Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37.932
Filtrar
1.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725858

RESUMO

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Assuntos
Movimento Celular , Neoplasias do Colo , Humanos , Movimento Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Transdução de Sinais
3.
J Assoc Physicians India ; 72(1): 110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38736086

RESUMO

Most biological functions have their basis in a rapid change in cell membrane permeability. Hodgkin and Huxley showed regulation of the flow of molecules and ions between the nerve cell and its environment (Nobel Prize 1963), by recording macroscopic currents. Two Germans Neher and Sakmann showed that specific ion channels actually exist, and specific membrane proteins act as gates or agents for active transport regulating in physiological and pathological processes.


Assuntos
Canais Iônicos , Canais Iônicos/fisiologia , Canais Iônicos/metabolismo , História do Século XX , Humanos
4.
Physiol Rep ; 12(9): e16043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724885

RESUMO

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Assuntos
Sistema Urinário , Animais , Camundongos , Masculino , Feminino , Sistema Urinário/metabolismo , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Camundongos Endogâmicos C57BL , Urotélio/metabolismo , Urotélio/citologia , Células Epiteliais/metabolismo
5.
Channels (Austin) ; 18(1): 2355123, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38754025

RESUMO

PIEZO1 and PIEZO2 are mechanically activated ion channels that confer mechanosensitivity to various cell types. PIEZO channels are commonly examined using the so-called poking technique, where currents are recorded in the whole-cell configuration of the patch-clamp technique, while the cell surface is mechanically stimulated with a small fire-polished patch pipette. Currently, there is no gold standard for mechanical stimulation, and therefore, stimulation protocols differ significantly between laboratories with regard to stimulation velocity, angle, and size of the stimulation probe. Here, we systematically examined the impact of variations in these three stimulation parameters on the outcomes of patch-clamp recordings of PIEZO1 and PIEZO2. We show that the inactivation kinetics of PIEZO1 and, to a lesser extent, of PIEZO2 change with the angle at which the probe that is used for mechanical stimulation is positioned and, even more prominently, with the size of its tip. Moreover, we found that the mechanical activation threshold of PIEZO2, but not PIEZO1, decreased with increasing stimulation speeds. Thus, our data show that two key outcome parameters of PIEZO-related patch-clamp studies are significantly affected by common variations in the mechanical stimulation protocols, which calls for caution when comparing data from different laboratories and highlights the need to establish a gold standard for mechanical stimulation to improve comparability and reproducibility of data obtained with the poking technique.


Assuntos
Canais Iônicos , Técnicas de Patch-Clamp , Canais Iônicos/metabolismo , Humanos , Cinética , Células HEK293 , Mecanotransdução Celular
6.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747287

RESUMO

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Assuntos
Angiopoietina-2 , Proteína Forkhead Box O1 , Canais Iônicos , Linfangiogênese , Linfedema , Receptor de TIE-1 , Transdução de Sinais , Canais Iônicos/metabolismo , Canais Iônicos/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Animais , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Camundongos , Linfangiogênese/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Células Endoteliais/metabolismo , Mecanotransdução Celular , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
7.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702777

RESUMO

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Células Endoteliais da Veia Umbilical Humana , Canais Iônicos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Diabetes Mellitus Experimental/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Glicemia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/deficiência , Células Cultivadas , Proliferação de Células , Apoptose , Masculino , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Movimento Celular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Camundongos , Estreptozocina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética
8.
Sci Rep ; 14(1): 10365, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710778

RESUMO

Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.


Assuntos
Fibroblastos , Canais Iônicos , Mecanotransdução Celular , Proteínas de Membrana , Animais , Canais Iônicos/metabolismo , Ratos , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Cultivadas , Cálcio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Miocárdio/metabolismo , Miocárdio/citologia , Microambiente Celular
9.
Sci Rep ; 14(1): 11241, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755246

RESUMO

Current density, the membrane current value divided by membrane capacitance (Cm), is widely used in cellular electrophysiology. Comparing current densities obtained in different cell populations assume that Cm and ion current magnitudes are linearly related, however data is scarce about this in cardiomyocytes. Therefore, we statistically analyzed the distributions, and the relationship between parameters of canine cardiac ion currents and Cm, and tested if dividing original parameters with Cm had any effect. Under conventional voltage clamp conditions, correlations were high for IK1, moderate for IKr and ICa,L, while negligible for IKs. Correlation between Ito1 peak amplitude and Cm was negligible when analyzing all cells together, however, the analysis showed high correlations when cells of subepicardial, subendocardial or midmyocardial origin were analyzed separately. In action potential voltage clamp experiments IK1, IKr and ICa,L parameters showed high correlations with Cm. For INCX, INa,late and IKs there were low-to-moderate correlations between Cm and these current parameters. Dividing the original current parameters with Cm reduced both the coefficient of variation, and the deviation from normal distribution. The level of correlation between ion currents and Cm varies depending on the ion current studied. This must be considered when evaluating ion current densities in cardiac cells.


Assuntos
Potenciais de Ação , Capacitância Elétrica , Ventrículos do Coração , Miócitos Cardíacos , Técnicas de Patch-Clamp , Animais , Cães , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Canais Iônicos/metabolismo , Membrana Celular/metabolismo
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732096

RESUMO

Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.


Assuntos
Canais Iônicos , Neurônios Retinianos , Humanos , Animais , Canais Iônicos/metabolismo , Neurônios Retinianos/metabolismo , Mecanotransdução Celular , Retina/metabolismo , Retina/citologia
11.
Science ; 384(6691): 66-73, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574138

RESUMO

Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.


Assuntos
Asma , Brônquios , Broncoconstrição , Animais , Humanos , Camundongos , Asma/patologia , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Inflamação/patologia , Transdução de Sinais , Canais Iônicos/antagonistas & inibidores , Lisofosfolipídeos/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/antagonistas & inibidores , Brônquios/patologia , Brônquios/fisiopatologia
12.
ACS Synth Biol ; 13(4): 1382-1392, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38598783

RESUMO

The functional analysis of protein nanopores is typically conducted in planar lipid bilayers or liposomes exploiting high-resolution but low-throughput electrical and optical read-outs. Yet, the reconstitution of protein nanopores in vitro still constitutes an empiric and low-throughput process. Addressing these limitations, nanopores can now be analyzed using the functional nanopore (FuN) screen exploiting genetically encoded fluorescent protein sensors that resolve distinct nanopore-dependent Ca2+ in- and efflux patterns across the inner membrane of Escherichia coli. With a primary proof-of-concept established for the S2168 holin, and thereof based recombinant nanopore assemblies, the question arises to what extent alternative nanopores can be analyzed with the FuN screen and to what extent alternative fluorescent protein sensors can be adapted. Focusing on self-assembling membrane peptides, three sets of 13 different nanopores are assessed for their capacity to form nanopores in the context of the FuN screen. Nanopores tested comprise both natural and computationally designed nanopores. Further, the FuN screen is extended to K+-specific fluorescent protein sensors and now provides a capacity to assess the specificity of a nanopore or ion channel. Finally, a comparison to high-resolution biophysical and electrophysiological studies in planar lipid bilayers provides an experimental benchmark for future studies.


Assuntos
Nanoporos , Bicamadas Lipídicas/metabolismo , Lipossomos , Peptídeos/metabolismo , Canais Iônicos
13.
PLoS Comput Biol ; 20(4): e1011855, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578817

RESUMO

The collective migration of keratinocytes during wound healing requires both the generation and transmission of mechanical forces for individual cellular locomotion and the coordination of movement across cells. Leader cells along the wound edge transmit mechanical and biochemical cues to ensuing follower cells, ensuring their coordinated direction of migration across multiple cells. Despite the observed importance of mechanical cues in leader cell formation and in controlling coordinated directionality of cell migration, the underlying biophysical mechanisms remain elusive. The mechanically-activated ion channel PIEZO1 was recently identified to play an inhibitory role during the reepithelialization of wounds. Here, through an integrative experimental and mathematical modeling approach, we elucidate PIEZO1's contributions to collective migration. Time-lapse microscopy reveals that PIEZO1 activity inhibits leader cell formation at the wound edge. To probe the relationship between PIEZO1 activity, leader cell formation and inhibition of reepithelialization, we developed an integrative 2D continuum model of wound closure that links observations at the single cell and collective cell migration scales. Through numerical simulations and subsequent experimental validation, we found that coordinated directionality plays a key role during wound closure and is inhibited by upregulated PIEZO1 activity. We propose that PIEZO1-mediated retraction suppresses leader cell formation which inhibits coordinated directionality between cells during collective migration.


Assuntos
Canais Iônicos , Queratinócitos , Movimento Celular/fisiologia
14.
Adv Biol (Weinh) ; 8(5): e2400018, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640945

RESUMO

Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Segmento Anterior do Olho/citologia , Segmento Anterior do Olho/metabolismo , Microfluídica/métodos , Microfluídica/instrumentação , Organoides/metabolismo , Organoides/citologia , Proteínas de Sinalização YAP/metabolismo , Dispositivos Lab-On-A-Chip , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo
15.
Acta Physiol (Oxf) ; 240(6): e14152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682304

RESUMO

Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.


Assuntos
Canais Iônicos , Rim , Mecanotransdução Celular , Canais Iônicos/metabolismo , Humanos , Animais , Mecanotransdução Celular/fisiologia , Rim/metabolismo
16.
Arch Oral Biol ; 163: 105963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608563

RESUMO

OBJECTIVES: Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS: Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS: CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS: The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.


Assuntos
Proteína Morfogenética Óssea 2 , Subunidade alfa 1 de Fator de Ligação ao Core , Canais Iônicos , Osteoblastos , Osteogênese , Osteoblastos/metabolismo , Canais Iônicos/metabolismo , Animais , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Osteogênese/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ligante RANK/metabolismo , Western Blotting , Estresse Mecânico , Diferenciação Celular , Osteocalcina/metabolismo , Fosfatase Alcalina/metabolismo , Oligopeptídeos/farmacologia , Técnicas de Movimentação Dentária , Mecanotransdução Celular/fisiologia , Linhagem Celular , Remodelação Óssea/fisiologia , Pirazinas , Venenos de Aranha , Tiadiazóis , Peptídeos e Proteínas de Sinalização Intercelular
17.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612801

RESUMO

The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.


Assuntos
Astrócitos , Neocórtex , Animais , Camundongos , Receptores de N-Metil-D-Aspartato , Neurônios , Ácido Glutâmico , Canais Iônicos
18.
Cardiovasc Toxicol ; 24(5): 472-480, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38630336

RESUMO

The challenge posed by opioid overdose has become a significant concern for health systems due to the complexities associated with drug prohibition, widespread clinical use, and potential abuse. In response, healthcare professionals have primarily concentrated on mitigating the hallucinogenic and respiratory depressant consequences of opioid overdose to minimize associated risks. However, it is crucial to acknowledge that most opioids possess the capacity to prolong the QT interval, particularly in cases of overdose, thereby potentially resulting in severe ventricular arrhythmias and even sudden death if timely intervention is not implemented. Consequently, alongside addressing the typical adverse effects of opioids, it is imperative to consider their cardiotoxicity. To enhance comprehension of the correlation between opioids and arrhythmias, identify potential targets for prompt intervention, and mitigate the hazards associated with clinical utilization, an exploration of the interaction between drugs and ion channels, as well as their underlying mechanisms, becomes indispensable. This review primarily concentrates on elucidating the impact of opioid drugs on diverse ion channels, investigating recent advancements in this domain, and attaining a deeper understanding of the mechanisms underlying the prolongation of the QT interval by opioid drugs, along with potential interventions.


Assuntos
Analgésicos Opioides , Cardiotoxicidade , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/fisiopatologia , Analgésicos Opioides/efeitos adversos , Animais , Medição de Risco , Fatores de Risco , Frequência Cardíaca/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Canais Iônicos/metabolismo , Canais Iônicos/efeitos dos fármacos , Overdose de Opiáceos/fisiopatologia
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653360

RESUMO

OBJECTIVE: Glucagon is a critical hormone regulating glucose metabolism. It stimulates the liver to release glucose under low blood sugar conditions, thereby maintaining blood glucose stability. Excessive glucagon secretion and hyperglycemia is observed in individuals with diabetes. Precise modulation of glucagon is significant to maintain glucose homeostasis. Piezo1 is a mechanosensitive ion channel capable of converting extracellular mechanical forces into intracellular signals, thus regulating hormonal synthesis and secretion. This study aims to investigate the role of Piezo1 in regulating glucagon production in α cells. METHODS: The effects of Piezo1 on glucagon production were examined in normal- or high-fat diet fed α cell-specific Piezo1 knockout mice (Gcg-Piezo1-/-), and the murine pancreatic α cell line αTC1-6. Expression of Proglucagon was investigated by real-time PCR and western blotting. Plasma glucagon and insulin were detected by enzyme immunoassay. RESULTS: Under both normal- and high-fat diet conditions, Gcg-Piezo1-/- mice exhibited increased pancreatic α cell proportion, hyperglucagonemia, impaired glucose tolerance, and activated pancreatic mTORC1 signaling. Activation of Piezo1 by its agonist Yoda1 or overexpression of Piezo1 led to decreased glucagon synthesis and suppressed mTOR signaling pathway in αTC1-6 cells. Additionally, the levels of glucagon in the medium were also reduced. Conversely, knockdown of Piezo1 produced opposite effects. CONCLUSION: Our study uncovers the regulatory role of the Piezo1 ion channel in α cells. Piezo1 influences glucagon production by affecting mTOR signaling pathway.


Assuntos
Dieta Hiperlipídica , Células Secretoras de Glucagon , Glucagon , Canais Iônicos , Camundongos Knockout , Animais , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Camundongos , Canais Iônicos/metabolismo , Canais Iônicos/genética , Dieta Hiperlipídica/efeitos adversos , Masculino , Transdução de Sinais , Insulina/metabolismo , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Proglucagon/metabolismo , Proglucagon/genética , Pirazinas , Tiadiazóis
20.
Methods Enzymol ; 696: 3-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658085

RESUMO

Tight regulation of molecules moving through the cell membrane is particularly important for free-living microorganisms because of their small cell volumes and frequent changes in the chemical composition of the extracellular environment. This is true for nutrients, but even more so for toxic molecules. Traditionally, the transport of these diverse molecules in microorganisms has been studied on cell populations rather than on single cells, mainly because of technical difficulties. The goal of this chapter is to make available a detailed method to prepare yeast spheroplasts to study the movement of fluoride ions across the plasma membrane of single cells by the patch-clamp technique. In this procedure, three steps are critical to achieve high resistance (GΩ) seals between the membrane and the glass electrode: (1) appropriate removal of the cell wall by enzymatic treatment; (2) balance between the osmotic strength of sealing solutions and cell membrane turgor; and (3) meticulous morphological inspection of spheroplasts suitable for gigaseal formation. We show now that this method, originally developed for Saccharomyces cerevisiae, can also be applied to Candida albicans, an opportunistic human pathogen.


Assuntos
Candida albicans , Fluoretos , Técnicas de Patch-Clamp , Saccharomyces cerevisiae , Esferoplastos , Saccharomyces cerevisiae/metabolismo , Candida albicans/metabolismo , Candida albicans/fisiologia , Fluoretos/química , Técnicas de Patch-Clamp/métodos , Esferoplastos/metabolismo , Membrana Celular/metabolismo , Canais Iônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA