Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
Neuron ; 112(8): 1200-1202, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636452

RESUMO

In this issue of Neuron, Yamada et al.1 show that fast excitatory neurotransmission by protons acting at acid-sensing ion channels (ASICs) mediates mechanical force-evoked signaling at the Merkel cell-neurite complex, contributing to mammalian tactile discrimination.


Assuntos
Células de Merkel , Neurônios , Animais , Neurônios/metabolismo , Prótons , Neuritos/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/metabolismo , Mamíferos/metabolismo
2.
Inflamm Res ; 73(4): 669-691, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483556

RESUMO

OBJECTIVE AND DESIGN: Our aim was to determine an age-dependent role of Nav1.8 and ASIC3 in dorsal root ganglion (DRG) neurons in a rat pre-clinical model of long-term inflammatory pain. METHODS: We compared 6 and 24 months-old female Wistar rats after cutaneous inflammation. We used behavioral pain assessments over time, qPCR, quantitative immunohistochemistry, selective pharmacological manipulation, ELISA and in vitro treatment with cytokines. RESULTS: Older rats exhibited delayed recovery from mechanical allodynia and earlier onset of spontaneous pain than younger rats after inflammation. Moreover, the expression patterns of Nav1.8 and ASIC3 were time and age-dependent and ASIC3 levels remained elevated only in aged rats. In vivo, selective blockade of Nav1.8 with A803467 or of ASIC3 with APETx2 alleviated mechanical and cold allodynia and also spontaneous pain in both age groups with slightly different potency. Furthermore, in vitro IL-1ß up-regulated Nav1.8 expression in DRG neurons cultured from young but not old rats. We also found that while TNF-α up-regulated ASIC3 expression in both age groups, IL-6 and IL-1ß had this effect only on young and aged neurons, respectively. CONCLUSION: Inflammation-associated mechanical allodynia and spontaneous pain in the elderly can be more effectively treated by inhibiting ASIC3 than Nav1.8.


Assuntos
Canais Iônicos Sensíveis a Ácido , Hiperalgesia , Canal de Sódio Disparado por Voltagem NAV1.8 , Dor , Animais , Feminino , Ratos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/farmacologia , Analgésicos/uso terapêutico , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo
3.
J Appl Physiol (1985) ; 136(5): 1097-1104, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511209

RESUMO

When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in isolated dorsal root ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, namely endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This in vitro finding prompted us to determine whether endomorphin 2 and oxycodone, when infused into the arterial supply of freely perfused contracting hindlimb muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction of the triceps surae muscles. The endomorphin 2-induced potentiation of the pressor responses to contraction was prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control (n = 10), 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion (n = 10), and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n = 10). Infusion of endomorphin 2 and naloxone did not potentiate the pressor responses to contraction in ASIC3 knockout rats (n = 6). Partly similar findings were observed when oxycodone was substituted for endomorphin 2. Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level (n = 9). The peak pressor response averaged 23.1 ± 8.6 mmHg for control (n = 9), 33.2 ± 11 mmHg after naloxone and oxycodone were infused (n = 9), and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n = 9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by the endogenous mu opioid, endomorphin 2, potentiated the exercise pressor reflex.NEW & NOTEWORTHY This paper provides the first in vivo evidence that endomorphin 2, an endogenous opioid peptide, can paradoxically increase the magnitude of the exercise pressor reflex by an ASIC3-dependent mechanism even when the contracting muscles are freely perfused.


Assuntos
Canais Iônicos Sensíveis a Ácido , Contração Muscular , Músculo Esquelético , Naloxona , Oligopeptídeos , Receptores Opioides mu , Reflexo , Animais , Masculino , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos Opioides/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oligopeptídeos/farmacologia , Oxicodona/farmacologia , Oxicodona/administração & dosagem , Condicionamento Físico Animal/fisiologia , Ratos Sprague-Dawley , Receptores Opioides mu/metabolismo , Reflexo/efeitos dos fármacos , Reflexo/fisiologia
4.
CNS Neurosci Ther ; 30(2): e14596, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38357854

RESUMO

BACKGROUND: Epilepsy is a chronic neurological disease characterized by repeated and unprovoked epileptic seizures. Developing disease-modifying therapies (DMTs) has become important in epilepsy studies. Notably, focusing on iron metabolism and ferroptosis might be a strategy of DMTs for epilepsy. Blocking the acid-sensing ion channel 1a (ASIC1a) has been reported to protect the brain from ischemic injury by reducing the toxicity of [Ca2+ ]i . However, whether inhibiting ASIC1a could exert neuroprotective effects and become a novel target for DMTs, such as rescuing the ferroptosis following epilepsy, remains unknown. METHODS: In our study, we explored the changes in ferroptosis-related indices, including glutathione peroxidase (GPx) enzyme activity and levels of glutathione (GSH), iron accumulation, lipid degradation products-malonaldehyde (MDA) and 4-hydroxynonenal (4-HNE) by collecting peripheral blood samples from adult patients with epilepsy. Meanwhile, we observed alterations in ASIC1a protein expression and mitochondrial microstructure in the epileptogenic foci of patients with drug-resistant epilepsy. Next, we accessed the expression and function changes of ASIC1a and measured the ferroptosis-related indices in the in vitro 0-Mg2+ model of epilepsy with primary cultured neurons. Subsequently, we examined whether blocking ASIC1a could play a neuroprotective role by inhibiting ferroptosis in epileptic neurons. RESULTS: Our study first reported significant changes in ferroptosis-related indices, including reduced GPx enzyme activity, decreased levels of GSH, iron accumulation, elevated MDA and 4-HNE, and representative mitochondrial crinkling in adult patients with epilepsy, especially in epileptogenic foci. Furthermore, we found that inhibiting ASIC1a could produce an inhibitory effect similar to ferroptosis inhibitor Fer-1, alleviate oxidative stress response, and decrease [Ca2+ ]i overload by inhibiting the overexpressed ASIC1a in the in vitro epilepsy model induced by 0-Mg2+ . CONCLUSION: Inhibiting ASIC1a has potent neuroprotective effects via alleviating [Ca2+ ]i overload and regulating ferroptosis on the models of epilepsy and may act as a promising intervention in DMTs.


Assuntos
Epilepsia , Ferroptose , Fármacos Neuroprotetores , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Epilepsia/tratamento farmacológico , Ferro/metabolismo
5.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 221-230, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38310082

RESUMO

Ligand-gated ion channels are a large category of essential ion channels, modulating their state by binding to specific ligands to allow ions to pass through the cell membrane. Purinergic ligand-gated ion channel receptors (P2XRs) and acid-sensitive ion channels (ASICs) are representative members of trimeric ligand-gated ion channel. Recent studies have shown that structural differences in the intracellular domain of P2XRs may determine the desensitization process. The lateral fenestrations of P2XRs potentially serve as a pathway for ion conductance and play a decisive role in ion selectivity. Phosphorylation of numerous amino acid residues in the P2XRs are involved in regulating the activity of ion channels. Additionally, the P2XRs interact with other ligand-gated ion channels including N-methyl-D-aspartate receptors, γ-aminobutyric acid receptors, 5-hydroxytryptamin receptors and nicotinic acetylcholine receptors, mediating physiological processes such as synaptic plasticity. Conformational changes in the intracellular domain of the ASICs expose binding sites of intracellular signal partners, facilitating metabolic signal transduction. Amino acids such as Val16, Ser17, Ile18, Gln19 and Ala20 in the ASICs participate in channel opening and membrane expression. ASICs can also bind to intracellular proteins, such as CIPP and p11, to regulate channel function. Many phosphorylation sites at the C-terminus and N-terminus of ASICs are involved in the regulation of receptors. Furthermore, ASICs are involved in various physiological and pathophysiological processes, which include pain, ischemic stroke, psychiatric disorders, and neurodegenerative disease. In this article, we review the roles of the intracellular domains of these trimeric ligand-gated ion channels in channel gating as well as their physiological and pathological functions, in order to provide new insights into the discovery of related drugs.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Animais , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais
6.
Physiol Rep ; 12(3): e15933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38312021

RESUMO

A feature of peripheral artery diseases (PAD) includes limb ischemia/reperfusion (I/R) and ischemia. Both I/R and ischemia amplify muscle afferent nerve-activated reflex sympathetic nervous and blood pressure responses (termed as exercise pressor reflex). Nevertheless, the underlying mechanisms responsible for the exaggerated autonomic responses in PAD are undetermined. Previous studies suggest that acid-sensing ion channels (ASICs) in muscle dorsal root ganglion (DRG) play a leading role in regulating the exercise pressor reflex in PAD. Thus, we determined if signaling pathways of nerve growth factor (NGF) contribute to the activities of ASICs in muscle DRG neurons of PAD. In particular, we examined ASIC1a and ASIC3 currents in isolectin B4 -negative muscle DRG neurons, a distinct subpopulation depending on NGF for survival. Hindlimb I/R and ischemia were obtained in male rats. In results, femoral artery occlusion increased the levels of NGF and NGF-stimulated TrkA receptor in DRGs, whereas they led to upregulation of ASIC3 but not ASIC1a. In addition, application of NGF onto DRG neurons increased the density of ASIC3 currents and the effect of NGF was significantly attenuated by TrkA antagonist GW441756. Moreover, the enhancing effect of NGF on the density of ASIC3-like currents was decreased by the respective inhibition of intracellular signaling pathways, namely JNK and NF-κB, by antagonists SP600125 and PDTC. Our results suggest contribution of NGF to the activities of ASIC3 currents via JNK and NF-κB signaling pathways in association with the exercise pressor reflex in experimental PAD.


Assuntos
Canais Iônicos Sensíveis a Ácido , Fator de Crescimento Neural , Doença Arterial Periférica , Animais , Masculino , Ratos , Canais Iônicos Sensíveis a Ácido/metabolismo , Artéria Femoral/metabolismo , Gânglios Espinais/metabolismo , Isquemia/metabolismo , Músculo Esquelético/metabolismo , Fator de Crescimento Neural/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338690

RESUMO

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Analgésicos Opioides , Ratos , Humanos , Animais , Canais Iônicos Sensíveis a Ácido/metabolismo , Analgésicos Opioides/farmacologia , Amilorida/farmacologia , Prótons , Sítios de Ligação
8.
Pflugers Arch ; 476(4): 659-672, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175291

RESUMO

It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.


Assuntos
Canais Iônicos Sensíveis a Ácido , Neoplasias , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Prótons , Transdução de Sinais , Neurônios/metabolismo , Microambiente Tumoral
9.
Sci Rep ; 14(1): 2320, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282035

RESUMO

Acid-sensing ion channels (ASICs) are proton-gated cation channels widely expressed in the nervous system. ASIC gating is modulated by divalent cations as well as small molecules; however, the molecular determinants of gating modulation by divalent cations are not well understood. Previously, we identified two small molecules that bind to ASIC1a at a novel site in the acidic pocket and modulate ASIC1 gating in a manner broadly resembling divalent cations, raising the possibility that these small molecules may help to illuminate the molecular determinants of gating modulation by divalent cations. Here, we examined how these two groups of modulators might interact as well as mutational effects on ASIC1a gating and its modulation by divalent cations. Our results indicate that binding of divalent cations to an acidic pocket site plays a key role in gating modulation of the channel.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Cátions Bivalentes/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Mutação
10.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233146

RESUMO

Stroke continues to be a leading cause of death and long-term disabilities worldwide, despite extensive research efforts. The failure of multiple clinical trials raises the need for continued study of brain injury mechanisms and novel therapeutic strategies for ischemic stroke. The contribution of acid-sensing ion channel 1a (ASIC1a) to neuronal injury during the acute phase of stroke has been well studied; however, the long-term impact of ASIC1a inhibition on stroke recovery has not been established. The present study sought to bridge part of the translational gap by focusing on long-term behavioral recovery after a 30 min stroke in mice that had ASIC1a knocked out or inhibited by PcTX1. The neurological consequences of stroke in mice were evaluated before and after the stroke using neurological deficit score, open field, and corner turn test over a 28 d period. ASIC1a knock-out and inhibited mice showed improved neurological scores more quickly than wild-type control and vehicle-injected mice after the stroke. ASIC1a knock-out mice also recovered from mobility deficits in the open field test more quickly than wild-type mice, while PcTX1-injected mice did not experience significant mobility deficits at all after the stroke. In contrast to vehicle-injected mice that showed clear-sidedness bias in the corner turn test after stroke, PcTX1-injected mice never experienced significant-sidedness bias at all. This study supports and extends previous work demonstrating ASIC1a as a potential therapeutic target for the treatment of ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Encéfalo/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
11.
Exp Physiol ; 109(1): 135-147, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951012

RESUMO

By translating mechanical forces into molecular signals, proprioceptive neurons provide the CNS with information on muscle length and tension, which is necessary to control posture and movement. However, the identities of the molecular players that mediate proprioceptive sensing are largely unknown. Here, we confirm the expression of the mechanosensitive ion channel ASIC2 in proprioceptive sensory neurons. By combining in vivo proprioception-related functional tests with ex vivo electrophysiological analyses of muscle spindles, we showed that mice lacking Asic2 display impairments in muscle spindle responses to stretch and motor coordination tasks. Finally, analysis of skeletons of Asic2 loss-of-function mice revealed a specific effect on spinal alignment. Overall, we identify ASIC2 as a key component in proprioceptive sensing and a regulator of spine alignment.


Assuntos
Canais Iônicos Sensíveis a Ácido , Propriocepção , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Fusos Musculares/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo
12.
Exp Physiol ; 109(1): 66-80, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489658

RESUMO

Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.


Assuntos
Canais Iônicos Sensíveis a Ácido , Mecanotransdução Celular , Camundongos , Animais , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Mecanotransdução Celular/fisiologia , Propriocepção/fisiologia , Camundongos Knockout , Prótons
13.
Pain ; 165(2): 470-486, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733484

RESUMO

ABSTRACT: Lipid-rich diet is the major cause of obesity, affecting 13% of the worldwide adult population. Obesity is a major risk factor for metabolic syndrome that includes hyperlipidemia and diabetes mellitus. The early phases of metabolic syndrome are often associated with hyperexcitability of peripheral small diameter sensory fibers and painful diabetic neuropathy. Here, we investigated the effect of high-fat diet-induced obesity on the activity of dorsal root ganglion (DRG) sensory neurons and pain perception. We deciphered the underlying cellular mechanisms involving the acid-sensing ion channel 3 (ASIC3). We show that mice made obese through consuming high-fat diet developed the metabolic syndrome and prediabetes that was associated with heat pain hypersensitivity, whereas mechanical sensitivity was not affected. Concurrently, the slow conducting C fibers in the skin of obese mice showed increased activity on heating, whereas their mechanosensitivity was not altered. Although ASIC3 knockout mice fed with high-fat diet became obese, and showed signs of metabolic syndrome and prediabetes, genetic deletion, and in vivo pharmacological inhibition of ASIC3, protected mice from obesity-induced thermal hypersensitivity. We then deciphered the mechanisms involved in the heat hypersensitivity of mice and found that serum from high-fat diet-fed mice was enriched in lysophosphatidylcholine (LPC16:0, LPC18:0, and LPC18:1). These enriched lipid species directly increased the activity of DRG neurons through activating the lipid sensitive ASIC3 channel. Our results identify ASIC3 channel in DRG neurons and circulating lipid species as a mechanism contributing to the hyperexcitability of nociceptive neurons that can cause pain associated with lipid-rich diet consumption and obesity.


Assuntos
Síndrome Metabólica , Estado Pré-Diabético , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gânglios Espinais/metabolismo , Lipídeos , Síndrome Metabólica/metabolismo , Obesidade , Dor , Estado Pré-Diabético/metabolismo , Células Receptoras Sensoriais/metabolismo
14.
Cell Chem Biol ; 31(5): 1000-1010.e6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38113885

RESUMO

Acid-sensing ion channels (ASICs) are trimeric ion channels that open a cation-conducting pore in response to proton binding. Excessive ASIC activation during prolonged acidosis in conditions such as inflammation and ischemia is linked to pain and stroke. A conserved lysine in the extracellular domain (Lys211 in mASIC1a) is suggested to play a key role in ASIC function. However, the precise contributions are difficult to dissect with conventional mutagenesis, as replacement of Lys211 with naturally occurring amino acids invariably changes multiple physico-chemical parameters. Here, we study the contribution of Lys211 to mASIC1a function using tandem protein trans-splicing (tPTS) to incorporate non-canonical lysine analogs. We conduct optimization efforts to improve splicing and functionally interrogate semisynthetic mASIC1a. In combination with molecular modeling, we show that Lys211 charge and side-chain length are crucial to activation and desensitization, thus emphasizing that tPTS can enable atomic-scale interrogations of membrane proteins in live cells.


Assuntos
Canais Iônicos Sensíveis a Ácido , Lisina , Canais Iônicos Sensíveis a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/genética , Lisina/química , Lisina/metabolismo , Humanos , Animais , Modelos Moleculares , Processamento de Proteína
15.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138991

RESUMO

The carotid body is a major peripheral chemoreceptor that senses changes in arterial blood oxygen, carbon dioxide, and pH, which is important for the regulation of breathing and cardiovascular function. The mechanisms by which the carotid body senses O2 and CO2 are well known; conversely, the mechanisms by which it senses pH variations are almost unknown. Here, we used immunohistochemistry to investigate how the human carotid body contributes to the detection of acidosis, analyzing whether it expresses acid-sensing ion channels (ASICs) and determining whether these channels are in the chemosensory glomic cells or in the afferent nerves. In ASIC1, ASIC2, and ASIC3, and to a much lesser extent ASIC4, immunoreactivity was detected in subpopulations of type I glomus cells, as well as in the nerves of the carotid body. In addition, immunoreactivity was found for all ASIC subunits in the neurons of the petrosal and superior cervical sympathetic ganglia, where afferent and efferent neurons are located, respectively, innervating the carotid body. This study reports for the first time the occurrence of ASIC proteins in the human carotid body, demonstrating that they are present in glomus chemosensory cells (ASIC1 < ASIC2 > ASIC3 > ASIC4) and nerves, presumably in both the afferent and efferent neurons supplying the organ. These results suggest that the detection of acidosis by the carotid body can be mediated via the ASIC ion channels present in the type I glomus cells or directly via sensory nerve fibers.


Assuntos
Acidose , Corpo Carotídeo , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Sistema Nervoso Periférico/metabolismo , Acidose/metabolismo
16.
Biomolecules ; 13(11)2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002313

RESUMO

The action of tetraalkylammonium ions, from tetrametylammonium (TMA) to tetrapentylammonium (TPtA), on the recombinant and native acid-sensing ion channels (ASICs) was studied using the patch-clamp approach. The responses of ASIC1a, ASIC2a, and native heteromeric ASICs were inhibited by TPtA. The peak currents through ASIC3 were unaffected, whereas the steady-state currents were significantly potentiated. This effect was characterized by an EC50 value of 1.22 ± 0.12 mM and a maximal effect of 3.2 ± 0.5. The effects of TPtA were voltage-independent but significantly decreased under conditions of strong acidification, which caused saturation of ASIC responses. Molecular modeling predicted TPtA binding in the acidic pocket of closed ASICs. Bound TPtA can prevent acidic pocket collapse through a process involving ASIC activation and desensitization. Tetraethylammonium (TEA) inhibited ASIC1a and native ASICs. The effect was independent of the activating pH but decreased with depolarization, suggesting a pore-blocking mechanism.


Assuntos
Canais Iônicos Sensíveis a Ácido , Prótons , Canais Iônicos Sensíveis a Ácido/metabolismo , Concentração de Íons de Hidrogênio
17.
Protein Sci ; 32(11): e4800, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805833

RESUMO

Acid-sensing ion channels (ASICs) are important players in detecting extracellular acidification throughout the brain and body. ASICs have large extracellular domains containing two regions replete with acidic residues: the acidic pocket, and the palm domain. In the resting state, the acidic pocket is in an expanded conformation but collapses in low pH conditions as the acidic side chains are neutralized. Thus, extracellular acidification has been hypothesized to collapse the acidic pocket that, in turn, ultimately drives channel activation. However, several observations run counter to this idea. To explore how collapse or mobility of the acidic pocket is linked to channel gating, we employed two distinct tools. First, we incorporated the photocrosslinkable noncanonical amino acids (ncAAs) 4-azido-L-phenylalanine (AzF) or 4-benzoyl-L-phenylalanine (BzF) into several positions in the acidic pocket. At both E315 and Y318, AzF incorporation followed by UV irradiation led to right shifts in pH response curves and accelerations of desensitization and deactivation, consistent with restrictions of acidic pocket mobility destabilizing the open state. Second, we reasoned that because Cl- ions are found in the open and desensitized structures but absent in the resting state structures, Cl- substitution would provide insight into how stability of the pocket is linked to gating. Anion substitution resulted in faster deactivation and desensitization, consistent with the acidic pocket regulating the stability of the open state. Taken together, our data support a model where acidic pocket collapse is not essential for channel activation. Rather, collapse of the acidic pocket influences the stability of the open state of the pore.


Assuntos
Canais Iônicos Sensíveis a Ácido , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/química , Canais Iônicos Sensíveis a Ácido/metabolismo , Conformação Molecular , Concentração de Íons de Hidrogênio
18.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820935

RESUMO

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Assuntos
Canais Iônicos Sensíveis a Ácido , Sincalida , Ratos , Animais , Ratos Sprague-Dawley , Sincalida/farmacologia , Sincalida/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Células Receptoras Sensoriais , Dor/metabolismo , Gânglios Espinais/metabolismo
19.
Pflugers Arch ; 475(9): 1073-1087, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474775

RESUMO

Acid-sensing ion channels (ASICs) are Na+ channels that are almost ubiquitously expressed in neurons of the brain. Functional ASIC1a is also expressed in glioblastoma stem cells, where it might sense the acidic tumor microenvironment. Prolonged acidosis induces cell death in neurons and reduces tumor sphere formation in glioblastoma via activation of ASIC1a. It is currently unknown whether ASICs are expressed and involved in acid-induced cell death in other types of brain tumors. In this study, we investigated ASICs in medulloblastoma, using two established cell lines, DAOY and UW228, as in vitro models. In addition, we characterized ASICs in the most numerous neuron of the brain, the cerebellar granule cell, which shares the progenitor cell with some forms of medulloblastoma. We report compelling evidence using RT-qPCR, western blot and whole-cell patch clamp that DAOY and cerebellar granule cells, but not UW228 cells, functionally express homomeric ASIC1a. Additionally, Ca2+-imaging revealed that extracellular acidification elevated intracellular Ca2+-levels in DAOY cells independently of ASICs. Finally, we show that overexpression of RIPK3, a key component of the necroptosis pathway, renders DAOY cells susceptible to acid-induced cell death via activation of ASIC1a. Our data support the idea that ASIC1a is an important acid sensor in brain tumors and that its activation has potential to induce cell death in tumor cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , Humanos , Canais Iônicos Sensíveis a Ácido/metabolismo , Meduloblastoma/metabolismo , Glioblastoma/metabolismo , Neurônios/metabolismo , Linhagem Celular , Neoplasias Encefálicas/metabolismo , Cerebelo , Neoplasias Cerebelares/metabolismo , Microambiente Tumoral
20.
J Mol Med (Berl) ; 101(7): 877-890, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246982

RESUMO

Ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), and there is no effective therapy. Microenvironmental acidification is generally observed in ischemic tissues. Acid-sensing ion channel 1a (ASIC1a) can be activated by a decrease in extracellular pH which mediates neuronal IRI. Our previous study demonstrated that, ASIC1a inhibition alleviates renal IRI. However, the underlying mechanisms have not been fully elucidated. In this study, we determined that renal tubule-specific deletion of ASIC1a in mice (ASIC1afl/fl/CDH16cre) attenuated renal IRI, and reduced the expression of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, and IL-1ß. Consistent with these in vivo results, inhibition of ASIC1a by the specific inhibitor PcTx-1 protected HK-2 cells from hypoxia/reoxygenation (H/R) injury, and suppressed H/R-induced NLRP3 inflammasome activation. Mechanistically, the activation of ASIC1a by either IRI or H/R induced the phosphorylation of NF-κB p65, which translocates to the nucleus and promotes the transcription of NLRP3 and pro-IL-1ß. Blocking NF-κB by treatment with BAY 11-7082 validated the roles of H/R and acidosis in NLRP3 inflammasome activation. This further confirmed that ASIC1a promotes NLRP3 inflammasome activation, which requires the NF-κB pathway. In conclusion, our study suggests that ASIC1a contributes to renal IRI by affecting the NF-κB/NLRP3 inflammasome pathway. Therefore, ASIC1a may be a potential therapeutic target for AKI. KEY MESSAGES: Knockout of ASIC1a attenuated renal ischemia-reperfusion injury. ASIC1a promoted the NF-κB pathway and NLRP3 inflammasome activation. Inhibition of the NF-κB mitigated the NLRP3 inflammasome activation induced by ASIC1a.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Camundongos Knockout , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA