Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.944
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Cricetulus , Modelos Animais de Doenças , Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Esfingomielina Fosfodiesterase/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Camundongos , Humanos , Células CHO , beta-Ciclodextrinas/farmacologia , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Pregnenolona/farmacologia , Sobrevivência Celular/efeitos dos fármacos
2.
Front Immunol ; 15: 1264702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765011

RESUMO

Introduction: Recently, we reported that post COVID-19 condition patients also have Transient Receptor Potential Melastatin 3 (TRPM3) ion channel dysfunction, a potential biomarker reported in natural killer (NK) cells from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients. As there is no universal treatment for post COVID-19 condition, knowledge of ME/CFS may provide advances to investigate therapeutic targets. Naltrexone hydrochloride (NTX) has been demonstrated to be beneficial as a pharmacological intervention for ME/CFS patients and experimental investigations have shown NTX restored TRPM3 function in NK cells. This research aimed to: i) validate impaired TRPM3 ion channel function in post COVID-19 condition patients compared with ME/CFS; and ii) investigate NTX effects on TRPM3 ion channel activity in post COVID-19 condition patients. Methods: Whole-cell patch-clamp was performed to characterize TRPM3 ion channel activity in freshly isolated NK cells of post COVID-19 condition (N = 9; 40.56 ± 11.26 years), ME/CFS (N = 9; 39.33 ± 9.80 years) and healthy controls (HC) (N = 9; 45.22 ± 9.67 years). NTX effects were assessed on post COVID-19 condition (N = 9; 40.56 ± 11.26 years) and HC (N = 7; 45.43 ± 10.50 years) where NK cells were incubated for 24 hours in two protocols: treated with 200 µM NTX, or non-treated; TRPM3 channel function was assessed with patch-clamp protocol. Results: This investigation confirmed impaired TRPM3 ion channel function in NK cells from post COVID-19 condition and ME/CFS patients. Importantly, PregS-induced TRPM3 currents were significantly restored in NTX-treated NK cells from post COVID-19 condition compared with HC. Furthermore, the sensitivity of NK cells to ononetin was not significantly different between post COVID-19 condition and HC after treatment with NTX. Discussion: Our findings provide further evidence identifying similarities of TRPM3 ion channel dysfunction between ME/CFS and post COVID-19 condition patients. This study also reports, for the first time, TRPM3 ion channel activity was restored in NK cells isolated from post COVID-19 condition patients after in vitro treatment with NTX. The TRPM3 restoration consequently may re-establish TRPM3-dependent calcium (Ca2+) influx. This investigation proposes NTX as a potential therapeutic intervention and TRPM3 as a treatment biomarker for post COVID-19 condition.


Assuntos
COVID-19 , Células Matadoras Naturais , Naltrexona , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/metabolismo , COVID-19/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Naltrexona/farmacologia , Naltrexona/uso terapêutico , SARS-CoV-2/fisiologia , Síndrome de Fadiga Crônica/tratamento farmacológico , Síndrome de Fadiga Crônica/imunologia , Técnicas de Patch-Clamp , Tratamento Farmacológico da COVID-19
3.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626609

RESUMO

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Assuntos
Ácidos Alcanossulfônicos , Autofagia , Cálcio , Fluorocarbonos , Resistência à Insulina , Fígado , Lisossomos , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Animais , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Camundongos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Poluentes Ambientais/toxicidade , Canais de Cátion TRPM/metabolismo , Camundongos Endogâmicos C57BL
4.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581988

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proliferação de Células , Interleucina-6 , Proteína Quinase C-alfa , Sinoviócitos , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Masculino , Ratos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Cultivadas , Inflamação/metabolismo , Inflamação/patologia , Ratos Sprague-Dawley , Feminino , Transdução de Sinais
5.
Neurosci Lett ; 828: 137763, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574849

RESUMO

The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.


Assuntos
Regulação da Temperatura Corporal , Canal de Cátion TRPA1 , Canais de Cátion TRPM , Animais , Ratos , Regulação da Temperatura Corporal/genética , Temperatura Baixa , Proteínas do Citoesqueleto/metabolismo , Temperatura , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPM/metabolismo
6.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38565288

RESUMO

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPM , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos , Canais de Cátion TRPM/metabolismo , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Receptores de GABA-A/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Neurônios GABAérgicos/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/metabolismo
7.
Cell Rep ; 43(4): 114108, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615321

RESUMO

TRP channels are implicated in various diseases, but high structural similarity between them makes selective pharmacological modulation challenging. Here, we study the molecular mechanism underlying specific inhibition of the TRPM7 channel, which is essential for cancer cell proliferation, by the anticancer agent CCT128930 (CCT). Using cryo-EM, functional analysis, and MD simulations, we show that CCT binds to a vanilloid-like (VL) site, stabilizing TRPM7 in the closed non-conducting state. Similar to other allosteric inhibitors of TRPM7, NS8593 and VER155008, binding of CCT is accompanied by displacement of a lipid that resides in the VL site in the apo condition. Moreover, we demonstrate the principal role of several residues in the VL site enabling CCT to inhibit TRPM7 without impacting the homologous TRPM6 channel. Hence, our results uncover the central role of the VL site for the selective interaction of TRPM7 with small molecules that can be explored in future drug design.


Assuntos
1-Naftilamina/análogos & derivados , Antineoplásicos , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Células HEK293 , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligação Proteica , Microscopia Crioeletrônica
8.
Cancer Biol Ther ; 25(1): 2338955, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38680092

RESUMO

Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.


•TRPM channels are widely expressed in the human body and play an important role in gliomas.• Abnormal expression of TRPM2, 3, 7, and 8 channels in gliomas is associated with disease severity and prognosis.•TRPM2, 3, 7, and 8 channels are effective targets in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Canais de Cátion TRPM , Humanos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Glioma/tratamento farmacológico , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Transdução de Sinais , Animais
9.
Cell Calcium ; 120: 102886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631163

RESUMO

Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.


Assuntos
Doenças Neurodegenerativas , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurogênese , Proteínas Serina-Treonina Quinases/metabolismo
10.
Mol Cancer ; 23(1): 65, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532427

RESUMO

BACKGROUND: Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS: LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS: TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS: TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , RNA Longo não Codificante , Canais de Cátion TRPM , Humanos , Animais , Camundongos , Neoplasias da Vesícula Biliar/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Canais de Cátion TRPM/metabolismo , Angiogênese , Linhagem Celular Tumoral , Transdução de Sinais , RNA Mensageiro , Proliferação de Células , Receptor Notch1/metabolismo , Proteínas de Ligação a RNA/metabolismo
11.
J Biotechnol ; 385: 49-57, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442841

RESUMO

The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs: one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.


Assuntos
Doenças Neurodegenerativas , Canais de Cátion TRPM , Humanos , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Insulina/metabolismo , Secreção de Insulina , Oxirredução , Cálcio/metabolismo
12.
Commun Biol ; 7(1): 369, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538847

RESUMO

Transient receptor potential melastatin 5 (TRPM5) is a calcium-activated monovalent-specific ion channel involved in insulin secretion and taste transduction, making it an attractive target for drug development in various pathologies. While TRPM5 activation involves ligand binding to Gq/G-protein coupled receptors (GPCR) and subsequent elevation of intracellular calcium levels, recent reports suggest the need for additional molecular determinants. Hence, the mechanism of TRPM5 activation remains to be elucidated. Here, we show that PKC phosphorylation and the elevation of intracellular Ca2+ levels are required for TRPM5 activation, with PKC phosphorylation being crucial for channel-evoked currents, primarily at physiological membrane potentials. In contrast, physiological relevant calcium levels alone only induce TRPM5 activation at positive voltages. Our findings highlight the necessity of coordinated intracellular calcium release and PKC phosphorylation for TRPM5 activation. Thus, our results suggest that regulation of PKC activity could be a promising therapeutic target for diseases associated with TRPM5 modulation.


Assuntos
Cálcio , Canais de Cátion TRPM , Cálcio/metabolismo , Fosforilação , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Potenciais da Membrana , Canais de Cálcio/metabolismo
13.
Int J Biol Macromol ; 266(Pt 1): 130998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521332

RESUMO

Although calcium­magnesium phosphate cements (CMPCs) have been widely applied to treating critical-size bone defects, their repair efficiency is unsatisfactory owing to their weak surface bioactivity and uncontrolled ion release. In this study, we lyophilized alginate sodium (AS) as a coating onto HAp/K-struvite (H@KSv) to develop AS/HAp/K-struvite (AH@KSv), which promotes bone regeneration. The compressive strength and hydrophilicity of AH@KSv significantly improved, leading to enhanced cell adhesion in vitro. Importantly, the SA coating enables continuous ions release of Mg2+ and Ca2+, finally leading to enhanced osteogenesis in vitro/vivo and different patterns of new bone ingrowth in vivo. Furthermore, these composites increased the expression levels of biomarkers of the TRPM7/PI3K/Akt signaling pathway via an equilibrium effect of Mg2+ to Ca2+. In conclusion, our study provides novel insights into the mechanisms of Mg-based biomaterials for bone regeneration.


Assuntos
Alginatos , Cimentos Ósseos , Regeneração Óssea , Fosfatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Canais de Cátion TRPM , Regeneração Óssea/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Alginatos/química , Alginatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fosfatos/química , Fosfatos/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Propriedades de Superfície , Camundongos , Ratos , Força Compressiva
14.
Exp Neurol ; 376: 114748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458310

RESUMO

BACKGROUND: The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function. PURPOSE: To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms. METHODS: The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B. RESULTS: The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not. CONCLUSION: Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Disfunção Cognitiva , Demência Vascular , MicroRNAs , Animais , Masculino , Camundongos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Demência Vascular/genética , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
15.
Anticancer Res ; 44(3): 1087-1095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423661

RESUMO

BACKGROUND/AIM: Methyl jasmonate (MeJa) is a botanical stress hormone that serves as a defense mechanism to inhibit growth in stressed plants. It is well known that MeJa exhibits an anticancer effect by reducing intracellular ATP, activating reactive oxygen species (ROS) production, and promoting mitogen-activated protein kinase (MAPK) activity. Presently, no report has been published on MeJa-induced changes in intracellular Mg2+ concentration ([Mg2+]i), and TRPM7 as an Mg2+ transporter in cancer cells. Therefore, this study aimed to investigate the Mg2+ homeostatic changes and apoptotic effects following MeJa treatment using the MCF-7 human breast cancer cell line. MATERIALS AND METHODS: The MTT assay was used to assess the cell viability and half-inhibitory concentration, microscopic two-photon excitation wavelength spectrophotometry was used to measure the [Mg2+]i, a luminescent assay determined intracellular ATP levels, western blot assay measured TRPM7 levels, antioxidant capacities, endoplasmic reticulum (ER) stress, and MAPK signaling pathways, while the fluorescence assay evaluated ROS concentrations and the cell apoptotic index. RESULTS: This study provides evidence that MeJa has an antiapoptotic effect on MCF-7 cells. The increase in [Mg2+]i led to decreased TRPM7 expression, which is related to elevated ROS production, in addition to elevated ER stress and MAPK signaling pathway activity and decreased ATP content. CONCLUSION: The increase in [Mg2+]i leads to decreased TRPM7 expression and may be the epicenter of MeJa-induced apoptotic cell death in MCF-7 cells.


Assuntos
Acetatos , Neoplasias da Mama , Ciclopentanos , Oxilipinas , Canais de Cátion TRPM , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Magnésio/metabolismo , Magnésio/farmacologia , Canais de Cátion TRPM/metabolismo , Neoplasias da Mama/tratamento farmacológico , Apoptose , Trifosfato de Adenosina , Estresse do Retículo Endoplasmático , Proteínas Serina-Treonina Quinases/metabolismo
16.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339011

RESUMO

In childhood, retinoblastoma (RB) is the most common primary tumor in the eye. Long term therapeutic management with etoposide of this life-threatening condition may have diminishing effectiveness since RB cells can develop cytostatic resistance to this drug. To determine whether changes in receptor-mediated control of Ca2+ signaling are associated with resistance development, fluorescence calcium imaging, semi-quantitative RT-qPCR analyses, and trypan blue dye exclusion staining patterns are compared in WERI-ETOR (etoposide-insensitive) and WERI-Rb1 (etoposide-sensitive) cells. The cannabinoid receptor agonist 1 (CNR1) WIN55,212-2 (40 µM), or the transient receptor potential melastatin 8 (TRPM8) agonist icilin (40 µM) elicit similar large Ca2+ transients in both cell line types. On the other hand, NGF (100 ng/mL) induces larger rises in WERI-ETOR cells than in WERI-Rb1 cells, and its lethality is larger in WERI-Rb1 cells than in WERI-ETOR cells. NGF and WIN55,212-2 induced additive Ca2+ transients in both cell types. However, following pretreatment with both NGF and WIN55,212-2, TRPM8 gene expression declines and icilin-induced Ca2+ transients are completely blocked only in WERI-ETOR cells. Furthermore, CNR1 gene expression levels are larger in WERI-ETOR cells than those in WERI-Rb1 cells. Therefore, the development of etoposide insensitivity may be associated with rises in CNR1 gene expression, which in turn suppress TRPM8 gene expression through crosstalk.


Assuntos
Receptor de Fator de Crescimento Neural , Neoplasias da Retina , Retinoblastoma , Canais de Cátion TRPM , Humanos , Linhagem Celular , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Proteínas de Membrana/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Receptor CB1 de Canabinoide/metabolismo
17.
J Agric Food Chem ; 72(9): 4906-4917, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38378185

RESUMO

Gastric parietal cells secrete chloride ions and protons to form hydrochloric acid. Besides endogenous stimulants, e.g., acetylcholine, bitter-tasting food constituents, e.g., caffeine, induce proton secretion via interaction with bitter taste receptors (TAS2Rs), leading to increased cytosolic Ca2+ and cAMP concentrations. We hypothesized TAS2R activation by bitter tastants to result in proton secretion via cellular Na+ influx mediated by transient receptor potential channels (TRP) M4 and M5 in immortalized human parietal HGT-1 cells. Using the food-derived TAS2R agonists caffeine and l-arginine, we demonstrate both bitter compounds to induce a TRPM4/M5-mediated Na+ influx, with EC50 values of 0.65 and 10.38 mM, respectively, that stimulates cellular proton secretion. Functional involvement of TAS2Rs in the caffeine-evoked effect was demonstrated by means of the TAS2R antagonist homoeriodictyol, and stably CRISPR-Cas9-edited TAS2R43ko cells. Building on previous results, these data further support the suitability of HGT-1 cells as a surrogate cell model for taste cells. In addition, TRPM4/M5 mediated a Na+ influx after stimulating HGT-1 cells with the acetylcholine analogue carbachol, indicating an interaction of the digestion-associated cholinergic pathway with a taste-signaling pathway in parietal cells.


Assuntos
Células Parietais Gástricas , Canais de Cátion TRPM , Humanos , Células Parietais Gástricas/metabolismo , Paladar , Cafeína/farmacologia , Cafeína/metabolismo , Prótons , Sódio/metabolismo , Acetilcolina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
18.
Clin Exp Pharmacol Physiol ; 51(4): e13844, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38350599

RESUMO

Botulinum neurotoxin A (BoNT) is being shown to have anticancer action as a potential adjuvant treatment. The transient receptor potential (TRP) melastatin 2 (TRPM2) stimulator action of BoNT was reported in glioblastoma cells, but not in colorectal cancer (HT29) cells. By activating TRPM2, we evaluated the impacts of BoNT and oxaliplatin (OXA) incubations on oxidant and apoptotic values within the HT29 cells. Control, BoNT (5 IU for 24 h), OXA (50 µM for 24 h) and their combinations were induced. We found that TRPM2 protein is upregulated and mediates enhanced BoNT and OXA-induced Ca2+ entry in cells as compared to control cells. The increase of free reactive oxygen species (ROS), but the decrease of glutathione is the main ROS responsible for TRPM2 activation on H29 exposure to oxidative stress. BoNT and OXA-mediated Ca2+ entry through TRPM2 stimulation in response to H2 O2 results in mitochondrial Ca2+ overload, followed by mitochondrial membrane depolarization, apoptosis and caspase-3/-8/-9, although they were diminished in the TRPM2 antagonist groups (N-(p-amylcinnamoyl)anthranilic acid and carvacrol). In conclusion, by increasing the susceptibility of HT29 tumour cells to oxidative stress and apoptosis, the combined administration of BoNT and OXA via the targeting of TRPM2 may offer a different approach to kill the tumour cells.


Assuntos
Toxinas Botulínicas Tipo A , Neoplasias Colorretais , Canais de Cátion TRPM , Humanos , Oxaliplatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Regulação para Cima , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Morte Celular , Estresse Oxidativo/fisiologia , Apoptose/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Cálcio/metabolismo
19.
Front Endocrinol (Lausanne) ; 14: 1251351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390373

RESUMO

Introduction: During thermogenesis, adipose tissue (AT) becomes more active and enhances oxidative metabolism. The promotion of this process in white AT (WAT) is called "browning" and, together with the brown AT (BAT) activation, is considered as a promising approach to counteract obesity and metabolic diseases. Transient receptor potential cation channel, subfamily M, member 2 (TRPM2), is an ion channel that allows extracellular Ca2+ influx into the cytosol, and is gated by adenosine diphosphate ribose (ADPR), produced from NAD+ degradation. The aim of this study was to investigate the relevance of TRPM2 in the regulation of energy metabolism in BAT, WAT, and liver during thermogenesis. Methods: Wild type (WT) and Trpm2-/- mice were exposed to 6°C and BAT, WAT and liver were collected to evaluate mRNA, protein levels and ADPR content. Furthermore, O2 consumption, CO2 production and energy expenditure were measured in these mice upon thermogenic stimulation. Finally, the effect of the pharmacological inhibition of TRPM2 was assessed in primary adipocytes, evaluating the response upon stimulation with the ß-adrenergic receptor agonist CL316,243. Results: Trpm2-/- mice displayed lower expression of browning markers in AT and lower energy expenditure in response to thermogenic stimulus, compared to WT animals. Trpm2 gene overexpression was observed in WAT, BAT and liver upon cold exposure. In addition, ADPR levels and mono/poly-ADPR hydrolases expression were higher in mice exposed to cold, compared to control mice, likely mediating ADPR generation. Discussion: Our data indicate TRPM2 as a fundamental player in BAT activation and WAT browning. TRPM2 agonists may represent new pharmacological strategies to fight obesity.


Assuntos
Canais de Cátion TRPM , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética
20.
J Drug Target ; 32(4): 413-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345028

RESUMO

BACKGROUND: Blocking Transient Receptor Potential Melastatin 4 (TRPM4) in rodents by our antibody M4P has shown to attenuate cerebral ischaemia-reperfusion injury. Since M4P does not interact with human TRPM4, the therapeutic potential of blocking human TRPM4 remains unclear. We developed a monoclonal antibody M4M that inhibited human TRPM4 in cultured cells. However, M4M has no effect on stroke outcome in wild-type rats. Therefore, M4M needs to be evaluated on animal models expressing human TRPM4. METHODS: We generated a humanised rat model using the CRISPR/Cas technique to knock-in (KI) the human TRPM4 antigen sequence. RESULTS: In primary neurons from human TRPM4 KI rats, M4M binds to hypoxic neurons, but not normoxic nor wild-type neurons. Electrophysiological studies showed that M4M blocked ATP depletion-induced activation of TRPM4 and inhibited hypoxia-associated cell volume increase. In a stroke model, administration of M4M reduced infarct volume in KI rats. Rotarod test and Neurological deficit score revealed improvement following M4M treatment. CONCLUSION: M4M selectively binds and inhibits hypoxia-induced human TRPM4 channel activation in neurons from the humanised rat model, with no effect on healthy neurons. Use of M4M in stroke rats showed functional improvements, suggesting the potential for anti-human TRPM4 antibodies in treating acute ischaemic stroke patients.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Ratos , Humanos , Animais , Acidente Vascular Cerebral/tratamento farmacológico , Canais de Potencial de Receptor Transitório/uso terapêutico , Anticorpos Monoclonais/farmacologia , Isquemia Encefálica/tratamento farmacológico , Canais de Cátion TRPM/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA