable safety profiles following microinjector-based SC delivery. The clinical evaluations of the safety, tolerability and efficacy of SC delivered triamcinolone further supports potential of SC small molecule suspensions as a clinically viable strategy for the treatment of chorioretinal diseases. Also highlighted are current limitations, key pharmacological considerations, and future opportunities to optimize the SC microinjector platform for safe, effective, and potentially long-acting drug delivery for the treatment of chorioretinal disorders.


Assuntos
Corioide , Triancinolona Acetonida , Fator D do Complemento/farmacologia , Calicreína Plasmática/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Suspensões
2.
Biochimie ; 135: 72-81, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28115185

RESUMO

Human plasma kallikrein (huPK) potentiates platelet responses to subthreshold doses of ADP, although huPK itself, does not induce platelet aggregation. In the present investigation, we observe that huPK pretreatment of platelets potentiates ADP-induced platelet activation by prior proteolysis of the G-protein-coupled receptor PAR-1. The potentiation of ADP-induced platelet activation by huPK is mediated by the integrin αIIbß3 through interactions with the KGD/KGE sequence motif in huPK. Integrin αIIbß3 is a cofactor for huPK binding to platelets to support PAR-1 hydrolysis that contributes to activation of the ADP signaling pathway. This activation pathway leads to phosphorylation of Src, AktS473, ERK1/2, and p38 MAPK, and to Ca2+ release. The effect of huPK is blocked by specific antagonists of PAR-1 (SCH 19197) and αIIbß3 (abciximab) and by synthetic peptides comprising the KGD and KGE sequence motifs of huPK. Further, recombinant plasma kallikrein inhibitor, rBbKI, also blocks this entire mechanism. These results suggest a new function for huPK. Formation of plasma kallikrein lowers the threshold for ADP-induced platelet activation. The present observations are consistent with the notion that plasma kallikrein promotes vascular disease and thrombosis in the intravascular compartment and its inhibition may ameliorate cardiovascular disease and thrombosis.


Assuntos
Difosfato de Adenosina/farmacologia , Calicreína Plasmática/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Invest Ophthalmol Vis Sci ; 54(2): 1086-94, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23299478

RESUMO

PURPOSE: Retinal hemorrhages occur in a variety of sight-threatening conditions including ocular trauma, high altitude retinopathy, and chronic diseases such as diabetic and hypertensive retinopathies. The goal of this study is to investigate the effects of blood in the vitreous on retinal vascular function in rats. METHODS: Intravitreal injections of autologous blood, plasma kallikrein (PK), bradykinin, and collagenase were performed in Sprague-Dawley and Long-Evans rats. Retinal vascular permeability was measured using vitreous fluorophotometry and Evans blue dye permeation. Leukostasis was measured by fluorescein isothiocyanate-coupled concanavalin A lectin and acridine orange labeling. Retinal hemorrhage was examined on retinal flatmounts. Primary cultures of bovine retinal pericytes were cultured in the presence of 25 nM PK for 24 hours. The pericyte-conditioned medium was collected and the collagen proteome was analyzed by tandem mass spectrometry. RESULTS: Intravitreal injection of autologous blood induced retinal vascular permeability and retinal leukostasis, and these responses were ameliorated by PK inhibition. Intravitreal injections of exogenous PK induced retinal vascular permeability, leukostasis, and retinal hemorrhage. Proteomic analyses showed that PK increased collagen degradation in pericyte-conditioned medium and purified type IV collagen. Intravitreal injection of collagenase mimicked PK's effect on retinal hemorrhage. CONCLUSIONS: Intraocular hemorrhage increases retinal vascular permeability and leukostasis, and these responses are mediated, in part, via PK. Intravitreal injections of either PK or collagenase, but not bradykinin, induce retinal hemorrhage in rats. PK exerts collagenase-like activity that may contribute to blood-retinal barrier dysfunction.


Assuntos
Calicreína Plasmática/metabolismo , Doenças Retinianas/etiologia , Hemorragia Retiniana/complicações , Vasos Retinianos/patologia , Animais , Sangue , Barreira Hematorretiniana/efeitos dos fármacos , Bradicinina/farmacologia , Permeabilidade Capilar , Bovinos , Células Cultivadas , Colagenases/farmacologia , Concanavalina A/metabolismo , Azul Evans/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Fluorofotometria , Injeções Intravítreas , Leucostasia/etiologia , Masculino , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Calicreína Plasmática/farmacologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Doenças Retinianas/metabolismo , Hemorragia Retiniana/metabolismo , Vasos Retinianos/metabolismo , Espectrometria de Massas em Tandem , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo
4.
Nat Med ; 17(2): 206-10, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21258336

RESUMO

Hyperglycemia is associated with greater hematoma expansion and poor clinical outcomes after intracerebral hemorrhage. We show that cerebral hematoma expansion triggered by intracerebral infusion of autologous blood is greater in diabetic rats and mice compared to nondiabetic controls and that this augmented expansion is ameliorated by plasma kallikrein (PK) inhibition or deficiency. Intracerebral injection of purified PK augmented hematoma expansion in both diabetic and acutely hyperglycemic rats, whereas injection of bradykinin, plasmin or tissue plasminogen activator did not elicit such a response. This response, which occurs rapidly, was prevented by co-injection of the glycoprotein VI agonist convulxin and was mimicked by glycoprotein VI inhibition or deficiency, implicating an effect of PK on inhibiting platelet aggregation. We show that PK inhibits collagen-induced platelet aggregation by binding collagen, a response enhanced by elevated glucose concentrations. The effect of hyperglycemia on hematoma expansion and PK-mediated inhibition of platelet aggregation could be mimicked by infusing mannitol. These findings suggest that hyperglycemia augments cerebral hematoma expansion by PK-mediated osmotic-sensitive inhibition of hemostasis.


Assuntos
Hemorragia Cerebral/fisiopatologia , Hematoma/fisiopatologia , Hiperglicemia/fisiopatologia , Calicreína Plasmática/fisiologia , Animais , Barreira Hematoencefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Calicreína Plasmática/farmacologia , Plasminogênio/fisiologia , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA