Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Biomed Pharmacother ; 174: 116472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531121

RESUMO

The Voltage-Gated Calcium Channel (VGCC) auxiliary subunit Cavα2δ-1 (CACNA2D1) is the target/receptor of gabapentinoids which are known therapeutics in epilepsy and neuropathic pain. Following damage to the peripheral sensory nervous system, Cavα2δ-1 is upregulated in dorsal root ganglion (DRG) neurons in several animal models of chronic neuropathic pain. Gabapentinoids, such as gabapentin and pregabalin, engage with Cavα2δ-1 via binding an arginine residue (R241) within an RRR motif located at the N-terminus of human Cavα2δ-1. A novel, next generation gabapentinoid, engineered not to penetrate the brain, was able to generate a strong analgesic response in Chronic Constriction Injury animal model of chronic neuropathic pain and showed binding specificity for Cavα2δ-1 versus the Cavα2δ-2 subunit. This novel non-brain penetrant gabapentinoid, binds to R241 and a novel binding site on Cavα2δ-1, which is located within the VGCC_α2 domain, identified as a lysine residue within an IKAK amino acid motif (K634). The overall whole cell current amplitudes were diminished by the compound, with these inhibitory effects being diminished in R241A mutant Cavα2δ-1 subunits. The functional effects occurred at lower concentrations than those needed for inhibition by gabapentin or pregabalin, which apparently bound the Cavα2δ-1 subunit only on the R241 and not on the K634 residue. Our work sets the stage for the identification and characterisation of novel compounds with therapeutic properties in neuropathic pain and possibly in other disorders and conditions which require engagement of the Cavα2δ-1 target.


Assuntos
Canais de Cálcio Tipo L , Neuralgia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Animais , Ligantes , Humanos , Masculino , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Gabapentina/farmacologia , Ratos Sprague-Dawley , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Ratos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo N/genética , Analgésicos/farmacologia , Modelos Animais de Doenças , Pregabalina/farmacologia
2.
Brain ; 147(2): 680-697, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37831655

RESUMO

Migraine is a common and disabling neurological disorder. The headache and sensory amplifications of migraine are attributed to hyperexcitable sensory circuits, but a detailed understanding remains elusive. A mutation in casein kinase 1 delta (CK1δ) was identified in non-hemiplegic familial migraine with aura and advanced sleep phase syndrome. Mice carrying the CK1δT44A mutation were more susceptible to spreading depolarization (the phenomenon that underlies migraine aura), but mechanisms underlying this migraine-relevant phenotype were not known. We used a combination of whole-cell electrophysiology and multiphoton imaging, in vivo and in brain slices, to compare CK1δT44A mice (adult males) to their wild-type littermates. We found that despite comparable synaptic activity at rest, CK1δT44A neurons were more excitable upon repetitive stimulation than wild-type, with a reduction in presynaptic adaptation at excitatory but not inhibitory synapses. The mechanism of this adaptation deficit was a calcium-dependent enhancement of the size of the readily releasable pool of synaptic vesicles, and a resultant increase in glutamate release, in CK1δT44A compared to wild-type synapses. Consistent with this mechanism, CK1δT44A neurons showed an increase in the cumulative amplitude of excitatory post-synaptic currents, and a higher excitation-to-inhibition ratio during sustained activity compared to wild-type. At a local circuit level, action potential bursts elicited in CK1δT44A neurons triggered an increase in recurrent excitation compared to wild-type, and at a network level, CK1δT44A mice showed a longer duration of 'up state' activity, which is dependent on recurrent excitation. Finally, we demonstrated that the spreading depolarization susceptibility of CK1δT44A mice could be returned to wild-type levels with the same intervention (reduced extracellular calcium) that normalized presynaptic adaptation. Taken together, these findings show a stimulus-dependent presynaptic gain of function at glutamatergic synapses in a genetic model of migraine, that accounts for the increased spreading depolarization susceptibility and may also explain the sensory amplifications that are associated with the disease.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Transtornos de Enxaqueca , Enxaqueca com Aura , Camundongos , Animais , Enxaqueca com Aura/genética , Camundongos Transgênicos , Canais de Cálcio Tipo N/genética , Cálcio/metabolismo , Transtornos de Enxaqueca/genética , Mutação/genética , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia
3.
J Physiol ; 602(3): 485-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155373

RESUMO

Presynaptic voltage-gated Ca2+ channel (CaV ) subtype abundance at mammalian synapses regulates synaptic transmission in health and disease. In the mammalian central nervous system (CNS), most presynaptic terminals are CaV 2.1 dominant with a developmental reduction in CaV 2.2 and CaV 2.3 levels, and CaV 2 subtype levels are altered in various diseases. However, the molecular mechanisms controlling presynaptic CaV 2 subtype levels are largely unsolved. Because the CaV 2 α1  subunit cytoplasmic regions contain varying levels of sequence conservation, these regions are proposed to control presynaptic CaV 2 subtype preference and abundance. To investigate the potential role of these regions, we expressed chimeric CaV 2.1 α1  subunits containing swapped motifs with the CaV 2.2 and CaV 2.3 α1  subunit on a CaV 2.1/CaV 2.2 null background at the calyx of Held presynaptic terminals. We found that expression of CaV 2.1 α1  subunit chimeras containing the CaV 2.3 loop II-III region or cytoplasmic C-terminus (CT) resulted in a large reduction of presynaptic Ca2+ currents compared to the CaV 2.1 α1  subunit. However, the Ca2+ current sensitivity to the CaV 2.1 blocker agatoxin-IVA was the same between the chimeras and the CaV 2.1 α1  subunit. Additionally, we found no reduction in presynaptic Ca2+ currents with CaV 2.1/2.2 cytoplasmic CT chimeras. We conclude that the motifs in the CaV 2.1 loop II-III and CT do not individually regulate CaV 2.1 preference, although these motifs control CaV 2.1 levels and the CaV 2.3 CT contains motifs that negatively regulate presynaptic CaV 2.3 levels. We propose that the motifs controlling presynaptic CaV 2.1 preference are distinct from those regulating CaV 2.1 levels and may act synergistically to impact pathways regulating CaV 2.1 preference and abundance. KEY POINTS: Presynaptic CaV 2 subtype abundance regulates neuronal circuit properties, although the mechanisms regulating presynaptic CaV 2 subtype abundance and preference remain enigmatic. The CaV α1  subunit determines subtype and contains multiple motifs implicated in regulating presynaptic subtype abundance and preference. The CaV 2.1 α1  subunit domain II-III loop and cytoplasmic C-terminus are positive regulators of presynaptic CaV 2.1 abundance but do not regulate preference. The CaV 2.3 α1  subunit cytoplasmic C-terminus negatively regulates presynaptic CaV 2 subtype abundance but not preference, whereas the CaV 2.2 α1  subunit cytoplasmic C-terminus is not a key regulator of presynaptic CaV 2 subtype abundance or preference. The CaV 2 α1  subunit motifs determining the presynaptic CaV 2 preference are distinct from abundance.


Assuntos
Canais de Cálcio Tipo N , Transmissão Sináptica , Animais , Canais de Cálcio Tipo N/genética , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Terminações Pré-Sinápticas/fisiologia , Neurônios/metabolismo , Mamíferos/metabolismo
4.
Function (Oxf) ; 5(1): zqad060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38020068

RESUMO

N-type calcium channels (CaV2.2) are predominantly localized in presynaptic terminals, and are particularly important for pain transmission in the spinal cord. Furthermore, they have multiple isoforms, conferred by alternatively spliced or cassette exons, which are differentially expressed. Here, we have examined alternatively spliced exon47 variants that encode a long or short C-terminus in human CaV2.2. In the Ensembl database, all short exon47-containing transcripts were associated with the absence of exon18a, therefore, we also examined the effect of inclusion or absence of exon18a, combinatorially with the exon47 splice variants. We found that long exon47, only in the additional presence of exon18a, results in CaV2.2 currents that have a 3.6-fold greater maximum conductance than the other three combinations. In contrast, cell-surface expression of CaV2.2 in both tsA-201 cells and hippocampal neurons is increased ∼4-fold by long exon47, relative to short exon47, in either the presence or the absence of exon18a. This surprising discrepancy between trafficking and function indicates that cell-surface expression is enhanced by long exon47, independently of exon18a. However, in the presence of long exon47, exon18a mediates an additional permissive effect on CaV2.2 gating. We also investigated the single-nucleotide polymorphism in exon47 that has been linked to schizophrenia and Parkinson's disease, which we found is only non-synonymous in the short exon47 C-terminal isoform, resulting in two minor alleles. This study highlights the importance of investigating the combinatorial effects of exon inclusion, rather than each in isolation, in order to increase our understanding of calcium channel function.


Assuntos
Neurônios , Splicing de RNA , Humanos , Neurônios/metabolismo , Canais de Cálcio Tipo N/genética , Isoformas de Proteínas/genética , Éxons/genética
5.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37972067

RESUMO

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Assuntos
Dor Crônica , Peptidomiméticos , Ratos , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Ratos Sprague-Dawley , Peptidomiméticos/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Células Receptoras Sensoriais/metabolismo , Gânglios Espinais/metabolismo
6.
Elife ; 112022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374183

RESUMO

High-voltage-activated Ca2+ (CaV) channels that adjust Ca2+ influx upon membrane depolarization are differentially regulated by phosphatidylinositol 4,5-bisphosphate (PIP2) in an auxiliary CaV ß subunit-dependent manner. However, the molecular mechanism by which the ß subunits control the PIP2 sensitivity of CaV channels remains unclear. By engineering various α1B and ß constructs in tsA-201 cells, we reported that at least two PIP2-binding sites, including the polybasic residues at the C-terminal end of I-II loop and the binding pocket in S4II domain, exist in the CaV2.2 channels. Moreover, they were distinctly engaged in the regulation of channel gating depending on the coupled CaV ß2 subunits. The membrane-anchored ß subunit abolished the PIP2 interaction of the phospholipid-binding site in the I-II loop, leading to lower PIP2 sensitivity of CaV2.2 channels. By contrast, PIP2 interacted with the basic residues in the S4II domain of CaV2.2 channels regardless of ß2 isotype. Our data demonstrated that the anchoring properties of CaV ß2 subunits to the plasma membrane determine the biophysical states of CaV2.2 channels by regulating PIP2 coupling to the nonspecific phospholipid-binding site in the I-II loop.


Assuntos
Canais de Cálcio Tipo N , Fosfatidilinositóis , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Sítios de Ligação
7.
Mol Pharmacol ; 102(4): 196-208, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944919

RESUMO

The analgesic α-conotoxins Vc1.1, RgIA, and PeIA attenuate nociceptive transmission via activation of G protein-coupled GABAB receptors (GABABRs) to modulate N-type calcium channels in primary afferent neurons and recombinantly coexpressed human GABABR and Cav2.2 channels in human embryonic kidney 293T cells. Here, we investigate the effects of analgesic α-conotoxins following the mutation of amino acid residues in the Venus flytrap (VFT) domains of the GABABR subunits predicted through computational peptide docking and molecular dynamics simulations. Our docking calculations predicted that all three of the α-conotoxins form close contacts with VFT residues in both B1 and B2 subunits, comprising a novel GABABR ligand-binding site. The effects of baclofen and α-conotoxins on the peak Ba2+ current (IBa) amplitude were investigated on wild-type and 15 GABABR mutants individually coexpressed with human Cav2.2 channels. Mutations at the interface of the VFT domains of both GABABR subunits attenuated baclofen-sensitive IBa inhibition by the analgesic α-conotoxins. In contrast, mutations located outside the putative peptide-binding site (D380A and R98A) did not. The key GABABR residues involved in interactions with the α-conotoxins are K168 and R207 on the B2 subunit and S130, S153, R162, E200, F227, and E253 on the B1 subunit. The double mutant, S130A + S153A, abolished inhibition by both baclofen and the α-conotoxins. Depolarization-activated IBa mediated by both wild-type and all GABABR mutants were inhibited by the selective GABABR antagonist CGP 55845. This study identifies specific residues of GABABR involved in the binding of the analgesic α-conotoxins to the VFT domains of the GABABR. SIGNIFICANCE STATEMENT: This study defines the binding site of the analgesic α-conotoxins Vc1.1, RgIA, and PeIA on the human GABAB receptor to activate Gi/o proteins and inhibit Cav2.2 channels. Computational docking and molecular dynamics simulations of GABABR identified amino acids of the Venus flytrap (VFT) domains with which the α-conotoxins interact. GABABR alanine mutants attenuated baclofen-sensitive Cav2.2 inhibition by the α-conotoxins. We identify an allosteric binding site at the interface of the VFT domains of the GABABR subunits for the analgesic α-conotoxins.


Assuntos
Conotoxinas , Receptores de GABA-B , Alanina , Aminoácidos , Analgésicos/química , Analgésicos/farmacologia , Baclofeno/farmacologia , Sítios de Ligação , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Receptores de GABA-B/metabolismo
8.
Medicine (Baltimore) ; 101(26): e29782, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777045

RESUMO

For the diagnosis and prognosis of glioma, the development of prognostic biomarkers is critical. The N-type calcium channel, whose predominant subunit is encoded by calcium voltage-gated channel subunit alpha1 B (CACNA1B), is mostly found in the nervous system and is closely associated with neurosensory functions. However, the link between the expression of CACNA1B and glioma remains unknown. We used ONCOMINE to explore the differences in CACNA1B expression among different cancers. We then conducted survival analysis and COX analysis using TCGA_LGG and TCGA_GBM datasets, which were divided into CACNA1Bhigh and CACNA1Blow based on the median. We examined the differences in other favorable prognostic markers or clinical characteristics between CACNA1Bhigh and CACNA1Blow using t tests. Differentially expressed genes were identified, and KEGG pathway enrichment was performed. We compared the expression of methyltransferases and analyzed the differentially methylated regions. Immunohistochemistry results were retrieved from the Human Protein Atlas database for validation purposes. CACNA1B was expressed at lower levels in gliomas, and, for the first time, we found that high expression of CACNA1B in gliomas predicts a good prognosis. Other favorable prognostic markers, such as isocitrate dehydrogenase mutation, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase promoter methylation, were increased in tandem with high expression of CACNA1B. Differentially expressed genes were enriched in multiple pathways related to cancer progression and aberrant epigenetic alterations were significantly associated with CACNA1B. High expression of N-type calcium channels indicates a favorable prognosis for gliomas. This study provides a better understanding of the link between gliomas and N-type calcium channels and may offer guidance for the future treatment of gliomas.


Assuntos
Neoplasias Encefálicas , Canais de Cálcio Tipo N , Glioma , Neoplasias Encefálicas/genética , Canais de Cálcio Tipo N/genética , Glioma/diagnóstico , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Prognóstico
9.
Methods Mol Biol ; 2537: 185-196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895265

RESUMO

Defining the cell-specific alternative splicing landscape in complex tissues is an important goal to gain functional insights. Deep-sequencing techniques coupled to genetic strategies for cell identification has provided important cues on cell-specific exon usage in complex tissues like the nervous system. BaseScope™ has emerged as a powerful and highly sensitive alternative to in situ hybridization to determine exon composition in tissue with spatial and morphological context. In this protocol, we will review how BaseScope was utilized to detect the e37a-Cacna1b splice variant of the presynaptic calcium channel CaV2.2 or N-type. This splice variant arises from a pair of mutually exclusive exons (e37a and e37b). E37a-Cacna1b is heavily underrepresented relative to e37b-Cacna1b and both exons share 60% of their sequence. By using BaseScope™, we were able to discover that e37a-Cacna1b is expressed in excitatory pyramidal neurons of hippocampus and cortex, as well as motor neurons of the ventral horn of the spinal cord.


Assuntos
Processamento Alternativo , Canais de Cálcio Tipo N , Canais de Cálcio Tipo N/genética , Éxons , Hibridização In Situ , RNA Mensageiro/genética
10.
Function (Oxf) ; 3(3): zqac013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462614

RESUMO

The auxiliary α2δ subunits of voltage-gated calcium (CaV) channels are key to augmenting expression and function of CaV1 and CaV2 channels, and are also important drug targets in several therapeutic areas, including neuropathic pain. The α2δ proteins are translated as preproteins encoding both α2 and δ, and post-translationally proteolyzed into α2 and δ subunits, which remain associated as a complex. In this study, we have identified ADAM17 as a key protease involved in proteolytic processing of pro-α2δ-1 and α2δ-3 subunits. We provide three lines of evidence: First, proteolytic cleavage is inhibited by chemical inhibitors of particular metalloproteases, including ADAM17. Second, proteolytic cleavage of both α2δ-1 and α2δ-3 is markedly reduced in cell lines by knockout of ADAM17 but not ADAM10. Third, proteolytic cleavage is reduced by the N-terminal active domain of TIMP-3 (N-TIMP-3), which selectively inhibits ADAM17. We have found previously that proteolytic cleavage into mature α2δ is essential for the enhancement of CaV function, and in agreement, knockout of ADAM17 inhibited the ability of α2δ-1 to enhance both CaV2.2 and CaV1.2 calcium currents. Finally, our data also indicate that the main site of proteolytic cleavage of α2δ-1 is the Golgi apparatus, although cleavage may also occur at the plasma membrane. Thus, our study identifies ADAM17 as a key protease required for proteolytic maturation of α2δ-1 and α2δ-3, and thus a potential drug target in neuropathic pain.


Assuntos
Neuralgia , Inibidor Tecidual de Metaloproteinase-3 , Humanos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Canais de Cálcio Tipo N/genética , Proteólise , Cálcio da Dieta/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína ADAM17/genética
11.
Pflugers Arch ; 474(4): 435-445, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267086

RESUMO

CaV2.3 channels are subthreshold voltage-gated calcium channels that play crucial roles in neurotransmitter release and regulation of membrane excitability, yet modulation of these channels with endogenous molecules and their role in pain processing is not well studied. Here, we hypothesized that an endogenous amino acid l-cysteine could be a modulator of these channels and may affect pain processing in mice. To test this hypothesis, we employed conventional patch-clamp technique in the whole-cell configuration using recombinant CaV2.3 subunit stably expressed in human embryonic kidney (HEK-293) cells. We found in our in vitro experiments that l-cysteine facilitated gating and increased the amplitudes of recombinant CaV2.3 currents likely by chelating trace metals that tonically inhibit the channel. In addition, we took advantage of mouse genetics in vivo using the acetic acid visceral pain model that was performed on wildtype and homozygous Cacna1e knockout male littermates. In ensuing in vivo experiments, we found that l-cysteine administered both subcutaneously and intraperitoneally evoked more prominent pain responses in the wildtype mice, while the effect was completely abolished in knockout mice. Conversely, intrathecal administration of l-cysteine lowered visceral pain response in the wildtype mice, and again the effect was completely abolished in the knockout mice. Our study strongly suggests that l-cysteine-mediated modulation of CaV2.3 channels plays an important role in visceral pain processing. Furthermore, our data are consistent with the contrasting roles of CaV2.3 channels in mediating visceral nociception in the peripheral and central pain pathways.


Assuntos
Canais de Cálcio Tipo R , Proteínas de Transporte de Cátions , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cisteína , Células HEK293 , Humanos , Masculino , Camundongos , Nociceptividade
12.
Elife ; 112022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35238776

RESUMO

Patients suffering from familial hemiplegic migraine type 1 (FHM1) may have a disproportionally severe outcome after head trauma, but the underlying mechanisms are unclear. Hence, we subjected knock-in mice carrying the severer S218L or milder R192Q FHM1 gain-of-function missense mutation in the CACNA1A gene that encodes the α1A subunit of neuronal voltage-gated CaV2.1 (P/Q-type) calcium channels and their wild-type (WT) littermates to experimental traumatic brain injury (TBI) by controlled cortical impact and investigated cortical spreading depolarizations (CSDs), lesion volume, brain edema formation, and functional outcome. After TBI, all mutant mice displayed considerably more CSDs and seizures than WT mice, while S218L mutant mice had a substantially higher mortality. Brain edema formation and the resulting increase in intracranial pressure were more pronounced in mutant mice, while only S218L mutant mice had larger lesion volumes and worse functional outcome. Here, we show that gain of CaV2.1 channel function worsens histopathological and functional outcome after TBI in mice. This phenotype was associated with a higher number of CSDs, increased seizure activity, and more pronounced brain edema formation. Hence, our results suggest increased susceptibility for CSDs and seizures as potential mechanisms for bad outcome after TBI in FHM1 mutation carriers.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Enxaqueca com Aura , Animais , Edema Encefálico/genética , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Canais de Cálcio Tipo N/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Enxaqueca com Aura/genética , Mutação , Convulsões/genética
13.
Naunyn Schmiedebergs Arch Pharmacol ; 395(4): 459-470, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122502

RESUMO

Voltage-gated calcium channel (VGCC) subunits have been genetically associated with autism spectrum disorders (ASD). The properties of the pore-forming VGCC subunit are modulated by auxiliary ß-subunits, which exist in four isoforms (CaVß1-4). Our previous findings suggested that activation of L-type VGCCs is a common feature of CaVß2 subunit mutations found in ASD patients. In the current study, we functionally characterized a novel CaVß1b variant (p.R296C) identified in an ASD patient. We used whole-cell and single-channel patch clamp to study the effect of CaVß1b_R296C on the function of L- and N-type VGCCs. Furthermore, we used co-immunoprecipitation followed by Western blot to evaluate the interaction of the CaVß1b-subunits with the RGK-protein Gem. Our data obtained at both, whole-cell and single-channel levels, show that compared to a wild-type CaVß1b, the CaVß1b_R296C variant inhibits L- and N-type VGCCs. Interaction with and modulation by the RGK-protein Gem seems to be intact. Our findings indicate functional effects of the CaVß1b_R296C variant differing from that attributed to CaVß2 variants found in ASD patients. Further studies have to detail the effects on different VGCC subtypes and on VGCC expression.


Assuntos
Transtorno do Espectro Autista , Canais de Cálcio Tipo L , Canais de Cálcio Tipo N , Transtorno do Espectro Autista/genética , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Humanos
14.
Orphanet J Rare Dis ; 16(1): 461, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727962

RESUMO

BACKGROUND: Epilepsy is a neurological disorder characterized by the potential to induce seizure and accompanied by cognitive, psychological, and social consequences. CACNA1A gene is a voltage-gated P/Q-type Cav2.1 channel that is broadly expressed in the central nervous system, and the pathogenic variants within this gene may be associated with the epileptic phenotype. In the present study, we collected clinical and molecular data related to epileptic patients with CACNA1A pathogenic variants and investigated possible meaningful relationship between age at onset, neurodevelopmental disorders, type of seizures, brain imaging abnormalities, genotype, and protein domains. RESULTS: In our retrospective literature studies, from among 890 articles reviewed, a total of 90 individuals were related to epilepsy phenotype. Our findings showed that about 90 percent of patients have shown the first symptoms in childhood and teenage years and different types of neurodevelopmental disorders, such as intellectual disability, developmental arrest, and behavioral disorders, have been common findings for these patients. Further, a wide range of abnormalities have been observed in their brain imaging, and generalized seizures have been the most type of seizures in these patients. However, our data showed no specific genotype-phenotype correlation in epileptic patients with CACNA1A pathogenic alterations. CONCLUSIONS: Our study focused on epileptic phenotype in patients with CACNA1A pathogenic variants and showed a wide range of clinical and molecular heterogeneity with no specific genotype-phenotype correlation. It seems that incomplete penetrance, de-novo variants, and modifier genes are obstacles in predicting the clinical outcome.


Assuntos
Canais de Cálcio Tipo Q , Canais de Cálcio/genética , Epilepsia , Adolescente , Canais de Cálcio Tipo N/genética , Epilepsia/genética , Humanos , Estudos Retrospectivos
15.
Cell Rep ; 37(5): 109931, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731621

RESUMO

N-type voltage-gated calcium (CaV) channels mediate Ca2+ influx at presynaptic terminals in response to action potentials and play vital roles in synaptogenesis, release of neurotransmitters, and nociceptive transmission. Here, we elucidate a cryo-electron microscopy (cryo-EM) structure of the human CaV2.2 complex in apo, ziconotide-bound, and two CaV2.2-specific pore blockers-bound states. The second voltage-sensing domain (VSD) is captured in a resting-state conformation, trapped by a phosphatidylinositol 4,5-bisphosphate (PIP2) molecule, which is distinct from the other three VSDs of CaV2.2, as well as activated VSDs observed in previous structures of CaV channels. This structure reveals the molecular basis for the unique inactivation process of CaV2.2 channels, in which the intracellular gate formed by S6 helices is closed and a W-helix from the domain II-III linker stabilizes closed-state inactivation. The structures of this inactivated, drug-bound complex lay a solid foundation for developing new state-dependent blockers for treatment of chronic pain.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/efeitos dos fármacos , Dipeptídeos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , ômega-Conotoxinas/farmacologia , Potenciais de Ação , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo N/ultraestrutura , Sinalização do Cálcio , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformação Proteica em alfa-Hélice , Relação Estrutura-Atividade
16.
PLoS One ; 16(8): e0255656, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34343209

RESUMO

Although quiescent hepatic stellate cells (HSCs) have been suggested to regulate hepatic blood flow, there is no direct evidence that quiescent HSCs display contractile abilities. Here, we developed a new method to quantitatively measure the contraction of single isolated HSCs and evaluated whether endothelin-1 (ET-1) induced contraction of HSCs in a non-activated state. HSCs isolated from mice were seeded on collagen gel containing fluorescent beads. The beads around a single HSC were observed gravitating toward the cell upon contraction. By recording the movement of each bead by fluorescent microscopy, the real-time contraction of HSCs was quantitatively evaluated. ET-1 induced a slow contraction of non-activated HSCs, which was inhibited by the non-muscle myosin II inhibitor blebbistatin, the calmodulin inhibitor W-7, and the ETA receptor antagonist ambrisentan. ET-1-induced contraction was also largely reduced in Ca2+-free conditions, but sustained contraction still remained. The tonic contraction was further diminished by the Rho-kinase inhibitor H-1152. The mRNA expression of P/Q-type voltage-dependent Ca2+ channels (VDCC), as well as STIM and Orai, constituents of store-operated channels (SOCs), was observed in mouse non-activated HSCs. ET-1-induced contraction was not affected by amlodipine, a VDCC blocker, whereas it was partly reduced by Gd3+ and amiloride, non-selective cation channel blockers. However, neither YM-58483 nor SKF-96365, which inhibit SOCs, had any effects on the contraction. These results suggest that ET-1 leads to Ca2+-influx through cation channels other than SOCs and produces myosin II-mediated contraction of non-activated HSCs via ETA receptors, as well as via mechanisms involving Ca2+-calmodulin and Rho kinase.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Endotelina-1/farmacologia , Células Estreladas do Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Células Cultivadas , Antagonistas dos Receptores de Endotelina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/metabolismo , Fenilpropionatos/farmacologia , Piridazinas/farmacologia , RNA Mensageiro/genética , Receptor de Endotelina A/metabolismo , Sulfonamidas/farmacologia , Quinases Associadas a rho/metabolismo
17.
Sci Rep ; 11(1): 10256, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986433

RESUMO

N-type voltage-gated calcium channels (CaV2.2) are predominantly expressed at presynaptic terminals, and their function is regulated by auxiliary α2δ and ß subunits. All four mammalian α2δ subunits enhance calcium currents through CaV1 and CaV2 channels, and this increase is attributed, in part, to increased CaV expression at the plasma membrane. In the present study we provide evidence that α2δ-1, like α2δ-2, is recycled to the plasma membrane through a Rab11a-dependent endosomal recycling pathway. Using a dominant-negative Rab11a mutant, Rab11a(S25N), we show that α2δ-1 increases plasma membrane CaV2.2 expression by increasing the rate and extent of net forward CaV2.2 trafficking in a Rab11a-dependent manner. Dominant-negative Rab11a also reduces the ability of α2δ-1 to increase CaV2.2 expression on the cell-surface of hippocampal neurites. In contrast, α2δ-3 does not enhance rapid forward CaV2.2 trafficking, regardless of whether Rab11a(S25N) is present. In addition, whole-cell CaV2.2 currents are reduced by co-expression of Rab11a(S25N) in the presence of α2δ-1, but not α2δ-3. Taken together these data suggest that α2δ subtypes participate in distinct trafficking pathways which in turn influence the localisation and function of CaV2.2.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Ácidos Cicloexanocarboxílicos/metabolismo , Gabapentina/metabolismo , Hipocampo/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Cultura Primária de Células , Transporte Proteico , Ratos , Ácido gama-Aminobutírico/metabolismo , Proteínas rab de Ligação ao GTP/genética
18.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799975

RESUMO

Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.


Assuntos
Canais de Cálcio/metabolismo , Transtornos de Enxaqueca/etiologia , Neuroglia/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Humanos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/fisiopatologia , Mutação , Neuroglia/metabolismo
19.
PLoS One ; 16(3): e0243645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667217

RESUMO

Chemical transfection is broadly used to transiently transfect mammalian cells, although often associated with cellular stress and membrane instability, which imposes challenges for most cellular assays, including high-throughput (HT) assays. In the current study, we compared the effectiveness of calcium phosphate, FuGENE and Lipofectamine 3000 to transiently express two key voltage-gated ion channels critical in pain pathways, CaV2.2 and NaV1.7. The expression and function of these channels were validated using two HT platforms, the Fluorescence Imaging Plate Reader FLIPRTetra and the automated patch clamp QPatch 16X. We found that all transfection methods tested demonstrated similar effectiveness when applied to FLIPRTetra assays. Lipofectamine 3000-mediated transfection produced the largest peak currents for automated patch clamp QPatch assays. However, the FuGENE-mediated transfection was the most effective for QPatch assays as indicated by the superior number of cells displaying GΩ seal formation in whole-cell patch clamp configuration, medium to large peak currents, and higher rates of accomplished assays for both CaV2.2 and NaV1.7 channels. Our findings can facilitate the development of HT automated patch clamp assays for the discovery and characterization of novel analgesics and modulators of pain pathways, as well as assisting studies examining the pharmacology of mutated channels.


Assuntos
Canais de Cálcio Tipo N/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Transfecção/métodos , Potenciais de Ação/efeitos dos fármacos , Analgésicos/farmacologia , Animais , Células CHO , Canais de Cálcio Tipo N/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Microscopia de Fluorescência , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/metabolismo , Dor/patologia , Técnicas de Patch-Clamp
20.
Mol Brain ; 14(1): 27, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557884

RESUMO

CACNA1A pathogenic variants have been linked to several neurological disorders including familial hemiplegic migraine and cerebellar conditions. More recently, de novo variants have been associated with severe early onset developmental encephalopathies. CACNA1A is highly expressed in the central nervous system and encodes the pore-forming CaVα1 subunit of P/Q-type (Cav2.1) calcium channels. We have previously identified a patient with a de novo missense mutation in CACNA1A (p.Y1384C), characterized by hemiplegic migraine, cerebellar atrophy and developmental delay. The mutation is located at the transmembrane S5 segment of the third domain. Functional analysis in two predominant splice variants of the neuronal Cav2.1 channel showed a significant loss of function in current density and changes in gating properties. Moreover, Y1384 variants exhibit differential splice variant-specific effects on recovery from inactivation. Finally, structural analysis revealed structural damage caused by the tyrosine substitution and changes in electrostatic potentials.


Assuntos
Canais de Cálcio Tipo N/genética , Cerebelo/patologia , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Enxaqueca com Aura/genética , Mutação/genética , Adolescente , Adulto , Processamento Alternativo/genética , Atrofia , Fenômenos Biofísicos , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo N/metabolismo , Linhagem Celular , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Feminino , Humanos , Recém-Nascido , Ativação do Canal Iônico , Masculino , Enxaqueca com Aura/complicações , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA