Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
J Nat Prod ; 87(4): 869-875, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427968

RESUMO

Cannabidiol (CBD), a prominent phytocannabinoid found in various Cannabis chemotypes, is under extensive investigation for its therapeutic potential. Moreover, because it is nonpsychoactive, it can also be utilized as a functional ingredient in foods and supplements in certain countries, depending on its legal status. From a chemical reactivity point of view, CBD can undergo conversion into different structurally related compounds both during storage and after the consumption of CBD-based products. The analytical determination of these compounds is of paramount concern due to potential toxicity and the risk of losing the active ingredient (CBD) title. Consequently, the complete stereoselective total synthesis of representative CBD-derived compounds has become a matter of great interest. The synthesis of pure CBD-derived compounds, achievable in a few synthetic steps, is essential for preparing analytical standards and facilitating biological studies. This paper details the transformation of the readily available CBD into Δ8-THC, Δ9-THC, Δ8-iso-THC, CBE, HCDN, CBDQ, Δ6-iso-CBD, and 1,8-cineol cannabinoid (CCB). The described protocols were executed without the extensive use of protecting groups, avoiding tedious purifications, and ensuring complete control over the structural features.


Assuntos
Canabidiol , Canabinoides , Canabinoides/síntese química , Canabinoides/química , Canabidiol/química , Canabidiol/síntese química , Estrutura Molecular , Cannabis/química , Estereoisomerismo
2.
Nature ; 615(7953): 634-639, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859552

RESUMO

The selective conversion of natural or synthetic neral to (1R,6S)-trans-isopiperitenol would enable and expedite sustainable routes to menthol1,2 and cannabinoids3-5. However, this reaction has been considered impossible because its product is more reactive to the required acid catalysts than its starting material, resulting in several side products6-9. We now show that an unsymmetric, strong and confined chiral acid, a highly fluorinated imino-imidodiphosphate, catalyses this process with excellent efficiency and selectivity. Expanding the method to other α,ß-unsaturated aldehydes could enable access to new cannabinoids and menthol derivatives not readily accessible previously. Mechanistic studies suggest that the confined catalyst accomplishes this reaction by binding the product in an unreactive conformation, thereby preventing its decomposition. We also show how (1R,6S)-trans-isopiperitenol can be readily converted to pharmaceutically useful cannabinoids and menthol, each in the shortest and most atom-economic routes so far.


Assuntos
Monoterpenos Acíclicos , Canabinoides , Catálise , Técnicas de Química Sintética , Mentol , Canabinoides/síntese química , Canabinoides/química , Mentol/análogos & derivados , Mentol/síntese química , Mentol/química , Aldeídos/química , Halogenação , Monoterpenos Acíclicos/química
3.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209079

RESUMO

Zebrafish (ZF; Danio rerio) larvae have become a popular in vivo model in drug metabolism studies. Here, we investigated the metabolism of methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate (4F-MDMB-BINACA) in ZF larvae after direct administration of the cannabinoid via microinjection, and we visualized the spatial distributions of the parent compound and its metabolites by mass spectrometry imaging (MSI). Furthermore, using genetically modified ZF larvae, the role of cannabinoid receptor type 1 (CB1) and type 2 (CB2) on drug metabolism was studied. Receptor-deficient ZF mutant larvae were created using morpholino oligonucleotides (MOs), and CB2-deficiency had a critical impact on liver development of ZF larva, leading to a significant reduction of liver size. A similar phenotype was observed when treating wild-type ZF larvae with 4F-MDMB-BINACA. Thus, we reasoned that the cannabinoid-induced impaired liver development might also influence its metabolic function. Studying the metabolism of two synthetic cannabinoids, 4F-MDMB-BINACA and methyl 2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3-dimethylbutanoate (7'N-5F-ADB), revealed important insights into the in vivo metabolism of these compounds and the role of cannabinoid receptor binding.


Assuntos
Canabinoides/farmacologia , Inativação Metabólica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Canabinoides/síntese química , Canabinoides/química , Fenômenos Químicos , Larva , Fígado/patologia , Redes e Vias Metabólicas , Estrutura Molecular , Tamanho do Órgão/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peixe-Zebra
4.
Eur J Med Chem ; 226: 113878, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634742

RESUMO

Cannabinoids are widely studied as therapeutic agents for the treatment of various diseases. Among them, THC and CBD are two important phytocannabinoids which have served as structural templates for the design of synthetic analogs. In this study, we designed and synthesized a variety of novel cannabinoids based on the structural backbones of THC and CBD using the carbon-silicon switch strategy. A dimethyl silyl group was introduced as the tail group and two series of novel compounds were designed and synthesized, which showed a wide range of binding affinity for CB1 and CB2 receptors. Among them, compound 15b was identified as a non-selective CB1 and CB2 agonist and 38b as a selective agonist for the CB2 receptor. Preliminary screening showed that both compounds have improved metabolic stability than their carbon analogs and good in vivo pharmacokinetic profiles. Furthermore, both 15b and 38b significantly alleviated the phenotype of experimental autoimmune encephalomyelitis (EAE) in mice.


Assuntos
Canabinoides/farmacologia , Carbono/química , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Silício/química , Animais , Canabinoides/síntese química , Canabinoides/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
5.
Adv Clin Chem ; 103: 191-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34229850

RESUMO

Synthetic drugs of abuse contain various psychoactive substances. These substances have recently emerged as novel drugs of abuse in public; thus, they are known as novel psychoactive substances (NPS). As these compounds are artificially synthesized in a laboratory, they are also called designer drugs. Synthetic cannabinoids and synthetic cathinones are the two primary classes of NPS or designer drugs. Synthetic cannabinoids, also known as "K2" or "Spice," are potent agonists of the cannabinoid receptors. Synthetic cathinones, known as "Bath salts," are beta-keto amphetamine derivatives. These compounds can cause severe intoxication, including overdose deaths. NPS are accessible locally and online. NPS are scheduled in the US and other countries, but the underground chemists keep modifying the chemical structure of these compounds to avoid legal regulation; thus, these compounds have been evolving rapidly. These drugs are not detectable by traditional drug screening, and thus, these substances are mainly abused by young individuals and others who wish to avoid drug detection. These compounds are analyzed primarily by mass spectrometry.


Assuntos
Alcaloides/síntese química , Canabinoides/síntese química , Psicotrópicos/síntese química , Transtornos Relacionados ao Uso de Substâncias , Alcaloides/farmacologia , Canabinoides/farmacologia , Humanos , Drogas Ilícitas , Psicotrópicos/farmacologia , Medicamentos Sintéticos
6.
Drug Test Anal ; 13(7): 1412-1429, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33908179

RESUMO

The present work is the last of a three-part study investigating a panel of 30 systematically designed synthetic cannabinoid receptor agonists (SCRAs) including features such as the 4-pentenyl tail and varying head groups including amides and esters of l-valine (MMB, AB), l-tert-leucine (ADB), and l-phenylalanine (APP), as well as adamantyl (A) and cumyl moieties (CUMYL). Here, we evaluated these SCRAs for their capacity to activate the human cannabinoid receptor 1 (CB1 ) via indirect measurement of G protein recruitment. Furthermore, we comparatively evaluated the results obtained from three in vitro assays, based on the recruitment of ß-arrestin 2 (ßarr2 assay) or Gαi protein (mini-Gαi assay), or binding of [35 S]-GTPγS. The observed efficacies (Emax ) varied depending on the conducted assay. Statistical analysis suggests that the population means of the relative intrinsic activity (RAi ) significantly differ for the [35 S]-GTPγS assay and the other two assays, but the population means of the ßarr2 and mini-Gαi assays were not statistically different. Our data suggest that differences observed between the ßarr2 and mini-Gαi assays are the best predictor for 'biased agonism' towards ßarr or G protein recruitment in our study. SCRAs carrying an ADB or MPP moiety as a head group tended to produce elevated Emax values in the ßarr2 assay, which might result in a tendency of these compounds to cause pronounced tolerance in users-a hypothesis that should be evaluated further by future studies. In general, a comparison of efficacies derived from different assays is difficult and should only be conducted very cautiously.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Relação Estrutura-Atividade , beta-Arrestina 2/metabolismo
7.
Drug Test Anal ; 13(7): 1402-1411, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33769699

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) are the second largest class of new psychoactive substances (NPS) and are associated with serious adverse effects and even death. Despite this, little pharmacological data are available for many of the most recent SCRAs. This study consists of three different parts, aiming to systematically evaluate a panel of 30 SCRAs using binding and different in vitro human cannabinoid 1 receptor (CB1 ) activation assays. The present Part II investigated the SCRA analogs for their CB1 activation via a ß-arrestin recruitment assay. The panel was systematically designed to include key structural sub-features of recent SCRAs. Thus, the 4-pentenyl tail of MMB-4en-PICA and MDMB-4en-PINACA was retained while incorporating varying head groups from other prevalent SCRAs, including amides and esters of L-valine, L-tert-leucine, and L-phenylalanine, and adamantyl and cumyl moieties. All 30 SCRAs activated CB1 , with indazoles generally showing the greatest potency (EC50 = 1.88-281 nM), followed by indoles (EC50 = 11.5-2293 nM), and the corresponding 7-azaindoles (EC50 = 62.4-9251 nM). Several subunit-linked structure-activity relationships were identified: (i) tert-leucine-functionalized SCRAs were more potent than the corresponding valine derivatives; (ii) no major difference in potency or efficacy was observed between tert-leucine/valine-derived amides and the corresponding methyl esters; however, phenylalanine analogs were affected by this change; and (iii) minor structural changes to the 4-pentenyl substituent had little influence on activity. These findings elucidate structural features that modulate the CB1 activation potential of currently prevalent SCRAs and a systematic panel of analogs, some of which may appear in NPS markets in future.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , beta-Arrestinas/metabolismo , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Indazóis/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Relação Estrutura-Atividade
8.
J Med Chem ; 64(7): 3870-3884, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33761251

RESUMO

We report the development of novel cannabinergic probes that can stabilize the cannabinoid receptors (CBRs) through tight binding interactions. Ligand design involves the introduction of select groups at a judiciously chosen position within the classical hexahydrocannabinol template (monofunctionalized probes). Such groups include the electrophilic isothiocyanato, the photoactivatable azido, and the polar cyano moieties. These groups can also be combined to produce bifunctionalized probes potentially capable of interacting at two distinct sites within the CBR-binding domains. These novel compounds display remarkably high binding affinities for CBRs and are exceptionally potent agonists. A key ligand (27a, AM11245) exhibits exceptionally high potency in both in vitro and in vivo assays and was designated as "megagonist," a property attributed to its tight binding profile. By acting both centrally and peripherally, 27a distinguishes itself from our previously reported "megagonist" AM841, whose functions are restricted to the periphery.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Analgésicos/síntese química , Analgésicos/metabolismo , Analgésicos/farmacologia , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/metabolismo , Canabinoides/síntese química , Canabinoides/metabolismo , Cricetulus , Humanos , Ligantes , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-33741446

RESUMO

More than 500 molecules have been identified as components of Cannabis sativa (C. sativa), of which the most studied is Δ9-tetrahydrocannabinol (Δ9-THC). Several studies have suggested that Δ9-THC exerts diverse biological effects, ranging from fragmentation of DNA to behavioral disruptions. Currently, it is accepted that most of the pharmacological properties of Δ9-THC engage the activation of the cannabinoid receptors, named CB1 and CB2. Interestingly, multiple pieces of evidence have suggested that the cannabinoid receptors play an active role in the modulation of several diseases leading to the design of synthetic cannabinoid-like compounds. Advances in the development of synthetic CB1 cannabinoid receptor selective agonists as therapeutical approaches are, however, limited. This review focuses on available evidence searched in PubMed regarding the synthetic CB1 cannabinoid receptor selective agonists such as AM-1235, arachidonyl-2' chloroethylamide (ACEA), CP 50,556-1 (Levonantradol), CP-55,940, HU-210, JWH-007, JWH-018, JWH-200 (WIN 55,225), methanandamide, nabilone, O-1812, UR-144, WIN 55,212-2, nabiximols, and dronabinol. Indeed, it would be ambitious to describe all available evidence related to the synthetic CB1 cannabinoid receptor selective agonists. However, and despite the positive evidence on the positive results of using these compounds in experimental models of health disturbances and preclinical trials, we discuss evidence in regards some concerns due to side effects.


Assuntos
Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/uso terapêutico , Substâncias Controladas/síntese química , Receptor CB1 de Canabinoide/agonistas , Analgésicos/síntese química , Analgésicos/uso terapêutico , Animais , Ansiolíticos/síntese química , Ansiolíticos/uso terapêutico , Canabinoides/síntese química , Canabinoides/uso terapêutico , Substâncias Controladas/administração & dosagem , Cicloexanóis/síntese química , Cicloexanóis/uso terapêutico , Dronabinol/análogos & derivados , Dronabinol/síntese química , Dronabinol/uso terapêutico , Humanos , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Fenantridinas/síntese química , Fenantridinas/uso terapêutico , Receptor CB1 de Canabinoide/metabolismo
10.
Drug Test Anal ; 13(7): 1383-1401, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33787091

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) are one of the largest and most structurally diverse classes of new psychoactive substances (NPS). Despite this, pharmacological data are often lacking following the identification of a new SCRA in drug markets. In this first of a three-part series, we describe the synthesis, analytical characterization, and binding affinity of a proactively generated, systematic library of 30 indole, indazole, and 7-azaindole SCRAs related to MMB-4en-PICA, MDMB-4en-PINACA, ADB-4en-PINACA, and MMB-4CN-BUTINACA featuring a 4-pentenyl (4en-P), butyl (B/BUT), or 4-cyanobutyl (4CN-B/BUT) tail and a methyl l-valinate (MMB), methyl l-tert-leucinate (MDMB), methyl l-phenylalaninate (MPP), l-valinamide (AB), l-tert-leucinamide (ADB), l-phenylalaninamide (APP), adamantyl (A), or cumyl head group. Competitive radioligand binding assays demonstrated that the indazole core conferred the highest CB1 binding affinity (Ki = 0.17-39 nM), followed by indole- (Ki = 0.95-160 nM) and then 7-azaindole-derived SCRAs (Ki = 5.4-271 nM). Variation of the head group had the greatest effect on binding, with tert-leucine amides and methyl esters (Ki = 0.17-14 nM) generally showing the greatest affinities, followed by valine derivatives (Ki = 0.72-180 nM), and then phenylalanine derivatives (Ki = 2.5-271 nM). Adamantyl head groups (Ki = 8.8-59 nM) were suboptimal for binding, whereas the cumyl analogues consistently conferred high affinity (Ki = 0.62-36 nM). Finally, both butyl (Ki = 3.1-163 nM) and 4-cyanobutyl (Ki = 5.5-44 nM) tail groups were less favorable for CB1 binding than their corresponding 4-pentenyl counterparts (Ki = 0.72-25 nM).


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia , Ensaio Radioligante , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
11.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546439

RESUMO

The rapid diffusion of new psychoactive substances (NPS) presents unprecedented challenges to both customs authorities and analytical laboratories involved in their detection and characterization. In this study an analytical approach to the identification and structural elucidation of a novel synthetic cannabimimetic, quinolin-8-yl-3-[(4,4-difluoropiperidin-1-yl) sulfonyl]-4-methylbenzoate (2F-QMPSB), detected in seized herbal material, is detailed. An acid precursor 4-methyl-3-(4,4-difluoro-1-piperidinylsulfonyl) benzoic acid (2F-MPSBA), has also been identified in the same seized material. After extraction from the herbal material the synthetic cannabimimetic, also referred to as synthetic cannabinoid receptor agonists or "synthetic cannabinoids", was characterized using gas chromatography-mass spectrometry (GC-MS), 1H, 13C, 19F and 15N nuclear magnetic resonance (NMR) and high-resolution tandem mass spectrometry (HR-MS/MS) combined with chromatographic separation. A cheminformatics platform was used to manage and interpret the analytical data from these techniques.


Assuntos
Canabinoides/análise , Drogas Ilícitas/análise , Ressonância Magnética Nuclear Biomolecular , Canabinoides/síntese química , Canabinoides/química , Europa (Continente) , Drogas Ilícitas/síntese química , Drogas Ilícitas/química , Espectrometria de Massas em Tandem
12.
J Am Chem Soc ; 143(2): 736-743, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33399457

RESUMO

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. However, a lack of understanding of its complex signaling in cells and tissues complicates the therapeutic exploitation of CB2 as a drug target. We show for the first time that benchmark CB2 agonist HU308 increases cytosolic Ca2+ levels in AtT-20(CB2) cells via CB2 and phospholipase C. The synthesis of photoswitchable derivatives of HU308 from the common building block 3-OTf-HU308 enables optical control over this pathway with spatiotemporal precision, as demonstrated in a real-time Ca2+ fluorescence assay. Our findings reveal a novel messenger pathway by which HU308 and its derivatives affect cellular excitability, and they demonstrate the utility of chemical photoswitches to control and monitor CB2 signaling in real-time.


Assuntos
Cálcio/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Canabinoides/síntese química , Canabinoides/química , Humanos , Estrutura Molecular , Processos Fotoquímicos
13.
Eur J Pharmacol ; 895: 173875, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33460612

RESUMO

Given that neuronal degeneration in Alzheimer's disease (AD) is caused by the combination of multiple neurotoxic insults, current directions in the research of novel therapies to treat this disease attempts to design multitarget strategies that could be more effective than the simply use of acetylcholinesterase inhibitors; currently, the most used therapy for AD. One option, explored recently, is the synthesis of new analogues of cannabinoids that could competitively inhibit the acetylcholinesterase (AChE) enzyme and showing the classic neuroprotective profile of cannabinoid compounds. In this work, molecular docking has been used to design some cannabinoid analogues with such multitarget properties, based on the similarities of donepezil and Δ9-tetrahydrocannabinol. The analogues synthesized, compounds 1 and 2, demonstrated to have two interesting characteristics in different in vitro assays: competitive inhibition of AChE and competitive antagonism at the CB1/CB2 receptors. They are highly lipophilic, highlighting that they could easily reach the CNS, and apparently presented a low toxicity. These results open the door to the synthesis of new compounds for a more effective treatment of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Sítios de Ligação , Encéfalo/enzimologia , Encéfalo/patologia , Antagonistas de Receptores de Canabinoides/síntese química , Canabinoides/síntese química , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Desenho Assistido por Computador , Desenho de Fármacos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Humanos , Neurônios/enzimologia , Neurônios/patologia , Fármacos Neuroprotetores/química , Ligação Proteica , Conformação Proteica , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
14.
Clin Toxicol (Phila) ; 59(4): 334-342, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32840426

RESUMO

OBJECTIVES: Older (aged 50+) cannabis users are growing in numbers, but research on poison control center (PCC) cases has not focused on them. In this study, we examined: (1) changing trends in cannabis forms reported in PCC cases; (2) demographic and clinical factors associated with different cannabis forms; and (3) associations between cannabis forms and medical outcomes. METHODS: We used the American Association of Poison Control Centers' National Poison Data System (NPDS), January 1, 2009-December 31, 2019, to examine the 5201 cases aged 50+ in which cannabis was the only or primary substance. Following descriptive analyses, multinomial logistic regression was fit to examine associations of three cannabis forms (dried/undried plant, other preparations, and synthetic cannabinoids/e-cigarettes for cannabis delivery) with cases' demographic and clinical characteristics, and binary logistic regression was fit to examine associations of medical outcomes (major/potentially major vs. nonmajor) with cannabis forms. RESULTS: Cannabis-related cases involving older adults increased 18-fold (from 61 to 1074) between 2009 and 2019. Compared to plant forms, other preparations had 51.24 times greater odds of appearing in 2018-2019 than in 2009-2011 (95% CI = 27.74-94.67), and synthetic cannabinoids/e-cigarettes had 2.19 times greater odds of appearing in 2014-2015 (95% CI = 1.64-2.93) but lower odds of appearing in 2016-2017 (RRR = 0.67, 95% CI = 0.50-0.89). Other preparations were positively associated with older age, adverse reactions, and suicide attempts but negatively associated with medical cannabis legal states. Synthetic cannabinoids/e-cigarettes were positively associated with being male, intentional misuse/abuse, and chronic use. Compared to plant forms, major medical outcomes/death were less likely among those who used other preparations (OR = 0.75, 95% CI = 0.56-0.99) but more likely among those who used synthetic cannabinoids/e-cigarettes (OR = 2.07, 95% CI = 1.60-2.66). CONCLUSIONS: Although PCC cannabis cases involving older adults are relatively few, cases of other cannabis preparations than plant forms increased rapidly in recent years while cases of synthetic cannabinoids decreased. The rate of major medical outcomes also appears to be high.


Assuntos
Canabinoides/intoxicação , Cannabis/intoxicação , Idoso , Canabidiol/intoxicação , Canabinoides/síntese química , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Humanos , Masculino , Maconha Medicinal/uso terapêutico , Pessoa de Meia-Idade , Análise Multivariada , Centros de Controle de Intoxicações/estatística & dados numéricos , Estados Unidos/epidemiologia
15.
Adv Exp Med Biol ; 1264: 47-65, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33332003

RESUMO

In recent years, an increasing number of investigations has demonstrated the therapeutic potential of molecules targeting the endocannabinoid system. Cannabinoids of endogenous, phytogenic, and synthetic nature have been assessed in a wide variety of disease models ranging from neurological to metabolic disorders. Even though very few compounds of this type have already reached the market, numerous preclinical and clinical studies suggest that cannabinoids are suitable drugs for the clinical management of diverse pathologies.In this chapter, we will provide an overview of the endocannabinoid system under certain physiopathological conditions, with a focus on neurological, oncologic, and metabolic disorders. Cannabinoids evaluated as potential therapeutic agents in experimental models with an emphasis in the most successful chemical entities and their perspectives towards the clinic will be discussed.


Assuntos
Canabinoides/síntese química , Canabinoides/uso terapêutico , Doenças Metabólicas/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Humanos , Doenças Metabólicas/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo
16.
Pharmacol Biochem Behav ; 199: 173059, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33086126

RESUMO

The phytocannabinoid Δ9-tetrahydrocannabinol (THC) was isolated and synthesized in the 1960s. Since then, two synthetic cannabinoids (SCBs) targeting the cannabinoid 1 (CB1R) and 2 (CB2R) receptors were approved for medical use based on clinical safety and efficacy data: dronabinol (synthetic THC) and nabilone (synthetic THC analog). To probe the function of the endocannabinoid system further, hundreds of investigational compounds were developed; in particular, agonists with (1) greater CB1/2R affinity relative to THC and (2) full CB1/2R agonist activity. This pharmacological profile may pose greater risks for misuse and adverse effects relative to THC, and these SCBs proliferated in retail markets as legal alternatives to cannabis (e.g., novel psychoactive substances [NPS], "Spice," "K2"). These SCBs were largely outlawed in the U.S., but blanket policies that placed all SCB chemicals into restrictive control categories impeded research progress into novel mechanisms for SCB therapeutic development. There is a concerted effort to develop new, therapeutically useful SCBs that target novel pharmacological mechanisms. This review highlights the potential therapeutic efficacy and safety considerations for unique SCBs, including CB1R partial and full agonists, peripherally-restricted CB1R agonists, selective CB2R agonists, selective CB1R antagonists/inverse agonists, CB1R allosteric modulators, endocannabinoid-degrading enzyme inhibitors, and cannabidiol. We propose promising directions for SCB research that may optimize therapeutic efficacy and diminish potential for adverse events, for example, peripherally-restricted CB1R antagonists/inverse agonists and biased CB1/2R agonists. Together, these strategies could lead to the discovery of new, therapeutically useful SCBs with reduced negative public health impact.


Assuntos
Canabinoides/uso terapêutico , Segurança do Paciente , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/efeitos adversos , Canabinoides/síntese química , Canabinoides/isolamento & purificação , Cannabis/química , Desenvolvimento de Medicamentos , Humanos , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle
17.
Molecules ; 25(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092129

RESUMO

In 2020, nearly one-third of new drugs on the global market were synthetic cannabinoids including the drug of abuse N-(1-adamantyl)-1-(5-pentyl)-1H-indazole-3-carboxamide (5F-APINACA, 5F-AKB48). Knowledge of 5F-APINACA metabolism provides a critical mechanistic basis to interpret and predict abuser outcomes. Prior qualitative studies identified which metabolic processes occur but not the order and extent of them and often relied on problematic "semi-quantitative" mass spectroscopic (MS) approaches. We capitalized on 5F-APINACA absorbance for quantitation while leveraging MS to characterize metabolite structures for measuring 5F-APINACA steady-state kinetics. We demonstrated the reliability of absorbance and not MS for inferring metabolite levels. Human liver microsomal reactions yielded eight metabolites by MS but only five by absorbance. Subsequent kinetic studies on primary and secondary metabolites revealed highly efficient mono- and dihydroxylation of the adamantyl group and much less efficient oxidative defluorination at the N-pentyl terminus. Based on regiospecificity and kinetics, we constructed pathways for competing and intersecting steps in 5F-APINACA metabolism. Overall efficiency for adamantyl oxidation was 17-fold higher than that for oxidative defluorination, showing significant bias in metabolic flux and subsequent metabolite profile compositions. Lastly, our analytical approach provides a powerful new strategy to more accurately assess metabolic kinetics for other understudied synthetic cannabinoids possessing the indazole chromophore.


Assuntos
Adamantano/análogos & derivados , Canabinoides/química , Indazóis/química , Redes e Vias Metabólicas/efeitos dos fármacos , Adamantano/síntese química , Adamantano/química , Adamantano/farmacologia , Canabinoides/síntese química , Humanos , Indazóis/síntese química , Indazóis/farmacologia , Cinética , Microssomos Hepáticos/efeitos dos fármacos
18.
J Nat Prod ; 83(9): 2587-2591, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32972142

RESUMO

The synthesis of three phenolic natural products has been accomplished with unprecedented efficiency using a new alumina-promoted regioselective aromatic allylation reaction. Cannabigerol and grifolin were prepared in one step from the inexpensive 5-alkyl-resorcinols olivetol and orcinol. Piperogalin was synthesized, for the first time, via two sequential allylations of orcinol with geraniol and prenol.


Assuntos
Óxido de Alumínio/química , Canabinoides/síntese química , Resorcinóis/síntese química , Cannabis/química , Catálise , Estrutura Molecular , Terpenos/síntese química
19.
J Clin Psychopharmacol ; 40(5): 464-467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32815860

RESUMO

PURPOSE/BACKGROUND: The number of patients with acute synthetic cannabinoid intoxication (SCI) has increased in recent years although the prohibition of its legal sale and use in Turkey despite other countries allowing to some extent sale and use. The reported clinical findings of acute SCI are similar to the symptoms of several diseases. The first case of acute SCI seen in our hospital was in 2014. The aim of this study was to share the data of synthetic cannabinoid use in a research hospital in Turkey and to contribute the epidemiologic data globally betwen 2014 and 2017. METHODS/PROCEDURES: A retrospective evaluation was made of patients who presented at emergency department (ED) because of SCI between January 2014 and December 2017. The initial diagnosis of the patients was done either via their self-report or clinician's clinical observation (family history with hallucination, lethargy, convulsions, dizziness, etc.). Totally, 352 patients were included to the study whose cannabioid use was proven with their urine drug analysis. FINDINGS/RESULTS: Men were predominantly high (93.8%). Nearly all patients (93.5%) were followed up and discharged in 24 hours. Among them, 21 (5.9%) patients were admitted for hospitalization, and mortality was seen in 2 (0.6%). The mean number of previous presentations at ED with a similar diagnosis was 8.6 ± 10.31. IMPLICATIONS/CONCLUSIONS: Great care must be taken in respect of complications related to SCI, which can even result in death. Patients have a tendency to not disclose the substance they have taken because it is illegal. Patients presenting at ED with recurrent symptoms must be referred to relevant legal authorities. For patients presenting with different clinical effects, SCI must be considered.


Assuntos
Canabinoides/efeitos adversos , Serviço Hospitalar de Emergência , Alucinógenos/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Adolescente , Adulto , Idoso , Canabinoides/síntese química , Canabinoides/urina , Feminino , Alucinógenos/síntese química , Alucinógenos/urina , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Detecção do Abuso de Substâncias , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/urina , Fatores de Tempo , Turquia/epidemiologia , Urinálise , Adulto Jovem
20.
J Nat Prod ; 83(7): 2060-2065, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32649196

RESUMO

A simple synthesis of the major oxidized metabolites in mammalian tissues of (-)-Δ9-tetrahydrocannabivarin (THCV) (1) has been accomplished by kinetic studies of allylic oxidation using SeO2 on botanically derived THCV with the aim to yield primary and secondary allylic alcohols concurrently. This synthetic approach led to the preparation of numerous THCV derivatives, including two new compounds, 8α-hydroxy-Δ9-tetrahydrocannabivarin (2) and 8ß-hydroxy-Δ9-tetrahydrocannabivarin (3), and the known compounds 11-hydroxy-Δ9-tetrahydrocannabivarin (4) and Δ9-tetrahydrocannabivarin-11-oic acid (5), without affecting the C-10a stereogenic center in the natural precursor and without formation of tricyclic dibenzopyran derivatives. This simple synthetic methodology could be useful to investigate the pharmacological role of THCV metabolites at, among others, the endocannabinoid CB1 and CB2 receptors for which THCV reportedly acts as respectively a neutral antagonist and partial agonist.


Assuntos
Canabinoides/síntese química , Mamíferos/metabolismo , Animais , Canabinoides/metabolismo , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA