Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Neuropharmacology ; 250: 109892, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428481

RESUMO

KCNQ5 encodes the voltage-gated potassium channel KV7.5, a member of the KV7 channel family, which conducts the M-current. This current is a potent regulator of neuronal excitability by regulating membrane potential in the subthreshold range of action potentials and mediating the medium and slow afterhyperpolarization. Recently, we have identified five loss-of-function variants in KCNQ5 in patients with genetic generalized epilepsy. Using the most severe dominant-negative variant (R359C), we set out to investigate pharmacological therapeutic intervention by KV7 channel openers on channel function and neuronal firing. Retigabine and gabapentin increased R359C-derived M-current amplitudes in HEK cells expressing homomeric or heteromeric mutant KV7.5 channels. Retigabine was most effective in restoring K+ currents. Ten µM retigabine was sufficient to reach the level of WT currents without retigabine, whereas 100 µM of gabapentin showed less than half of this effect and application of 50 µM ZnCl2 only significantly increased M-current amplitude in heteromeric channels. Overexpression of KV7.5-WT potently inhibited neuronal firing by increasing the M-current, whereas R359C overexpression had the opposite effect and additionally decreased the medium afterhyperpolarization current. Both aforementioned drugs and Zn2+ reversed the effect of R359C expression by reducing firing to nearly normal levels at high current injections. Our study shows that a dominant-negative variant with a complete loss-of-function in KV7.5 leads to largely increased neuronal firing which may explain a neuronal hyperexcitability in patients. KV7 channel openers, such as retigabine or gabapentin, could be treatment options for patients currently displaying pharmacoresistant epilepsy and carrying loss-of-function variants in KCNQ5.


Assuntos
Epilepsia , Canal de Potássio KCNQ2 , Fenilenodiaminas , Humanos , Gabapentina/farmacologia , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/genética , Carbamatos/farmacologia , Carbamatos/uso terapêutico
2.
Nat Commun ; 14(1): 8059, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052789

RESUMO

Loss- and gain-of-function variants in the gene encoding KCNQ2 channels are a common cause of developmental and epileptic encephalopathy, a condition characterized by seizures, developmental delays, breathing problems, and early mortality. To understand how KCNQ2 dysfunction impacts behavior in a mouse model, we focus on the control of breathing by neurons expressing the transcription factor Phox2b which includes respiratory neurons in the ventral parafacial region. We find Phox2b-expressing ventral parafacial neurons express Kcnq2 in the absence of other Kcnq isoforms, thus clarifying why disruption of Kcnq2 but not other channel isoforms results in breathing problems. We also find that Kcnq2 deletion or expression of a recurrent gain-of-function variant R201C in Phox2b-expressing neurons increases baseline breathing or decreases the central chemoreflex, respectively, in mice during the light/inactive state. These results uncover mechanisms underlying breathing abnormalities in KCNQ2 encephalopathy and highlight an unappreciated vulnerability of Phox2b-expressing ventral parafacial neurons to KCNQ2 pathogenic variants.


Assuntos
Encefalopatias , Transtornos Respiratórios , Animais , Camundongos , Encefalopatias/genética , Mutação com Ganho de Função , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Transtornos Respiratórios/metabolismo
3.
Nat Commun ; 14(1): 6632, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857637

RESUMO

The human voltage-gated potassium channel KCNQ2/KCNQ3 carries the neuronal M-current, which helps to stabilize the membrane potential. KCNQ2 can be activated by analgesics and antiepileptic drugs but their activation mechanisms remain unclear. Here we report cryo-electron microscopy (cryo-EM) structures of human KCNQ2-CaM in complex with three activators, namely the antiepileptic drug cannabidiol (CBD), the lipid phosphatidylinositol 4,5-bisphosphate (PIP2), and HN37 (pynegabine), an antiepileptic drug in the clinical trial, in an either closed or open conformation. The activator-bound structures, along with electrophysiology analyses, reveal the binding modes of two CBD, one PIP2, and two HN37 molecules in each KCNQ2 subunit, and elucidate their activation mechanisms on the KCNQ2 channel. These structures may guide the development of antiepileptic drugs and analgesics that target KCNQ2.


Assuntos
Analgésicos , Anticonvulsivantes , Humanos , Anticonvulsivantes/farmacologia , Microscopia Crioeletrônica , Ligantes , Potenciais da Membrana , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo
4.
J Neurosci ; 43(43): 7073-7083, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648450

RESUMO

Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.


Assuntos
Canal de Potássio KCNQ2 , Agonistas Muscarínicos , Masculino , Feminino , Camundongos , Ratos , Animais , Sulfato de Desidroepiandrosterona , Canal de Potássio KCNQ2/metabolismo , Agonistas Muscarínicos/farmacologia , Dor/tratamento farmacológico , Formaldeído , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo
5.
Nat Commun ; 14(1): 3547, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321992

RESUMO

Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.


Assuntos
Epilepsia , Canais de Potássio KCNQ , Animais , Camundongos , Epilepsia/metabolismo , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo
6.
Stem Cell Res ; 69: 103093, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071954

RESUMO

KCNQ2 encodes the potassium-gated voltage channel Kv7.2, responsible for the M-current, which contributes to neuronal resting membrane potential. Pathogenic variants in KCNQ2 cause early onset epilepsies, developmental and epileptic encephalopathies. In this study, we generated three iPSC lines from dermal fibroblasts of a 5 year-old female patient with the KCNQ2 c.638C > T (p.Arg213Gln) pathogenic heterozygous variant and three iPSC lines from a healthy sibling control. These iPSC lines were validated by confirming the targeted mutation, SNP karyotyping, STR analysis, pluripotent gene expression, differentiation capacity into three germ layers, and were free of transgene integration and Mycoplasma.


Assuntos
Encefalopatias , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Pré-Escolar , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Diferenciação Celular , Encefalopatias/genética , Mutação , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo
7.
Acta Pharmacol Sin ; 44(8): 1589-1599, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36932231

RESUMO

Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 µM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 µM) and XEN1101 (1 µM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.


Assuntos
Encefalopatias , Canal de Potássio KCNQ2 , Cricetinae , Animais , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Células CHO , Cricetulus , Mutação , Encefalopatias/genética
8.
J Biol Chem ; 299(2): 102819, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549648

RESUMO

Zinc (Zn) is an essential trace element; it serves as a cofactor for a great number of enzymes, transcription factors, receptors, and other proteins. Zinc is also an important signaling molecule, which can be released from intracellular stores into the cytosol or extracellular space, for example, during synaptic transmission. Amongst cellular effects of zinc is activation of Kv7 (KCNQ, M-type) voltage-gated potassium channels. Here, we investigated relationships between Kv7 channel inhibition by Ca2+/calmodulin (CaM) and zinc-mediated potentiation. We show that Zn2+ ionophore, zinc pyrithione (ZnPy), can prevent or reverse Ca2+/CaM-mediated inhibition of Kv7.2. In the presence of both Ca2+ and Zn2+, the Kv7.2 channels lose most of their voltage dependence and lock in an open state. In addition, we demonstrate that mutations that interfere with CaM binding to Kv7.2 and Kv7.3 reduced channel membrane abundance and activity, but these mutants retained zinc sensitivity. Moreover, the relative efficacy of ZnPy to activate these mutants was generally greater, compared with the WT channels. Finally, we show that zinc sensitivity was retained in Kv7.2 channels assembled with mutant CaM with all four EF hands disabled, suggesting that it is unlikely to be mediated by CaM. Taken together, our findings indicate that zinc is a potent Kv7 stabilizer, which may protect these channels from physiological inhibitory effects of neurotransmitters and neuromodulators, protecting neurons from overactivity.


Assuntos
Cálcio , Calmodulina , Espaço Intracelular , Canais de Potássio KCNQ , Zinco , Sinalização do Cálcio , Calmodulina/metabolismo , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/química , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Mutação , Ligação Proteica/genética , Zinco/farmacologia , Zinco/metabolismo , Espaço Intracelular/metabolismo , Cálcio/metabolismo , Canal de Potássio KCNQ2/antagonistas & inibidores , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/antagonistas & inibidores , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo
9.
Cell Rep ; 40(10): 111309, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070693

RESUMO

Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.


Assuntos
Dopamina , Canal de Potássio KCNQ2 , Transtornos Mentais , Proteínas do Tecido Nervoso , Animais , Dopamina/metabolismo , Canal de Potássio KCNQ2/metabolismo , Transtornos Mentais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo , Recompensa
10.
Mol Med Rep ; 26(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35856407

RESUMO

Early­onset epileptic encephalopathy (EOEE) represents one of the most severe epilepsies, characterized by recurrent seizures during early infancy, electroencephalogram (EEG) abnormalities and varying degrees of neurodevelopmental delay. The KCNQ2 gene has been reported to have a major role in EOEE. In the present study, a 3­month­old female infant from the Chinese Lisu minority with EOEE was analyzed. Detailed clinical evaluations and next­generation sequencing were performed to investigate the clinical and genetic characteristics of this patient, respectively. Furthermore, the three­dimensional structure of the mutant protein was predicted by SWISS­Model and the expression of KCNQ2 protein in the patient was assessed by flow cytometry. It was observed that the patient presented with typical clinical features of EOEE, including repeated non­febrile seizures and significant EEG abnormalities. A novel heterozygous missense variant c.431G>C (p.R144P) in KCNQ2 was identified in the patient and the genotyping of KCNQ2 in the patient's parents suggested that this variant was de novo. Subsequently, the breakage of hydrogen bonds between certain amino acids was predicted by structural analysis of the mutant protein. Flow cytometric analysis detected a significant reduction buts not complete loss of native KCNQ2 protein expression in the patient (25.1%). In conclusion, a novel variant in KCNQ2 was confirmed as the genetic cause for EOEE in this patient. The present study expanded the pathogenic mutation spectrum of KCNQ2, enhanced the understanding of the molecular pathogenesis of EOEE and provided novel clues for research on the genotype­phenotype correlation in this disease.


Assuntos
Epilepsia , Canal de Potássio KCNQ2 , Eletroencefalografia , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Heterozigoto , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação
11.
Mol Brain ; 15(1): 64, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858950

RESUMO

Previous immunohistochemical studies have shown the expression of KCNQ2 channels at nodes of Ranvier (NRs) of myelinated nerves. However, functions of these channels at NRs remain elusive. In the present study, we addressed this issue by directly applying whole-cell patch-clamp recordings at NRs of rat lumbar spinal ventral nerves in ex vivo preparations. We show that depolarizing voltages evoke large non-inactivating outward currents at NRs, which are partially inhibited by KCNQ channel blocker linopirdine and potentiated by KCNQ channel activator retigabine. Furthermore, linopirdine significantly alters intrinsic electrophysiological properties of NRs to depolarize resting membrane potential, increase input resistance, prolong AP width, reduce AP threshold, and decrease AP amplitude. On the other hand, retigabine significantly decreases input resistance and increases AP rheobase at NRs. Moreover, linopirdine increases excitability at NRs by converting single AP firing into multiple AP firing at many NRs. Saltatory conduction velocity is significantly reduced by retigabine, and AP success rate at high stimulation frequency is significantly increased by linopirdine. Collectively, KCNQ2 channels play a significant role in regulating intrinsic electrophysiological properties and saltatory conduction at NRs of motor nerve fibers of rats. These findings may provide insights into how the loss-of-function mutation in KCNQ2 channels can lead to neuromuscular disorders in human patients.


Assuntos
Canal de Potássio KCNQ2/metabolismo , Nós Neurofibrosos , Nervos Espinhais , Animais , Fenômenos Eletrofisiológicos , Canal de Potássio KCNQ2/genética , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Nós Neurofibrosos/metabolismo , Ratos
12.
Neuron ; 110(14): 2201-2203, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35863316

RESUMO

In this issue of Neuron, Lopez et al. report that KCNQ2 (potassium voltage-gated channel subfamily Q member 2) is essential for the sustained antidepressant-like effects of ketamine in glutamatergic neurons of the ventral hippocampus. This study implies that KCNQ2 activators can be novel antidepressants without the ketamine side effects.


Assuntos
Canal de Potássio KCNQ3 , Ketamina , Antidepressivos/farmacologia , Hipocampo/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Ketamina/farmacologia
13.
Elife ; 112022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642783

RESUMO

Neuronal KCNQ channels mediate the M-current, a key regulator of membrane excitability in the central and peripheral nervous systems. Mutations in KCNQ2 channels cause severe neurodevelopmental disorders, including epileptic encephalopathies. However, the impact that different mutations have on channel function remains poorly defined, largely because of our limited understanding of the voltage-sensing mechanisms that trigger channel gating. Here, we define the parameters of voltage sensor movements in wt-KCNQ2 and channels bearing epilepsy-associated mutations using cysteine accessibility and voltage clamp fluorometry (VCF). Cysteine modification reveals that a stretch of eight to nine amino acids in the S4 becomes exposed upon voltage sensing domain activation of KCNQ2 channels. VCF shows that the voltage dependence and the time course of S4 movement and channel opening/closing closely correlate. VCF reveals different mechanisms by which different epilepsy-associated mutations affect KCNQ2 channel voltage-dependent gating. This study provides insight into KCNQ2 channel function, which will aid in uncovering the mechanisms underlying channelopathies.


Assuntos
Epilepsia , Canal de Potássio KCNQ2 , Transtornos do Neurodesenvolvimento , Cisteína/genética , Epilepsia/genética , Humanos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/genética
14.
Bioorg Med Chem Lett ; 71: 128841, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35671848

RESUMO

To identify pore domain ligands on Kv7.2 potassium ion channels, we compared wild-type (WT) and W236L mutant Kv7.2 channels in a series of assays with previously validated and novel agonist chemotypes. Positive controls were retigabine, flupirtine, and RL-81; i.e. Kv7.2 channel activators that significantly shift voltage-dependent activation to more negative potentials (ΔV50) at 5 µM. We identified 6 new compounds that exhibited differential enhancing activity between WT and W236L mutant channels. Whole cell patch-clamp electrophysiology studies were conducted to identify Kv7.2. Kv7.2/3, Kv7.4, and Kv7.5 selectivity. Our results validate the SyncroPatch platform and establish new structure activity relationships (SAR). Specifically, in addition to selective Kv7.2, Kv7.2/3, Kv7.4. and Kv7.5 agonists, we identified a novel chemotype, ZK-21, a 4-aminotetrahydroquinoline that is distinct from any of the previously described Kv7 channel modifiers. Using flexible receptor docking, ZK-21 was predicted to be stabilized by W236 and bind perpendicular to retigabine, burying the benzyl carbamate group into a tunnel reaching the core of the pore domain.


Assuntos
Canais de Potássio KCNQ , Canal de Potássio KCNQ2 , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo
15.
Exp Neurol ; 355: 114141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691372

RESUMO

Anti-seizure drug (ASD) targets are widely expressed in both excitatory and inhibitory neurons. It remains unknown if the action of an ASD upon inhibitory neurons could counteract its beneficial effects on excitatory neurons (or vice versa), thereby reducing the efficacy of the ASD. Here, we examine whether the efficacy of the ASD retigabine (RTG) is altered after removal of the Kv7 potassium channel subunit KCNQ2, one of its drug targets, from parvalbumin-expressing interneurons (PV-INs). Parvalbumin-Cre (PV-Cre) mice were crossed with Kcnq2-floxed (Kcnq2fl/fl) mice to conditionally delete Kcnq2 from PV-INs. In these conditional knockout mice (cKO, PV-Kcnq2fl/fl), RTG (10 mg/kg, i.p.) significantly delayed the onset of either picrotoxin (PTX, 10 mg/kg, i.p)- or kainic acid (KA, 30 mg/kg, i.p.)-induced convulsive seizures compared to vehicle, while RTG was not effective in wild-type littermates (WT). Immunostaining for KCNQ2 and KCNQ3 revealed that both subunits were enriched at axon initial segments (AISs) of hippocampal CA1 PV-INs, and their specific expression was selectively abolished in cKO mice. Accordingly, the M-currents recorded from CA1 PV-INs and their sensitivity to RTG were significantly reduced in cKO mice. While the ability of RTG to suppress CA1 excitatory neurons in hippocampal slices was unchanged in cKO mice, its suppressive effect on the spike activity of CA1 PV-INs was significantly reduced compared with WT mice. In addition, the RTG-induced suppression on intrinsic membrane excitability of PV-INs in WT mice was significantly reduced in cKO mice. These findings suggest that preventing RTG from suppressing PV-INs improves its anticonvulsant effect.


Assuntos
Parvalbuminas , Fenilenodiaminas , Animais , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Interneurônios/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Parvalbuminas/metabolismo , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
16.
Pflugers Arch ; 474(7): 721-732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35459955

RESUMO

KCNQ channels participate in the physiology of several cell types. In neurons of the central nervous system, the primary subunits are KCNQ2, 3, and 5. Activation of these channels silence the neurons, limiting action potential duration and preventing high-frequency action potential burst. Loss-of-function mutations of the KCNQ channels are associated with a wide spectrum of phenotypes characterized by hyperexcitability. Hence, pharmacological activation of these channels is an attractive strategy to treat epilepsy and other hyperexcitability conditions as are the evolution of stroke and traumatic brain injury. In this work we show that triclosan, a bactericide widely used in personal care products, activates the KCNQ3 channels but not the KCNQ2. Triclosan induces a voltage shift in the activation, increases the conductance, and slows the closing of the channel. The response is independent of PIP2. Molecular docking simulations together with site-directed mutagenesis suggest that the putative binding site is in the voltage sensor domain. Our results indicate that triclosan is a new activator for KCNQ channels.


Assuntos
Epilepsia , Triclosan , Epilepsia/metabolismo , Humanos , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1 , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Simulação de Acoplamento Molecular , Neurotransmissores , Triclosan/farmacologia
17.
Proc Natl Acad Sci U S A ; 119(13): e2117640119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320039

RESUMO

KCNQ2 and KCNQ3 channels are associated with multiple neurodevelopmental disorders and are also therapeutic targets for neurological and neuropsychiatric diseases. For more than two decades, it has been thought that most KCNQ channels in the brain are either KCNQ2/3 or KCNQ3/5 heteromers. Here, we investigated the potential heteromeric compositions of KCNQ2-containing channels. We applied split-intein protein trans-splicing to form KCNQ2/5 tandems and coexpressed these with and without KCNQ3. Unexpectedly, we found that KCNQ2/5 tandems form functional channels independent of KCNQ3 in heterologous cells. Using mass spectrometry, we went on to demonstrate that KCNQ2 associates with KCNQ5 in native channels in the brain, even in the absence of KCNQ3. Additionally, our functional heterologous expression data are consistent with the formation of KCNQ2/3/5 heteromers. Thus, the composition of KCNQ channels is more diverse than has been previously recognized, necessitating a re-examination of the genotype/phenotype relationship of KCNQ2 pathogenic variants.


Assuntos
Canais de Potássio KCNQ , Canal de Potássio KCNQ3 , Animais , Encéfalo/metabolismo , Genótipo , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Processamento de Proteína
18.
Clin Chim Acta ; 530: 74-80, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247435

RESUMO

BACKGROUND: Heterozygous variants of KCNQ2 can cause KCNQ2 associated neurodevelopmental disorder, mainly are benign (familial) neonatal or infantile epilepsy (B(F)NE or B(F)IE) and developmental epileptic encephalopathy(DEE). Moreover, some intermediate phenotypes, including intellectual disability (ID), and myokymia are related to the gene. METHODS: We collected a non-syndromic ID male patient with a novel KCNQ2 missense variant. Whole cell electrophysiology, western blotting, and immunofluorescence were adopted to analyze the variant's functional alterations. RESULTS: The patient presented with global developmental delay since his infancy. He still had profound ID but did not have epilepsy at the adolescence. The de novo KCNQ2 variant p.R75C (NM_172107) in the NH2 domain identified here showed a slightly hyperpolarized shift of activation curves and larger current density in homomeric configurations, which could be abolished in co-expression with Kv7.2 or Kv7.3 wild-type. Western blotting and immunocytochemistry supported that the expression of variant p.R75C is lower than the Kv7.2 wild-type. The findings indicated variant p.R75C causes mild gain-of-function (GOF) of Kv7.2 channel. CONCLUSIONS: We report a non-syndromic ID patient with a KCNQ2 mild GOF variant, adding evidence for this rare clinical phenotype in the disorder. We propose that individuals with KCNQ2 GOF variants are prone to have cognitive impairments.


Assuntos
Epilepsia , Deficiência Intelectual , Epilepsia/genética , Mutação com Ganho de Função , Humanos , Deficiência Intelectual/genética , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Masculino , Mutação , Mutação de Sentido Incorreto
19.
Cells ; 11(5)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269516

RESUMO

KCNQ2 mutations can cause benign familial neonatal convulsions (BFNCs), epileptic encephalopathy (EE), and mild-to-profound neurodevelopmental disabilities. Mutations in the KCNQ2 selectivity filter (SF) are critical to neurodevelopmental outcomes. Three patients with neonatal EE carry de novo heterozygous KCNQ2 p.Thr287Ile, p.Gly281Glu and p.Pro285Thr, and all are followed-up in our clinics. Whole-cell patch-clamp analysis with transfected mutations was performed. The Kv7.2 in three mutations demonstrated significant current changes in the homomeric-transfected cells. The conduction curves for V1/2, the K slope, and currents in 3 mutations were lower than those for the wild type (WT). The p.Gly281Glu had a worse conductance than the p.Thr287Ile and p.Pro285Thr, the patient compatible with p.Gly281Glu had a worse clinical outcome than patients with p.Thr287Ile and p.Pro285Thr. The p.Gly281Glu had more amino acid weight changes than the p.Gly281Glu and p.Pro285Thr. Among 5 BFNCs and 23 EE from mutations in the SF, the greater weight of the mutated protein compared with that of the WT was presumed to cause an obstacle to pore size, which is one of the most important factors in the phenotype and outcome. For the 35 mutations in the SF domain, using changes in amino acid weight between the WT and the KCNQ2 mutations to predict EE resulted in 80.0% sensitivity and 80% specificity, a positive prediction rate of 96.0%, and a negative prediction rate of 40.0% (p = 0.006, χ2 (1, n = 35) = 7.56; odds ratio 16.0, 95% confidence interval, 1.50 to 170.63). The findings suggest that p.Thr287Ile, p.Gly281Glu and p.Pro285Thr are pathogenic to KCNQ2 EE. In mutations in SF, a mutated protein heavier than the WT is a factor in the Kv7.2 current and outcome.


Assuntos
Transtorno do Espectro Autista , Encefalopatias , Aminoácidos , Encefalopatias/genética , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Mutação/genética
20.
Science ; 375(6583): eabh3021, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35201886

RESUMO

Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.


Assuntos
Envelhecimento , Neurônios/fisiologia , Orexinas/fisiologia , Privação do Sono/fisiopatologia , Sono , Vigília , Aminopiridinas/farmacologia , Animais , Sistemas CRISPR-Cas , Eletroencefalografia , Eletromiografia , Feminino , Região Hipotalâmica Lateral/fisiopatologia , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Masculino , Camundongos , Narcolepsia/genética , Narcolepsia/fisiopatologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais , Optogenética , Técnicas de Patch-Clamp , RNA-Seq , Qualidade do Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA