Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Nat Commun ; 15(1): 3691, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693179

RESUMO

Voltage-gated sodium (NaV) channels mediate a plethora of electrical activities. NaV channels govern cellular excitability in response to depolarizing stimuli. Inactivation is an intrinsic property of NaV channels that regulates cellular excitability by controlling the channel availability. The fast inactivation, mediated by the Ile-Phe-Met (IFM) motif and the N-terminal helix (N-helix), has been well-characterized. However, the molecular mechanism underlying NaV channel slow inactivation remains elusive. Here, we demonstrate that the removal of the N-helix of NaVEh (NaVEhΔN) results in a slow-inactivated channel, and present cryo-EM structure of NaVEhΔN in a potential slow-inactivated state. The structure features a closed activation gate and a dilated selectivity filter (SF), indicating that the upper SF and the inner gate could serve as a gate for slow inactivation. In comparison to the NaVEh structure, NaVEhΔN undergoes marked conformational shifts on the intracellular side. Together, our results provide important mechanistic insights into NaV channel slow inactivation.


Assuntos
Microscopia Crioeletrônica , Ativação do Canal Iônico , Canais de Sódio Disparados por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/química , Humanos , Animais , Células HEK293 , Modelos Moleculares
2.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38557788

RESUMO

DSC1, a Drosophila channel with sequence similarity to the voltage-gated sodium channel (NaV), was identified over 20 years ago. This channel was suspected to function as a non-specific cation channel with the ability to facilitate the permeation of calcium ions (Ca2+). A honeybee channel homologous to DSC1 was recently cloned and shown to exhibit strict selectivity for Ca2+, while excluding sodium ions (Na+), thus defining a new family of Ca2+ channels, known as CaV4. In this study, we characterize CaV4, showing that it exhibits an unprecedented type of inactivation, which depends on both an IFM motif and on the permeating divalent cation, like NaV and CaV1 channels, respectively. CaV4 displays a specific pharmacology with an unusual response to the alkaloid veratrine. It also possesses an inactivation mechanism that uses the same structural domains as NaV but permeates Ca2+ ions instead. This distinctive feature may provide valuable insights into how voltage- and calcium-dependent modulation of voltage-gated Ca2+ and Na+ channels occur under conditions involving local changes in intracellular calcium concentrations. Our study underscores the unique profile of CaV4 and defines this channel as a novel class of voltage-gated Ca2+ channels.


Assuntos
Cálcio , Canais de Sódio Disparados por Voltagem , Abelhas , Animais , Canais de Sódio Disparados por Voltagem/química , Íons
3.
Proc Natl Acad Sci U S A ; 120(41): e2309773120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782796

RESUMO

Voltage-gated sodium (Nav) channels govern membrane excitability, thus setting the foundation for various physiological and neuronal processes. Nav channels serve as the primary targets for several classes of widely used and investigational drugs, including local anesthetics, antiepileptic drugs, antiarrhythmics, and analgesics. In this study, we present cryogenic electron microscopy (cryo-EM) structures of human Nav1.7 bound to two clinical drugs, riluzole (RLZ) and lamotrigine (LTG), at resolutions of 2.9 Å and 2.7 Å, respectively. A 3D EM reconstruction of ligand-free Nav1.7 was also obtained at 2.1 Å resolution. RLZ resides in the central cavity of the pore domain and is coordinated by residues from repeats III and IV. Whereas one LTG molecule also binds to the central cavity, the other is found beneath the intracellular gate, known as site BIG. Therefore, LTG, similar to lacosamide and cannabidiol, blocks Nav channels via a dual-pocket mechanism. These structures, complemented with docking and mutational analyses, also explain the structure-activity relationships of the LTG-related linear 6,6 series that have been developed for improved efficacy and subtype specificity on different Nav channels. Our findings reveal the molecular basis for these drugs' mechanism of action and will aid the development of novel antiepileptic and pain-relieving drugs.


Assuntos
Canabidiol , Canais de Sódio Disparados por Voltagem , Humanos , Anticonvulsivantes/farmacologia , Lamotrigina/farmacologia , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/química
4.
Arch Insect Biochem Physiol ; 114(4): e22052, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672296

RESUMO

For the past decade, Colony Collapse Disorder has been reported worldwide. Insecticides containing pyrethroids may be responsible for a decline in bees, which are more sensitive to pyrethroids compared with other insects. Voltage-gated sodium channels (Nav ) are the major target sites of pyrethroids, and the sodium channel diversity is generated through extensive alternative splicing and RNA editing. In this study, we cloned and analyzed the function of variants of the Nav channel, BiNav , from Bombus impatiens. BiNav covers a 46 kb genome region including 30 exons. Sequence analysis of 56 clones showed that the clones can be grouped into 22 splice types with 11 optional exons (exons j, w, p, q, r, b, e, t, l/k, and z). Here, a special alternative exon w is identified, encoding a stretch of 31 amino acid resides in domain I between S3 and S4. RNA editing generates 18 amino acid changes in different positions in individual variants. Among 56 variants examined, only six variants generated sufficient sodium currents for functional characterization in Xenopus oocytes. In the presence of B. impatiens TipE and TEH1, the sodium current amplitude of BiNav 1-1 increased by fourfold, while TipE of other insect species had no effect on the expression. Abundant alternative splicing and RNA editing of BiNav suggests the molecular and functional pharmacology diversity of the Nav channel for bumblebees. This study provides a theoretical basis for the design of insecticides that specifically target pests without affecting beneficial insects.


Assuntos
Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Abelhas/genética , Animais , Inseticidas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Piretrinas/farmacologia , Insetos/metabolismo , Processamento Alternativo , Sódio/metabolismo , Aminoácidos/metabolismo
5.
Sci Rep ; 13(1): 11523, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460541

RESUMO

Voltage-gated sodium channels shape action potentials that propagate signals along cells. When the membrane potential reaches a certain threshold, the channels open and allow sodium ions to flow through the membrane depolarizing it, followed by the deactivation of the channels. Opening and closing of the channels is important for cellular signalling and regulates various physiological processes in muscles, heart and brain. Mechanistic insights into the voltage-gated channels are difficult to achieve as the proteins are typically extracted from membranes for structural analysis which results in the loss of the transmembrane potential that regulates their activity. Here, we report the structural analysis of a bacterial voltage-gated sodium channel, NaChBac, reconstituted in liposomes under an electrochemical gradient by cryo electron tomography and subtomogram averaging. We show that the small channel, most of the residues of which are embedded in the membrane, can be localized using a genetically fused GFP. GFP can aid the initial alignment to an average resulting in a correct structure, but does not help for the final refinement. At a moderate resolution of ˜16 Å the structure of NaChBac in an unrestricted membrane bilayer is 10% wider than the structure of the purified protein previously solved in nanodiscs, suggesting the potential movement of the peripheral voltage-sensing domains. Our study explores the limits of structural analysis of membrane proteins in membranes.


Assuntos
Lipossomos , Canais de Sódio Disparados por Voltagem , Tomografia com Microscopia Eletrônica , Proteínas de Bactérias/metabolismo , Canais de Sódio Disparados por Voltagem/química , Potenciais da Membrana/fisiologia
6.
J Chem Theory Comput ; 19(10): 2953-2972, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37116214

RESUMO

The recent determination of cryo-EM structures of voltage-gated sodium (Nav) channels has revealed many details of these proteins. However, knowledge of ionic permeation through the Nav pore remains limited. In this work, we performed atomistic molecular dynamics (MD) simulations to study the structural features of various neuronal Nav channels based on homology modeling of the cryo-EM structure of the human Nav1.4 channel and, in addition, on the recently resolved configuration for Nav1.2. In particular, single Na+ permeation events during standard MD runs suggest that the ion resides in the inner part of the Nav selectivity filter (SF). On-the-fly free energy parametrization (OTFP) temperature-accelerated molecular dynamics (TAMD) was also used to calculate two-dimensional free energy surfaces (FESs) related to single/double Na+ translocation through the SF of the homology-based Nav1.2 model and the cryo-EM Nav1.2 structure, with different realizations of the DEKA filter domain. These additional simulations revealed distinct mechanisms for single and double Na+ permeation through the wild-type SF, which has a charged lysine in the DEKA ring. Moreover, the configurations of the ions in the SF corresponding to the metastable states of the FESs are specific for each SF motif. Overall, the description of these mechanisms gives us new insights into ion conduction in human Nav cryo-EM-based and cryo-EM configurations that could advance understanding of these systems and how they differ from potassium and bacterial Nav channels.


Assuntos
Simulação de Dinâmica Molecular , Canais de Sódio Disparados por Voltagem , Humanos , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Bactérias/metabolismo , Íons/metabolismo , Lisina
7.
Nat Struct Mol Biol ; 29(6): 537-548, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35655098

RESUMO

Every voltage-gated ion channel (VGIC) has a pore domain (PD) made from four subunits, each comprising an antiparallel transmembrane helix pair bridged by a loop. The extent to which PD subunit structure requires quaternary interactions is unclear. Here, we present crystal structures of a set of bacterial voltage-gated sodium channel (BacNaV) 'pore only' proteins that reveal a surprising collection of non-canonical quaternary arrangements in which the PD tertiary structure is maintained. This context-independent structural robustness, supported by molecular dynamics simulations, indicates that VGIC-PD tertiary structure is independent of quaternary interactions. This fold occurs throughout the VGIC superfamily and in diverse transmembrane and soluble proteins. Strikingly, characterization of PD subunit-binding Fabs indicates that non-canonical quaternary PD conformations can occur in full-length VGICs. Together, our data demonstrate that the VGIC-PD is an autonomously folded unit. This property has implications for VGIC biogenesis, understanding functional states, de novo channel design, and VGIC structural origins.


Assuntos
Canais de Sódio Disparados por Voltagem , Conformação Molecular , Simulação de Dinâmica Molecular , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
8.
Small Methods ; 6(7): e2200402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595684

RESUMO

In this study, transmission electron microscopy atomic force microscopy, and surface enhanced Raman spectroscopy are combined through a direct imaging approach, to gather structural and chemical information of complex molecular systems such as ion channels in their original plasma membrane. Customized microfabricated sample holder allows to characterize Nav channels embedded in the original plasma membrane extracted from neuronal cells that are derived from healthy human induced pluripotent stem cells. The identification of the channels is accomplished by using two different approaches, one of them widely used in cryo-EM (the particle analysis method) and the other based on a novel Zernike Polynomial expansion of the images bitmap. This approach allows to carry out a whole series of investigations, one complementary to the other, on the same sample, preserving its state as close as possible to the original membrane configuration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canais de Sódio Disparados por Voltagem , Membrana Celular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Análise Espectral , Canais de Sódio Disparados por Voltagem/química
9.
J Biol Chem ; 298(3): 101728, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35167877

RESUMO

µ-Conotoxins are components of cone snail venom, well-known for their analgesic activity through potent inhibition of voltage-gated sodium channel (NaV) subtypes, including NaV1.7. These small, disulfide-rich peptides are typically stabilized by three disulfide bonds arranged in a 'native' CysI-CysIV, CysII-CysV, CysIII-CysVI pattern of disulfide connectivity. However, µ-conotoxin KIIIA, the smallest and most studied µ-conotoxin with inhibitory activity at NaV1.7, forms two distinct disulfide bond isomers during thermodynamic oxidative folding, including Isomer 1 (CysI-CysV, CysII-CysIV, CysIII-CysVI) and Isomer 2 (CysI-CysVI, CysII-CysIV, CysIII-CysV), but not the native µ-conotoxin arrangement. To date, there has been no study on the structure and activity of KIIIA comprising the native µ-conotoxin disulfide bond arrangement. Here, we evaluated the synthesis, potency, sodium channel subtype selectivity, and 3D structure of the three isomers of KIIIA. Using a regioselective disulfide bond-forming strategy, we synthetically produced the three µ-conotoxin KIIIA isomers displaying distinct bioactivity and NaV subtype selectivity across human NaV channel subtypes 1.2, 1.4, and 1.7. We show that Isomer 1 inhibits NaV subtypes with a rank order of potency of NaV1.4 > 1.2 > 1.7 and Isomer 2 in the order of NaV1.4≈1.2 > 1.7, while the native isomer inhibited NaV1.4 > 1.7≈1.2. The three KIIIA isomers were further evaluated by NMR solution structure analysis and molecular docking with hNaV1.2. Our study highlights the importance of investigating alternate disulfide isomers, as disulfide connectivity affects not only the overall structure of the peptides but also the potency and subtype selectivity of µ-conotoxins targeting therapeutically relevant NaV subtypes.


Assuntos
Conotoxinas , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem , Conotoxinas/química , Conotoxinas/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
10.
Food Chem Toxicol ; 160: 112812, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026329

RESUMO

Ciguatoxins (CTXs) which are produced by dinoflagellates of the genus Gambierdiscus and Fukuyoa and share a ladder-shaped polyether structure, are causative compounds of one of the most frequent foodborne illness disease known as ciguatera fish poisoning (CFP). CFP was initially found in tropical and subtropical areas but nowadays the dinoflagellates producers of ciguatoxins had spread to European coasts. Therefore, this raises the need of establishing toxicity equivalency factors for the different compounds that can contribute to ciguatera fish poisoning, since biological methods have been replaced by analytical techniques. Thus, in this work, the effects of six compounds causative of ciguatera, on their main target, the human voltage-gated sodium channels have been analyzed for the first time. The results presented here led to the conclusion that the order of potency was CTX1B, CTX3B, CTX4A, gambierol, gambierone and MTX3. Furthermore, the data indicate that the activation voltage of sodium channels is more sensitive to detect ciguatoxins than their effect on the peak sodium current amplitude.


Assuntos
Ciguatera/metabolismo , Ciguatoxinas/toxicidade , Testes de Toxicidade/métodos , Canais de Sódio Disparados por Voltagem/metabolismo , Linhagem Celular , Ciguatera/etiologia , Ciguatera/genética , Ciguatoxinas/química , Humanos , Cinética , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/genética
11.
Biochem Pharmacol ; 197: 114928, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35063442

RESUMO

Na+ channels undergo multiple inactivated states with different kinetics, which set the refractory period of neuronal discharges, but isolating the intermediate inactivated state has been challenging. Most classical Na+channel-inhibiting anticonvulsants bind to the fast inactivated state to reduce Na+currents and cellular excitability. These anticonvulsants have the slow binding kinetics and thus necessitate long depolarization for drug action, a "use-dependent" effect sparing most normal activities. Rufinamide is a new anticonvulsant targeting Na+channels, and has a therapeutic effect on Lennox-Gastaut syndrome (LGS) which is refractory to classicalNa+channel inhibitors. The efficacy on LGS, whose epileptiform discharges largely involve short depolarization or bursts, is primarily due to the very fast binding kinetics of rufinamide. Could the very fast kinetics of rufinamide lead to indiscriminate inhibition of neuronal activities ? Onhippocampal neurons from male and female mice, wefound that rufinamide most effectively shifts the Na+channel inactivation curve if the inactivating pulse is 1 s, rather than 0.1 or 18 s, in duration. Rufinamide also shows a maximal slowing effect on the recovery kinetics from the inactivation driven by modest depolarization (e.g. -60 mV) of intermediate length (e.g. 50-300 ms). Consistently, rufinamide selectively inhibits the burst discharges at 50-300 ms on a plateau of ∼-60 mV. This is mechanistically ascribable to selective binding of rufinamide to an intermediate inactivated state withan apparent dissociation constantof ∼40 µM. Being the first molecule embodying the evasive transitional gating state, rufinamide could have a unique anti-seizure profile with a novel form of use-dependent action.


Assuntos
Anticonvulsivantes/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Triazóis/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Estabilidade Proteica/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/química
12.
Biophys J ; 121(1): 11-22, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890580

RESUMO

Voltage-gated sodium (Nav) channels play critical roles in propagating action potentials and otherwise manipulating ionic gradients in excitable cells. These channels open in response to membrane depolarization, selectively permeating sodium ions until rapidly inactivating. Structural characterization of the gating cycle in this channel family has proved challenging, particularly due to the transient nature of the open state. A structure from the bacterium Magnetococcus marinus Nav (NavMs) was initially proposed to be open, based on its pore diameter and voltage-sensor conformation. However, the functional annotation of this model, and the structural details of the open state, remain disputed. In this work, we used molecular modeling and simulations to test possible open-state models of NavMs. The full-length experimental structure, termed here the α-model, was consistently dehydrated at the activation gate, indicating an inability to conduct ions. Based on a spontaneous transition observed in extended simulations, and sequence/structure comparison to other Nav channels, we built an alternative π-model featuring a helix transition and the rotation of a conserved asparagine residue into the activation gate. Pore hydration, ion permeation, and state-dependent drug binding in this model were consistent with an open functional state. This work thus offers both a functional annotation of the full-length NavMs structure and a detailed model for a stable Nav open state, with potential conservation in diverse ion-channel families.


Assuntos
Asparagina , Canais de Sódio Disparados por Voltagem , Potenciais de Ação/fisiologia , Humanos , Modelos Moleculares , Sódio/metabolismo , Canais de Sódio Disparados por Voltagem/química
13.
Cell Rep ; 36(12): 109743, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551285

RESUMO

Paroxysmal kinesigenic dyskinesia (PKD) is the most common paroxysmal dyskinesia, characterized by recurrent episodes of involuntary movements provoked by sudden changes in movement. Proline-rich transmembrane protein 2 (PRRT2) has been identified as the major causative gene for PKD. Here, we report that PRRT2 deficiency facilitates the induction of cerebellar spreading depolarization (SD) and inhibition of cerebellar SD prevents the occurrence of dyskinetic movements. Using Ca2+ imaging, we show that cerebellar SD depolarizes a large population of cerebellar granule cells and Purkinje cells in Prrt2-deficient mice. Electrophysiological recordings further reveal that cerebellar SD blocks Purkinje cell spiking and disturbs neuronal firing of the deep cerebellar nuclei (DCN). The resultant aberrant firing patterns in DCN are tightly, temporally coupled to dyskinetic episodes in Prrt2-deficient mice. Cumulatively, our findings uncover a pivotal role of cerebellar SD in paroxysmal dyskinesia, providing a potent target for treating PRRT2-related paroxysmal disorders.


Assuntos
Cerebelo/fisiologia , Distonia/patologia , Proteínas de Membrana/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Distonia/metabolismo , Eletrocorticografia , Técnicas In Vitro , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Técnicas de Patch-Clamp , Cloreto de Potássio/farmacologia , Células de Purkinje/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
14.
Int J Biol Macromol ; 188: 369-374, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371044

RESUMO

Sodium channels selectively conduct Na+ ions across cellular membrane with extraordinary efficiency, which is essential for initiating action potentials. However, how Na+ ions permeate the ionic channels remains obscure and ambiguous. With more than 40 conductance events from microsecond molecular dynamics simulation, the soft knock-on ion permeation mediated by water molecules was observed and confirmed by the free energy profile and electrostatic potential calculation in this study. During the soft knock-on process, the change of average distance between four oxygen atoms in Glu177-Glu177 plays a very important role for the permeation of Na+ ion. Exploration of the ionic conductance mechanism could provide a guideline for designing ion channel targeted drug.


Assuntos
Campylobacterales/química , Transporte de Íons/genética , Sódio/química , Canais de Sódio Disparados por Voltagem/química , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Campylobacterales/ultraestrutura , Glutamina/química , Simulação de Dinâmica Molecular , Oxigênio/química , Conformação Proteica , Eletricidade Estática , Água/química
15.
PLoS Comput Biol ; 17(8): e1008932, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398881

RESUMO

Markov models of ion channel dynamics have evolved as experimental advances have improved our understanding of channel function. Past studies have examined limited sets of various topologies for Markov models of channel dynamics. We present a systematic method for identification of all possible Markov model topologies using experimental data for two types of native voltage-gated ion channel currents: mouse atrial sodium currents and human left ventricular fast transient outward potassium currents. Successful models identified with this approach have certain characteristics in common, suggesting that aspects of the model topology are determined by the experimental data. Incorporating these channel models into cell and tissue simulations to assess model performance within protocols that were not used for training provided validation and further narrowing of the number of acceptable models. The success of this approach suggests a channel model creation pipeline may be feasible where the structure of the model is not specified a priori.


Assuntos
Canais Iônicos/metabolismo , Modelos Cardiovasculares , Miocárdio/metabolismo , Potenciais de Ação , Animais , Fenômenos Biofísicos , Biologia Computacional , Simulação por Computador , Bases de Dados Factuais , Células HEK293 , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Humanos , Canais Iônicos/química , Cinética , Cadeias de Markov , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360907

RESUMO

The superfamily of P-loop channels includes various potassium channels, voltage-gated sodium and calcium channels, transient receptor potential channels, and ionotropic glutamate receptors. Despite huge structural and functional diversity of the channels, their pore-forming domain has a conserved folding. In the past two decades, scores of atomic-scale structures of P-loop channels with medically important drugs in the inner pore have been published. High structural diversity of these complexes complicates the comparative analysis of these structures. Here we 3D-aligned structures of drug-bound P-loop channels, compared their geometric characteristics, and analyzed the energetics of ligand-channel interactions. In the superimposed structures drugs occupy most of the sterically available space in the inner pore and subunit/repeat interfaces. Cationic groups of some drugs occupy vacant binding sites of permeant ions in the inner pore and selectivity-filter region. Various electroneutral drugs, lipids, and detergent molecules are seen in the interfaces between subunits/repeats. In many structures the drugs strongly interact with lipid and detergent molecules, but physiological relevance of such interactions is unclear. Some eukaryotic sodium and calcium channels have state-dependent or drug-induced π-bulges in the inner helices, which would be difficult to predict. The drug-induced π-bulges may represent a novel mechanism of gating modulation.


Assuntos
Domínio AAA , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica/métodos , Preparações Farmacêuticas/metabolismo , Canais de Potássio/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Canais de Cálcio/química , Biologia Computacional/métodos , Eucariotos/metabolismo , Ligantes , Modelos Moleculares , Canais de Potássio/química , Conformação Proteica em alfa-Hélice , Receptores Ionotrópicos de Glutamato/química , Alinhamento de Sequência , Canais de Potencial de Receptor Transitório/química , Canais de Sódio Disparados por Voltagem/química
17.
Genome Med ; 13(1): 135, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34425903

RESUMO

BACKGROUND: Genetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human brain. METHODS: RNA-seq data from 783 human brain samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples. RESULTS: In the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A, a brain-wide synchronized 5N to 5A transition occurs between 24 post-conceptual weeks (2nd trimester) and 6 years of age. In mice, the equivalent 5N to 5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories. CONCLUSIONS: Exon usage in SCN1A, SCN2A, SCN3A, and SCN8A changes dramatically during human brain development. These splice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Canais de Sódio Disparados por Voltagem/genética , Processamento Alternativo , Animais , Biomarcadores , Córtex Cerebral , Suscetibilidade a Doenças , Éxons , Humanos , Íntrons , Camundongos , Família Multigênica , Fases de Leitura Aberta , Polimorfismo Genético , Ligação Proteica , Locos de Características Quantitativas , Relação Estrutura-Atividade , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
18.
J Med Chem ; 64(10): 6523-6548, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33956427

RESUMO

Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.


Assuntos
Analgésicos/química , Descoberta de Drogas , Receptores Opioides/química , Agonistas Adrenérgicos/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Humanos , Dor/tratamento farmacológico , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo
19.
J Mol Biol ; 433(17): 166967, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33794261

RESUMO

Voltage-gated sodium (NaV) channels initiate and propagate action potentials in excitable tissues to mediate key physiological processes including heart contraction and nervous system function. Accordingly, NaV channels are major targets for drugs, toxins and disease-causing mutations. Recent breakthroughs in cryo-electron microscopy have led to the visualization of human NaV1.1, NaV1.2, NaV1.4, NaV1.5 and NaV1.7 channel subtypes at high-resolution. These landmark studies have greatly advanced our structural understanding of channel architecture, ion selectivity, voltage-sensing, electromechanical coupling, fast inactivation, and the molecular basis underlying NaV channelopathies. NaV channel structures have also been increasingly determined in complex with toxin and small molecule modulators that target either the pore module or voltage sensor domains. These structural studies have provided new insights into the mechanisms of pharmacological action and opportunities for subtype-selective NaV channel drug design. This review will highlight the structural pharmacology of human NaV channels as well as the potential use of engineered and chimeric channels in future drug discovery efforts.


Assuntos
Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Canalopatias/metabolismo , Microscopia Crioeletrônica/métodos , Descoberta de Drogas/métodos , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA