Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Ageing Res Rev ; 96: 102252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442748

RESUMO

Chronic cerebral hypoperfusion (CCH) is a common mechanism of acute brain injury due to impairment of blood flow to the brain. Moreover, a prolonged lack of oxygen supply may result in cerebral infarction or global ischemia, which subsequently causes long-term memory impairment. Research on using Clitoria ternatea root extract for treating long-term memory has been studied extensively. However, the bioactive compound contributing to its neuroprotective effects remains uncertain. In the present study, we investigate the effects of clitorienolactone A (CLA) and B (CLB) from the roots of Clitoria ternatea extract on hippocampal neuroplasticity in rats induced by CCH. CLA and CLB were obtained using column chromatography. The rat model of CCH was induced using two-vessel occlusion surgery (2VO). The 2VO rats were given 10 mg/kg of CLA and CLB orally, followed by hippocampal neuroplasticity recording using in vivo electrophysiological. Rats received CLA and CLB (10 mg/kg) significantly reversed the impairment of long-term potentiation following 2VO surgery. Furthermore, we investigate the effect of CLA and CLB on the calcium channel using the calcium imaging technique. During hypoxia, CLA and CLB sustain the increase in intracellular calcium levels. We next predict the binding interactions of CLA and CLB against NMDA receptors containing GluN2A and GluN2B subunits using in silico molecular docking. Our result found that both CLA and CLB exhibited lower binding affinity against GluN2A and GluN2B subunits. Our findings demonstrated that bioactive compounds from Clitoria ternatea improved long-term memory deficits in the chronic cerebral hypoperfusion rat model via calcium uptake. Hence, CLA and CLB could be potential therapeutic tools for treating cognitive dysfunction.


Assuntos
Isquemia Encefálica , Clitoria , Ratos , Humanos , Animais , Clitoria/química , Canais de Cálcio/farmacologia , Canais de Cálcio/uso terapêutico , Potenciação de Longa Duração , Cálcio , Simulação de Acoplamento Molecular , Isquemia Encefálica/tratamento farmacológico , Hipocampo , Aprendizagem em Labirinto/fisiologia
2.
Am J Respir Crit Care Med ; 209(6): 703-715, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972349

RESUMO

Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia Bacteriana , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio/metabolismo , Células HEK293 , Staphylococcus aureus Resistente à Meticilina/metabolismo , Sinalização do Cálcio , Inflamação/tratamento farmacológico , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia
3.
J Pineal Res ; 76(1): e12919, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794846

RESUMO

Besides its role in the circadian rhythm, the pineal gland hormone melatonin (MLT) also possesses antiepileptogenic, antineoplastic, and cardioprotective properties, among others. The dosages necessary to elicit beneficial effects in these diseases often far surpass physiological concentrations. Although even high doses of MLT are considered to be largely harmless to humans, the possible side effects of pharmacological concentrations are so far not well investigated. In the present study, we report that pharmacological doses of MLT (3 mM) strongly altered the electrophysiological characteristics of cultured primary mouse cerebellar granule cells (CGCs). Using whole-cell patch clamp and ratiometric Ca2+ imaging, we observed that pharmacological concentrations of MLT inhibited several types of voltage-gated Na+ , K+ , and Ca2+ channels in CGCs independently of known MLT-receptors, altering the character and pattern of elicited action potentials (APs) significantly, quickly and reversibly. Specifically, MLT reduced AP frequency, afterhyperpolarization, and rheobase, whereas AP amplitude and threshold potential remained unchanged. The altered biophysical profile of the cells could constitute a possible mechanism underlying the proposed beneficial effects of MLT in brain-related disorders, such as epilepsy. On the other hand, it suggests potential adverse effects of pharmacological MLT concentrations on neurons, which should be considered when using MLT as a pharmacological compound.


Assuntos
Canais de Cálcio , Melatonina , Humanos , Camundongos , Animais , Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Melatonina/farmacologia , Sódio/farmacologia , Potássio/farmacologia , Neurônios/metabolismo , Cálcio/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38083028

RESUMO

Non-invasive low intensity, low frequency ultrasound is a progressive neuromodulation approach that can reach deep brain areas with peak spatial and temporal resolution for highly-targeted diagnostic and therapeutic purposes. Coupling the ultrasound mechanical effects to the neural membrane comprises different mechanisms that are, to-date, still a topic of debate. The availability of calcium ions in the extracellular medium is of high significance when it comes to the effect of ultrasound on the neural tissue. Whereby the generated calcium influx can directly affect the voltage-gated ion channels, amplifying their action. We modeled the flexoelectric-induced effects of ultrasound to a single firing neuron, taking into consideration the effect of calcium channel embedding into the neural membrane on the neuron's firing rate, latency response, peak-to-peak voltage, and general shape of the action potential.Clinical Relevance- Upon Ultrasound sonication, the mechanical waves interact with the neural membrane and alter the kinetics of the calcium channels, thus changing the neural response.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Potenciais de Ação/fisiologia , Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Ultrassonografia , Neurônios/fisiologia
5.
Prostaglandins Other Lipid Mediat ; 169: 106782, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741358

RESUMO

OBJECTIVE: This study aimed to investigate vasoactive effect mechanisms of cilostazol in rat thoracic aorta. MATERIALS AND METHODS: The vessel rings prepared from the thoracic aortas of the male rats were placed in the chambers of the isolated tissue bath system. The resting tone was adjusted to 1 g. Following the equilibration phase, potassium chloride or phenylephrine was used to contract the vessel rings. When achieving a steady contraction, cilostazol was applied cumulatively (10-8-10-4 M). In the presence of potassium channel blockers or signaling pathway inhibitors, the same experimental procedure was performed. RESULTS: Cilostazol exhibited a significant vasorelaxant effect in a concentration-dependent manner (pD2: 5.94 ± 0.94) (p < .001). The vasorelaxant effect level of cilostazol was significantly reduced by the endothelial nitric oxide synthase inhibitor L-NAME (10-4 M), soluble guanylate cyclase inhibitor methylene blue (10 µM), cyclooxygenase 1/2 inhibitor indomethacin (5 µM), adenosine monophosphate-activated protein kinase inhibitor compound C (10 µM), non-selective potassium channel blocker tetraethylammonium chloride (10 mM), large-conductance calcium-activated potassium channel blocker iberiotoxin (20 nM), voltage-gated potassium channel blocker 4-Aminopyridine (1 mM), and inward-rectifier potassium channel blocker BaCl2 (30 µM) (p < .001). Moreover, incubation of cilostazol (10-4 M) significantly reduced caffeine (10 mM), cyclopiazonic acid (10 µM), and phorbol 12-myristate 13-acetate-induced (100 µM) vascular contractions (p < .001). CONCLUSIONS: In the rat thoracic aorta, the vasodilator action level of cilostazol is quite noticeable. The vasorelaxant effects of cilostazol are mediated by the eNOS/NO/cGMP pathway, prostanoids, AMPK pathway, PKC, potassium channels, and calcium channels.


Assuntos
Canais de Cálcio , Vasodilatação , Ratos , Masculino , Animais , Cilostazol/farmacologia , Cilostazol/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Prostaglandinas/metabolismo , Vasodilatadores/farmacologia , Endotélio Vascular , Cálcio/metabolismo , Cálcio/farmacologia
6.
Environ Sci Process Impacts ; 25(11): 1743-1751, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503664

RESUMO

Lead (Pb2+) is an important developmental toxicant. The mitochondrial calcium uniporter (MCU) imports calcium ions using the mitochondrial membrane potential (MMP), and also appears to mediate the influx of Pb2+ into the mitochondria. Since our environment contains mixtures of toxic agents, it is important to consider multi-chemical exposures. To begin to develop generalizable, predictive models of interactive toxicity, we developed mechanism-based hypotheses about interactive effects of Pb2+ with other chemicals. To test these hypotheses, we exposed HepG2 (human liver) cells to Pb2+ alone and in mixtures with other mitochondria-damaging chemicals: carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler that reduces MMP, and Ruthenium Red (RuRed), a dye that inhibits the MCU. After 24 hours, Pb2+ alone, the mixture of Pb2+ and RuRed, and the mixture of Pb2+ and FCCP caused no decrease in cell viability. However, the combination of all three exposures led to a significant decrease in cell viability at higher Pb2+ concentrations. After 48 hours, the co-exposure to elevated Pb2+ concentrations and FCCP caused a significant decrease in cell viability, and the mixture of all three showed a clear dose-response curve with significant decreases in cell viability across a range of Pb2+ concentrations. We performed ICP-MS analyses on isolated mitochondrial and cytosolic fractions and found no differences in Pb2+ uptake across exposure groups, ruling out altered cellular uptake as the mechanism for interactive toxicity. We assessed MMP following exposure and observed a decrease in membrane potential that corresponds to loss of cell viability but is likely not sufficient to be the causative mechanistic driver of cell death. This research provides a mechanistically-based framework for understanding Pb2+ toxicity in mixtures with mitochondrial toxicants.


Assuntos
Chumbo , Mitocôndrias , Humanos , Chumbo/toxicidade , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio
7.
Pest Manag Sci ; 79(12): 4879-4885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37506304

RESUMO

BACKGROUND: Excessive use of chemical insecticides raises concerns about insecticide resistance, urging the development of novel insecticides. Peptide neurotoxins from spider venom are an incredibly rich source of ion channel modulators with potent insecticidal activity. A neurotoxin U1-Atypitoxin-Cs1a from the spider Calommata signata was annotated previously. It was of interest to investigate its insecticidal activity and potential molecular targets. RESULTS: Cs1a was heterologously expressed, purified and pharmacologically characterized here. The recombinant neurotoxin inhibited high-voltage-activated calcium channel currents with an median inhibitory concentration (IC50 ) value of 0.182 ± 0.026 µm on cockroach DUM neurons and thus was designated as ω-Atypitoxin-Cs1a. The recombinant Cs1a was toxic to three insect pests of agricultural importance, Nilaparvata lugens, Spodoptera frugiperda and Plutella xylostella with median lethal concentration (LD50 ) values of 0.121, 0.172 and 0.356 nmol g-1 , respectively, at 24 h postinjection. Cs1a was equivalently toxic to both insecticide-susceptible and -resistant insects. Cs1a exhibited low toxicity to Danio rerio with an LD50 of 2.316 nmol g-1 . CONCLUSION: Our results suggest that ω-Atypitoxin-Cs1a is a potent CaV channel inhibitor and an attractive candidate reagent for pest control and resistance management. © 2023 Society of Chemical Industry.


Assuntos
Baratas , Inseticidas , Venenos de Aranha , Animais , Neurotoxinas/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Canais de Cálcio/farmacologia , Peptídeos , Venenos de Aranha/toxicidade , Venenos de Aranha/química
8.
Medicina (Kaunas) ; 59(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374229

RESUMO

Background and Objectives: We have recently reported that stains have calcium channel blocking activity in isolated jejunal preparations. In this study, we examined the effects of atorvastatin and fluvastatin on blood vessels for a possible vasorelaxant effect. We also studied the possible additional vasorelaxant effect of atorvastatin and fluvastatin, in the presence of amlodipine, to quantify its effects on the systolic blood pressure of experimental animals. Materials and Methods: Atorvastatin and fluvastatin were tested in isolated rabbits' aortic strip preparations using 80mM Potassium Chloride (KCl) induced contractions and 1 micro molar Norepinephrine (NE) induced contractions. A positive relaxing effect on 80 mM KCl induced contractions were further confirmed in the absence and presence of atorvastatin and fluvastatin by constructing calcium concentration response curves (CCRCs) while using verapamil as a standard calcium channel blocker. In another series of experiments, hypertension was induced in Wistar rats and different test concentrations of atorvastatin and fluvastatin were administered in their respective EC50 values to the test animals. A fall in their systolic blood pressure was noted using amlodipine as a standard vasorelaxant drug. Results: The results show that fluvastatin is more potent than amlodipine as it relaxed NE induced contractions where the amplitude reached 10% of its control in denuded aortae. Atorvastatin relaxed KCL induced contractions with an amplitude reaching 34.4% of control response as compared to the amlodipine response, i.e., 39.1%. A right shift in the EC50 (Log Ca++ M) of Calcium Concentration Response Curves (CCRCs) implies that statins have calcium channel blocking activity. A right shift in the EC50 of fluvastatin with relatively less EC50 value (-2.8 Log Ca++ M) in the presence of test concentration (1.2 × 10-7 M) of fluvastatin implies that fluvastatin is more potent than atorvastatin. The shift in EC50 resembles the shift of Verapamil, a standard calcium channel blocker (-1.41 Log Ca++ M). Conclusions: Atorvastatin and fluvastatin relax the aortic strip preparations predominantly through the inhibition of voltage gated calcium channels in high molar KCL induced contractions. These statins also inhibit the effects of NE induced contractions. The study also confirms that atorvastatin and fluvastatin potentiate blood pressure lowering effects in hypertensive rats.


Assuntos
Bloqueadores dos Canais de Cálcio , Inibidores de Hidroximetilglutaril-CoA Redutases , Ratos , Coelhos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Fluvastatina/farmacologia , Fluvastatina/uso terapêutico , Vasodilatadores/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Cálcio , Pressão Sanguínea , Ratos Wistar , Verapamil/farmacologia , Canais de Cálcio/farmacologia , Cloreto de Potássio/farmacologia
9.
Drug Res (Stuttg) ; 73(2): 105-112, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446591

RESUMO

BACKGROUND: There are reports which indicate that some cyclooctyne derivatives may exert changes in cardiovascular system; however, its molecular mechanism is not very clear. OBJECTIVE: The aim of this study was to evaluate the biological activity of four cyclooctyne derivatives (compounds 1: to 4: ) produced on infarct area and left ventricular pressure. METHODS: Biological activity produced by cyclooctyne derivatives on infarct area was determinate using an ischemia/reperfusion injury model. In addition, to characterize the molecular mechanism of this effect, the following strategies were carried out as follows; i) biological activity produced by cyclooctyne derivative (compound 4: ) on either perfusion pressure or left ventricular pressure was evaluated using an isolated rat heart; ii) theoretical interaction of cyclooctyne derivative with calcium channel (1t0j protein surface) using a docking model. RESULTS: The results showed that cyclooctyne derivative (compound 4: ) decrease infarct area of in a dose-dependent manner compared with compound 1: to 3: . Besides, this cyclooctyne derivative increase both perfusion pressure and left ventricular pressure which was inhibited by nifedipine. Other theoretical data suggests that cyclooctyne derivative could interact with some aminoacid residues (Met83, Ile85, Ser86, Leu108, Glu114) involved in 1t0j protein surface. CONCLUSIONS: All these data indicate that cyclooctyne derivative increase left ventricular pressure via calcium channel activation and this phenomenon could be translated as a decrease of infarct area.


Assuntos
Canais de Cálcio , Nifedipino , Ratos , Animais , Canais de Cálcio/farmacologia , Pressão Ventricular , Nifedipino/farmacologia , Infarto
10.
J Assist Reprod Genet ; 39(10): 2287-2301, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35972586

RESUMO

PURPOSE: To investigate the effects of recombinant human oviduct-specific glycoprotein (rHuOVGP1) alone and in combination with progesterone (P4) on intracellular Ca2+ concentration [Ca2+]i and to investigate if rHuOVGP1 in combination with P4 can further enhance tyrosine phosphorylation (pY) of sperm proteins during human sperm capacitation. METHODS: Fluorometric flow cytometry was performed to examine the effects of rHuOVGP1 on [Ca2+]i in human sperm during capacitation. Confocal microscopy was used in conjunction with live cell imaging to analyze the influence of rHuOVGP1 and P4 on [Ca2+]i in the sperm tail and to examine the involvement of CatSper channels in their effect on [Ca2+]i. Western blot analysis was performed to assess the protein levels of p105, a major tyrosine-phosphorylated sperm protein. RESULTS: rHuOVGP1 increases [Ca2+]i in human sperm at the beginning of capacitation and further increases and sustains the level of [Ca2+]i in the sperm tail following the addition of P4. Inhibition of CatSper channels impedes the effects of rHuOVGP1 on [Ca2+]i in the sperm tail. P4 alone can increase pY of a major human sperm protein, p105, yet yields a further increase when used in combination with rHuOVGP1. CONCLUSION: The present study revealed that rHuOVGP1 may work with P4 to upregulate [Ca2+]i at the beginning of capacitation in part through CatSper channels which, in turn, leads to the downstream event of pY of sperm proteins and enhancement of sperm capacitation.


Assuntos
Cálcio , Progesterona , Humanos , Masculino , Cálcio/metabolismo , Cálcio/farmacologia , Progesterona/farmacologia , Progesterona/metabolismo , Motilidade dos Espermatozoides , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Sêmen/metabolismo , Capacitação Espermática , Espermatozoides/metabolismo , Tirosina/metabolismo , Glicoproteínas/metabolismo
11.
NMR Biomed ; 35(6): e4675, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253280

RESUMO

Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.


Assuntos
Imageamento por Ressonância Magnética , Manganês , Animais , Encéfalo/metabolismo , Canais de Cálcio/farmacologia , Meios de Contraste , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Manganês/metabolismo , Estudos Retrospectivos
12.
Brain Stimul ; 15(1): 270-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35026481

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a subthreshold neurostimulation therapeutic method that ameliorate neuropsychiatric impairments. The most sensitive subcellular compartment for tDCS are the axons that polarize. However, how these relatively small polarizations significantly alter synaptic dynamics is still unknown. OBJECTIVE/HYPOTHESIS: We hypothesized that tDCS-induced axonal polarization modulates calcium channel activity at the presynaptic compartment, thus playing a crucial role in synaptic vesicle release. METHODS: For this aim, we examined how different DCS conditions and orientations affect the spontaneous excitatory post synaptic currents (sEPSCs) recorded from hippocampal CA1 pyramidal neurons. Since P/Q-type calcium-channels are the main presynaptic voltage-dependent calcium-channels in the hippocampus, we further examined the DCS effects while applying a P/Q-type calcium channels blocker, ω-agatoxin. Additionally, to explain the DCS-induced calcium channel-regulated vesicle release dynamics, we developed a simplified model to complement our experimental results. RESULTS: We demonstrated that anodal-DCS application in a dorso-ventral orientation, similar to that of in-vivo experiments, enhanced the sEPSCs frequency, while cathodal-DCS was ineffective. Moreover, DCS application in parallel to the Schaffer collaterals (medio-lateral orientation), showed both anodal and cathodal significant effects. Furthermore, the ω-agatoxin application occluded the DCS-induced modulation of sEPSC frequencies in any orientation. The model showed the interaction between DCS-induced membrane polarization, calcium channel activation and presynaptic vesicle release. CONCLUSION: Using experiments and modeling we show that DCS induces a small variation in terminal membrane potential sufficient to activate P/Q type voltage-gated calcium channels, and that this is sufficient to modify presynaptic calcium concentration, subsequently altering spontaneous vesicle release.


Assuntos
Terminações Pré-Sinápticas , Estimulação Transcraniana por Corrente Contínua , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Hipocampo , Terminações Pré-Sinápticas/metabolismo
13.
Nat Prod Res ; 36(16): 4238-4242, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34652246

RESUMO

The antidiarrheal effect of methanolic extract of Trillium govanianum Wall. ex D. Don (Melanthiaceae alt. Trilliaceae) was studied at doses of 12.5, 25, and 50 mg/kg in different animal models of diarrhea including castor oil (6 mL/kg), magnesium sulfate (2 gm/kg), sodium picosulfate (2 mL/kg) and lactitol (0.25 mL/kg). The antispasmodic effect of T. govanianum was studied on isolated rabbit's jejunum, using acetylcholine as tissue stabiliser and verapamil as calcium channel blocker. T. govanianum attenuated the diarrhea by producing a significant decrease in the number and weight of stool, and an increase in stool latency time. T. govanianum completely inhibited both spontaneous as well as high potassium induced contractions of isolated rabbit's jejunum, which was analogous to verapamil. Moreover, T. govanianum produced a right shift in calcium concentration response curve, confirming its calcium channel blocking activity. These findings provide scientific ground to its medicinal use in diarrhea and gut spasms.


Assuntos
Antidiarreicos , Trillium , Animais , Antidiarreicos/farmacologia , Cálcio , Canais de Cálcio/farmacologia , Canais de Cálcio/uso terapêutico , Diarreia/tratamento farmacológico , Jejuno/fisiologia , Parassimpatolíticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Coelhos , Rizoma , Verapamil/farmacologia , Verapamil/uso terapêutico
14.
Arch Biochem Biophys ; 698: 108724, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309615

RESUMO

Abdominal aortic aneurysm (AAA) is a fatal vascular disease with insidious symptoms. However, the mechanism behind its development remains unclear. The transient receptor potential vanilloid (TRPV) family has crucial protective effects against cardiovascular diseases, but the role of TRPV5 in AAA has yet to be reported. In this study, ApoE-/- mice were intraperitoneally injected with AAV-GFP or AAV-TRPV5. After 30 days, mice were further administered with angiotensin II (Ang II, 1.44 mg/kg/day) by using osmotic pumps to induce the AAA model or Saline for 28 days, (i.e., Saline + AAV-GFP, Saline + AAV-TRPV5, Ang II + AAV-GFP and Ang II + AAV-TRPV5 groups were established). Compared with the control group, the incidence of AAA and the maximal diameter of the abdominal aorta markedly decreased in Ang II + AAV-TRPV5, which was detected by vascular ultrasound at 28 day. Meanwhile, less collagen and elastin degradation were observed in the Ang II + AAV-TRPV5 group by using Masson and Elastin stains. Moreover, more α-SMA and less MMP2 was observed in the abdominal aortas collected at 28 day by immunohistochemistry. In vitro, primary mouse vascular smooth muscle cells (VSMCs) were treated with Ang II (1 µM) to induce phenotype switch. Sh-TRPV5 and AdTRPV5 were used to transfect VSMCs. PCR and Western blotting were used to access the expression of contractile marker, including α-SMA and SM-22α. The results showed that the mRNA and protein level of α-SMA and SM-22α were decreased under the stimulation of Ang II, but could be attenuated by TRPV5 overexpression. The cell scratch assay demonstrated that the migration ability of VSMCs was increased in Ang II treated group and could be ameliorated by TRPV5 overexpression. Above all, VSMCs transformed from the contractile into secretory phenotype under Ang II stimuli, but could be rescued by TRPV5 overexpression. Furthermore, TRPV5 overexpression suppressed the increased expression of KLF4 induced by Ang II treatment in VSMCs. The data demonstrated that TRPV5 could inhibit AAA formation and play a critical role in the VSMC phenotype switch by downregulating KLF4, suggesting TRPV5 as a new strategy for treating AAA.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Canais de Cálcio/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Canais de Cátion TRPV/farmacologia , Angiotensina II , Animais , Aorta/citologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Canais de Cálcio/genética , Diferenciação Celular/efeitos dos fármacos , Dependovirus/genética , Regulação para Baixo , Técnicas de Transferência de Genes , Fator 4 Semelhante a Kruppel , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Canais de Cátion TRPV/genética , Regulação para Cima
15.
J Orthop Res ; 39(8): 1633-1646, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33150984

RESUMO

Electromagnetic fields (EMFs) are widely used in a number of cell therapies and bone disorder treatments, and nanomagnetic particles (NMPs) also promote cell activity. In this study, we investigated the synergistic effects of EMFs and NMPs on the osteogenesis of the human Saos-2 osteoblast cell line and in a rat calvarial defect model. The Saos-2 cells and critical-size calvarial defects of the rats were exposed to EMF (1 mT, 45 Hz, 8 h/day) with or without Fe3 O4 NMPs. Biocompatibility was evaluated with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase) assays. This analysis showed that NMP and EMF did not induce cell toxicity. Quantitative reverse-transcription polymerase chain reaction indicated that the osteogenesis-related markers were highly expressed in the NMP-incorporated Saos-2 cells after exposure to EMF. Also, the expression of gene-encoding proteins involved in calcium channels was activated and the calcium concentration of the NMP-incorporated + EMF-exposed group was increased compared with the control group. In particular, in the NMP-incorporated + EMF-exposed group, all osteogenic proteins were more abundantly expressed than in the control group. This indicated that the NMP incorporation + EMF exposure induced a signaling pathway through activation of p-ERK and calcium channels. Also, in vivo evaluation revealed that rat calvarial defects treated with EMFs and NMPs had good regeneration results with new bone formation and increased mineral density after 6 weeks. Altogether, these results suggest that NMP treatment or EMF exposure of Saos-2 cells can increase osteogenic activity and NMP incorporation following EMF exposure which is synergistically efficient for osteogenesis.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Campos Eletromagnéticos , Ratos , Transdução de Sinais
16.
Brain Res Bull ; 164: 121-135, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858127

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal features of cognitive dysfunction in an individual. Recently, the blockade of mitochondrial calcium uniporter (MCU) exhibits neuroprotective activity in experimental animals. However, the therapeutic potential of MCU has not yet been established in the management of AD. Therefore, the present study explored the therapeutic potential of either Ruthenium red (RR), a MCU blocker, or Spermine, a MCU opener, on the extent of mitochondrial calcium accumulation, function, integrity and bioenergetics in hippocampus, pre-frontal cortex and amygdale of ICV-STZ challenged rats. Experimental AD was induced in male rats by intracerebroventricular injection of streptozotocin (ICV-STZ) on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. RR attenuated ICV-STZ-induced memory-related behavioral abnormalities in Morris water maze and Y-maze tests. RR also attenuated ICV-STZ-induced decrease in the level of acetylcholine and activity of choline acetyltransferase and, increase in the activity of acetylcholinestarase in memory-sensitive rat brain regions. Further, RR attenuated mitochondrial toxicity in terms of reducing mitochondrial calcium accumulation and improving the mitochondrial function, integrity and bioenergetics in memory-sensitive brain regions of ICV-STZ challenged rats. Furthermore, RR attenuated the percentage of apoptotic cells in ICV-STZ challenged rat brain regions. However, Spermine did not alter ICV-STZ-induced behavioral, biochemical and molecular observations in any of the brain regions. These observations indicate the fact that the MCU blockage could be a potential therapeutic option in the management of sporadic type of AD.


Assuntos
Canais de Cálcio/farmacologia , Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Rutênio Vermelho/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Canais de Cálcio/uso terapêutico , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Rutênio Vermelho/uso terapêutico , Estreptozocina
17.
Oncol Rep ; 44(1): 156-164, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32626992

RESUMO

An aberrant elongated tract of glutamine residues (polyQ) in proteins induces multiple diseases treated in the clinic. In our previous study of progressive myoclonic epilepsy (PME), using whole­exome sequencing, a mutant Cav2.1 protein with an aberrant elongated polyQ tract was identified in PME patients. To investigate the molecular mechanism and cell biology of this aberrant elongated polyQ tract, wild­type Cav2.1 with 13 polyQ repeats (Cav2.1 wt­Q13) and mutant­type Cav2.1 with 26 polyQ repeats (Cav2.1 mt­Q26) were prepared and introduced into human SH­SY5Y neuroblastoma cells. Using a WST­1 assay, it was revealed that Cav2.1 mt­Q26 markedly suppressed the proliferation of the SH­SY5Y cells, a result not observed for the Cav2.1 wt­Q13­transfected cells. It was also revealed that Cav2.1 mt and its truncated molecules suppressed cell proliferation by inducing apoptosis rather than arresting the cell cycle. Further investigations indicated a nuclear translocation phenomenon associated with the Cav2.1 mt molecules. Mechanistically, it was revealed that the Cav2.1 mt molecules activated the Bcl­2/Bax, caspase­3 and poly ADP­ribose polymerase (PARP) apoptotic pathways. The present study may provide new insights for interpreting the pathogenesis of PME and the relationship among polyQ, CACNA1A gene mutations and PME.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/farmacologia , Mutação , Epilepsias Mioclônicas Progressivas/genética , Neuroblastoma/metabolismo , Peptídeos/metabolismo , Transporte Ativo do Núcleo Celular , Canais de Cálcio/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Sequenciamento do Exoma
18.
Chemosphere ; 259: 127493, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32622245

RESUMO

Pentachlorophenol (PCP), a highly toxic contaminant of chlorophenols, is common in a variety of environments and presents serious risks to animal and human health. However, the reproductive toxicity and potential actions of PCP have not been investigated thoroughly, especially in humans. Here, human spermatozoa were used to evaluate the effect of PCP on cell function and to explore the underlying mechanisms. PCP had no substantive effects on sperm viability or motility, nor on the ability to penetrate viscous medium, sperm hyperactivation or spontaneous acrosome reactions. However, PCP significantly inhibited these properties induced by progesterone (P4). Consistent with the functional observations, although PCP itself did not affect the basal intracellular Ca2+ concentrations and CatSper current, PCP dose-dependently inhibited increases of intracellular Ca2+ concentrations caused by P4. In addition, the activation of CatSper induced by P4 was largely suppressed by PCP. This is the first report showing that PCP may serves as an antagonist of the P4 membrane receptor to interfere with Ca2+ signaling by compromising the action of P4 on regulating sperm function. These findings suggest that the reproductive toxicity of PCP should also be a matter of concern as a mammalian health risk.


Assuntos
Pentaclorofenol/farmacologia , Progesterona/farmacologia , Espermatozoides/efeitos dos fármacos , Reação Acrossômica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Humanos , Masculino , Pentaclorofenol/metabolismo , Reprodução , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Viscosidade
19.
Biochem Biophys Res Commun ; 516(4): 1066-1072, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31279526

RESUMO

Intracellular Ca2+ signals play many important cellular functions such as migration, proliferation and differentiation. Store-operated Ca2+ entry (SOCE) is a major route of Ca2+ entry in nonexcitable cells. The activation of SOCE requires engagement between stromal interaction molecule 1 (STIM1) molecules on the endoplasmic reticulum and Ca2+ release-activated Ca2+ (CRAC) channel Orais (Orai1-3) on the plasma membrane. Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, invasion and metastasis. Here, we used the synthetic intracellular peptides derived from the C-termini of Orai channels to treat the breast cancer cells. We have found that Orai3-CT peptide exhibits stronger binding to STIM1 than Orai1-CT, and Orai3-CT peptide acts in a dominant negative fashion, blocking the STIM1-Orai1 interaction and reducing the Ca2+ entry and proliferation of breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Canais de Cálcio Ativados pela Liberação de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Peptídeos/farmacologia , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/farmacologia , Canais de Cálcio Ativados pela Liberação de Cálcio/química , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/química , Proteína ORAI1/farmacologia , Peptídeos/química , Mapas de Interação de Proteínas/efeitos dos fármacos , Molécula 1 de Interação Estromal/metabolismo
20.
Pain ; 160(5): 1103-1118, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31008816

RESUMO

Recently, studies have focused on the antihyperalgesic activity of the A3 adenosine receptor (A3AR) in several chronic pain models, but the cellular and molecular basis of this effect is still unknown. Here, we investigated the expression and functional effects of A3AR on the excitability of small- to medium-sized, capsaicin-sensitive, dorsal root ganglion (DRG) neurons isolated from 3- to 4-week-old rats. Real-time quantitative polymerase chain reaction experiments and immunofluorescence analysis revealed A3AR expression in DRG neurons. Patch-clamp experiments demonstrated that 2 distinct A3AR agonists, Cl-IB-MECA and the highly selective MRS5980, inhibited Ca-activated K (KCa) currents evoked by a voltage-ramp protocol. This effect was dependent on a reduction in Ca influx via N-type voltage-dependent Ca channels, as Cl-IB-MECA-induced inhibition was sensitive to the N-type blocker PD173212 but not to the L-type blocker, lacidipine. The endogenous agonist adenosine also reduced N-type Ca currents, and its effect was inhibited by 56% in the presence of A3AR antagonist MRS1523, demonstrating that the majority of adenosine's effect is mediated by this receptor subtype. Current-clamp recordings demonstrated that neuronal firing of rat DRG neurons was also significantly reduced by A3AR activation in a MRS1523-sensitive but PD173212-insensitive manner. Intracellular Ca measurements confirmed the inhibitory role of A3AR on DRG neuronal firing. We conclude that pain-relieving effects observed on A3AR activation could be mediated through N-type Ca channel block and action potential inhibition as independent mechanisms in isolated rat DRG neurons. These findings support A3AR-based therapy as a viable approach to alleviate pain in different pathologies.


Assuntos
Gânglios Espinais/citologia , Neurônios/metabolismo , Receptor A3 de Adenosina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/farmacologia , Células Cultivadas , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor A3 de Adenosina/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA