Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Am Chem Soc ; 146(13): 8981-8990, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513269

RESUMO

The rapid development of antibiotic resistance, especially among difficult-to-treat Gram-negative bacteria, is recognized as a serious and urgent threat to public health. The detection and characterization of novel resistance mechanisms are essential to better predict the spread and evolution of antibiotic resistance. Corramycin is a novel and modified peptidic antibiotic with activity against several Gram-negative pathogens. We demonstrate that the kinase ComG, part of the corramycin biosynthetic gene cluster, phosphorylates and thereby inactivates corramycin, leading to the resistance of the host. Remarkably, we found that the closest structural homologues of ComG are aminoglycoside phosphotransferases; however, ComG shows no activity toward this class of antibiotics. The crystal structure of ComG in complex with corramycin reveals that corramycin adopts a ß-hairpin-like structure and allowed us to define the changes leading to a switch in substrate from sugar to peptide. Bioinformatic analyses suggest a limited occurrence of ComG-like proteins, which along with the absence of cross-resistance to clinically used drugs positions corramycin as an attractive antibiotic for further development.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/química , Bactérias Gram-Negativas/metabolismo , Canamicina Quinase/química , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Peptídeos
2.
Biochim Biophys Acta Proteins Proteom ; 1870(1): 140720, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597835

RESUMO

Kinases play central roles in many cellular processes, transferring the terminal phosphate groups of nucleoside triphosphates (NTPs) onto substrates. In the absence of substrates, kinases can also hydrolyse NTPs producing NDPs and inorganic phosphate. Hydrolysis is usually much less efficient than the native phosphoryl transfer reaction. This may be related to the fact that NTP hydrolysis is metabolically unfavorable as it unproductively consumes the cell's energy stores. It has been suggested that substrate interactions could drive changes in NTP binding pocket, activating catalysis only when substrates are present. Structural data show substrate-induced conformational rearrangements, however there is a lack of corresponding functional information. To better understand this phenomenon, we developed a suite of isothermal titration calorimetry (ITC) kinetics methods to characterize ATP hydrolysis by the antibiotic resistance enzyme aminoglycoside-3'-phosphotransferase-IIIa (APH(3')-IIIa). We measured Km, kcat, and product inhibition constants and single-turnover kinetics in the presence and absence of non-substrate aminoglycosides (nsAmgs) that are structurally similar to the native substrates. We found that the presence of an nsAmg increased the chemical step of cleaving the ATP γ-phosphate by at least 10- to 20-fold under single-turnover conditions, supporting the existence of interactions that link substrate binding to substantially enhanced catalytic rates. Our detailed kinetic data on the association and dissociation rates of nsAmgs and ADP shed light on the biophysical processes underlying the enzyme's Theorell-Chance reaction mechanism. Furthermore, they provide clues on how to design small-molecule effectors that could trigger efficient ATP hydrolysis and generate selective pressure against bacteria harboring the APH(3')-IIIa.


Assuntos
Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Canamicina Quinase/metabolismo , Regulação Alostérica , Aminoglicosídeos/metabolismo , Hidrólise , Canamicina Quinase/química , Cinética , Ligação Proteica
3.
Curr Protein Pept Sci ; 21(10): 1011-1026, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32933457

RESUMO

Aminoglycosides and ß-lactams are the most commonly used antimicrobial agents in clinical practice. This occurs because they are capable of acting in the treatment of acute bacterial infections. However, the effectiveness of antibiotics has been constantly threatened due to bacterial pathogens producing resistance enzymes. Among them, the aminoglycoside-modifying enzymes (AMEs) and ß-lactamase enzymes are the most frequently reported resistance mechanisms. AMEs can inactivate aminoglycosides by adding specific chemical molecules in the compound, whereas ß-lactamases hydrolyze the ß-lactams ring, preventing drug-target interaction. Thus, these enzymes provide a scenario of multidrug-resistance and a significant threat to public health at a global level. In response to this challenge, in recent decades, several studies have focused on the development of inhibitors that can restore aminoglycosides and ß-lactams activity. In this context, peptides appear as a promising approach in the field of inhibitors for future antibacterial therapies, as multiresistant bacteria may be susceptible to these molecules. Therefore, this review focused on the most recent findings related to peptide-based inhibitors that act on AMEs and ß-lactamases, and how these molecules could be used for future treatment strategies.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Ácido Clavulânico/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sulbactam/uso terapêutico , Tazobactam/uso terapêutico , Aminoglicosídeos/metabolismo , Aminoglicosídeos/uso terapêutico , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Desenho de Fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Canamicina Quinase/antagonistas & inibidores , Canamicina Quinase/química , Canamicina Quinase/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/uso terapêutico
4.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 9): 599-607, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31475927

RESUMO

Hygromycin B (HygB) is one of the aminoglycoside antibiotics, and it is widely used as a reagent in molecular-biology experiments. Two kinases are known to inactivate HygB through phosphorylation: aminoglycoside 7''-phosphotransferase-Ia [APH(7'')-Ia] from Streptomyces hygroscopicus and aminoglycoside 4-phosphotransferase-Ia [APH(4)-Ia] from Escherichia coli. They phosphorylate the hydroxyl groups at positions 7'' and 4 of the HygB molecule, respectively. Previously, the crystal structure of APH(4)-Ia was reported as a ternary complex with HygB and 5'-adenylyl-ß,γ-imidodiphosphate (AMP-PNP). To investigate the differences in the substrate-recognition mechanism between APH(7'')-Ia and APH(4)-Ia, the crystal structure of APH(7'')-Ia complexed with HygB is reported. The overall structure of APH(7'')-Ia is similar to those of other aminoglycoside phosphotransferases, including APH(4)-Ia, and consists of an N-terminal lobe (N-lobe) and a C-terminal lobe (C-lobe). The latter also comprises a core and a helical domain. Accordingly, the APH(7'')-Ia and APH(4)-Ia structures fit globally when the structures are superposed at three catalytically important conserved residues, His, Asp and Asn, in the Brenner motif, which is conserved in aminoglycoside phosphotransferases as well as in eukaryotic protein kinases. On the other hand, the phosphorylated hydroxyl groups of HygB in both structures come close to the Asp residue, and the HygB molecules in each structure lie in opposite directions. These molecules were held by the helical domain in the C-lobe, which exhibited structural differences between the two kinases. Furthermore, based on the crystal structures of APH(7'')-Ia and APH(4)-Ia, some mutated residues in their thermostable mutants reported previously were located at the same positions in the two enzymes.


Assuntos
Antibacterianos/química , Higromicina B/química , Canamicina Quinase/química , Streptomyces/enzimologia , Adenilil Imidodifosfato/química , Motivos de Aminoácidos/genética , Aminoglicosídeos/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Escherichia coli/metabolismo , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Fosforilação , Domínios Proteicos , Especificidade por Substrato
5.
Braz J Microbiol ; 50(4): 887-898, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31401782

RESUMO

Bacterial resistance towards aminoglycoside antibiotics mainly occurs because of aminoglycoside phosphotransferases (APHs). It is thus necessary to provide a rationale for focusing inhibitor development against APHs. The nucleotide triphosphate (NTP) binding site of eukaryotic protein kinases (ePKs) is structurally conserved with APHs. However, ePK inhibitors cannot be used against APHs due to cross reactivity. Thus, understanding bacterial resistance at the atomic level could be useful to design new inhibitors against such resistant pathogens. Hence, we carried out in vitro studies of APH from newly deposited multidrug-resistant organism Bacillus subtilis subsp. subtilis strain RK. Enzymatic modification studies of different aminoglycoside antibiotics along with purification and characterization revealed a novel class of APH, i.e., APH(5), with molecular weight 27 kDa approximately. Biochemical analysis of virtually screened inhibitor ZINC71575479 by coupled spectrophotometric assay showed complete enzymatic inhibition of purified APH(5). In silico toxicity study comparison of ZINC71575479 with known inhibitor of APH, i.e., tyrphostin AG1478, predicted its acceptable values for 96 h fathead minnow LC50, 48 h Tetrahymena pyriformis IGC50, oral rat LD50, and developmental toxicity using different QSAR methodologies. Thus, the present study gives novel insight into the aminoglycoside resistance and inhibition mechanism of APH(5) by applying experimental and computational techniques synergistically.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Canamicina Quinase/metabolismo , Aminoglicosídeos/farmacologia , Animais , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Bacillus subtilis/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Canamicina Quinase/antagonistas & inibidores , Canamicina Quinase/química , Canamicina Quinase/genética , Filogenia , Ratos , Microbiologia do Solo
6.
Anal Bioanal Chem ; 411(19): 4701-4708, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30361915

RESUMO

Improvements in mass spectrometry technology to include instrument duty cycle, resolution, and sensitivity suggest mass spectrometry as a highly competitive alternative to conventional microbiological proteomic techniques. Targeted mass spectral analysis, sans prior empirical measurements, has begun to solely use the enormous amount of available genomic information for assay development. An in silico tryptic digestion of a suspected antibiotic-resistant enzyme using only its genomic information for assay development was achieved. Both MRM and full-scan MS2 independent data acquisitions were obtained for an antibiotic-resistance microbe not previously measured using mass spectrometry. In addition, computation methods to determine highest responding peptides in positive ion mode liquid chromatography-mass spectrometry (LC-MS) were evaluated. Employment of the relative retention time (iRT) concept using a homemade peptide standard set revealed facile method transfer between two fundamental different mass spectral platforms: an ultra-high-pressure liquid chromatography triple quadrupole-mass spectrometer (UHPLC-MS) and nano-liquid chromatography parallel reaction monitoring (nano-LC-PRM) hybrid quadrupole orbitrap Q-exactive mass spectrometer supporting easy dissemination and rapid method implementation between laboratories. Graphical Abstract.


Assuntos
Canamicina Quinase/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Cromatografia Líquida/métodos , Canamicina Quinase/química , Limite de Detecção , Espectrometria de Massas/métodos
7.
J Antibiot (Tokyo) ; 70(4): 400-403, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27965516

RESUMO

Analysis of whole-genome sequences of 133 strains of Acinetobacter detected two genes for new types of aminoglycoside 3'-O-phosphotransferase [APH(3')], type VIII in Acinetobacter rudis and IX in A. gerneri. The enzymes were related to each other (49% identity) and to APH(3')-VI (61% and 51% identity, respectively), which is intrinsic to A. guillouiae. The cloned genes conferred kanamycin and amikacin resistance to Escherichia coli but were cryptic or expressed at low levels in the original hosts. The chromosomal location of both genes and the genetic events for acquisition of an ancestral aphA gene by A. rudis and A. gerneri, and loss by A. bereziniae were supported by the molecular phylogenetic tree of these genes. These data confirm that nonpathogenic susceptible bacterial species can be considered as potential reservoirs of resistance genes.


Assuntos
Acinetobacter/metabolismo , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Canamicina Quinase/metabolismo , Acinetobacter/efeitos dos fármacos , Amicacina/farmacologia , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Clonagem Molecular , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Canamicina/farmacologia , Canamicina Quinase/química , Testes de Sensibilidade Microbiana
8.
Microb Biotechnol ; 10(1): 189-202, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28004885

RESUMO

The advent of metagenomics has greatly facilitated the discovery of enzymes with useful biochemical characteristics for industrial and biomedical applications, from environmental niches. In this study, we used sequence-based metagenomics to identify two antibiotic resistance enzymes from the secluded, lower convective layer of Atlantis II Deep Red Sea brine pool (68°C, ~2200 m depth and 250‰ salinity). We assembled > 4 000 000 metagenomic reads, producing 43 555 contigs. Open reading frames (ORFs) called from these contigs were aligned to polypeptides from the Comprehensive Antibiotic Resistance Database using BLASTX. Two ORFs were selected for further analysis. The ORFs putatively coded for 3'-aminoglycoside phosphotransferase [APH(3')] and a class A beta-lactamase (ABL). Both genes were cloned, expressed and characterized for activity and thermal stability. Both enzymes were active in vitro, while only APH(3') was active in vivo. Interestingly, APH(3') proved to be thermostable (Tm  = 61.7°C and ~40% residual activity after 30 min of incubation at 65°C). On the other hand, ABL was not as thermostable, with a Tm  = 43.3°C. In conclusion, we have discovered two novel AR enzymes with potential application as thermophilic selection markers.


Assuntos
Farmacorresistência Bacteriana , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Metagenoma , beta-Lactamases/genética , beta-Lactamases/metabolismo , Clonagem Molecular , Biologia Computacional , Estabilidade Enzimática , Expressão Gênica , Sedimentos Geológicos , Oceano Índico , Canamicina Quinase/química , Metagenômica , Fases de Leitura Aberta , Sais , Análise de Sequência de DNA , Homologia de Sequência , Temperatura , beta-Lactamases/química
9.
Structure ; 24(7): 1011-3, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27387794

RESUMO

In a recent issue of Structure, Caldwell et al. (2016) determined crystal structures of APH(2″)-Ia in complex with various combinations of aminoglycosides and nucleosides, which compellingly revealed that the catalytic activity of this resistance enzyme is regulated by a conformational change of the triphosphate of GTP, a mechanism previously unknown for antibiotic kinases.


Assuntos
Aminoglicosídeos , Canamicina Quinase/química , Antibacterianos , Fosfotransferases (Aceptor do Grupo Álcool)/química
10.
Biochem Biophys Res Commun ; 477(4): 595-601, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27338640

RESUMO

Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3'-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å. Deep analysis of APHVIII structure and its comparison with known structures of aminoglycoside phosphotransferases of various types reveals that AphVIII has a typical two-domain fold and, however, possesses some unique characteristics that distinguish the enzyme from its known homologues. The most important difference is the presence of the activation loop with unique Ser146 residue. We demonstrate that in the apo-state of the enzyme the activation loop does not interact with other parts of the enzyme and seems to adopt catalytically competent state only after substrate binding.


Assuntos
Canamicina Quinase/química , Streptomyces rimosus/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Canamicina Quinase/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Fosforilação , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Nucleic Acids Res ; 42(14): e112, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914046

RESUMO

Deep mutational scanning has emerged as a promising tool for mapping sequence-activity relationships in proteins, ribonucleic acid and deoxyribonucleic acid. In this approach, diverse variants of a sequence of interest are first ranked according to their activities in a relevant assay, and this ranking is then used to infer the shape of the fitness landscape around the wild-type sequence. Little is currently known, however, about the degree to which such fitness landscapes are dependent on the specific assay conditions from which they are inferred. To explore this issue, we performed comprehensive single-substitution mutational scanning of APH(3')II, a Tn5 transposon-derived kinase that confers resistance to aminoglycoside antibiotics, in Escherichia coli under selection with each of six structurally diverse antibiotics at a range of inhibitory concentrations. We found that the resulting local fitness landscapes showed significant dependence on both antibiotic structure and concentration, and that this dependence can be exploited to guide protein engineering. Specifically, we found that differential analysis of fitness landscapes allowed us to generate synthetic APH(3')II variants with orthogonal substrate specificities.


Assuntos
Canamicina Quinase/genética , Mutagênese Sítio-Dirigida/métodos , Substituição de Aminoácidos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Canamicina Quinase/química , Canamicina Quinase/metabolismo , Mutação , Especificidade por Substrato
12.
PLoS One ; 8(10): e76687, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204655

RESUMO

The rules that govern adaptive protein evolution remain incompletely understood. Aminoglycoside aminotransferase (3') type IIIa (hereafter abbreviated APH(3')-IIIa) is a good model enzyme because it inactivates kanamycin efficiently; it recognizes other aminoglycoside antibiotics, including amikacin, but not nearly as well. Here we direct the evolution of APH(3')-IIIa variants with increased activity against amikacin. After four rounds of random mutation and selection in Escherichia coli, the minimum inhibitory concentration of amikacin rose from 18 micrograms/mL (wild-type enzyme) to over 1200 micrograms/mL (clone 4.1). The artificially evolved 4.1 APH(3')-IIIa variant exhibited 19-fold greater catalytic efficiency (k cat/K M) than did the wild-type enzyme in reactions with amikacin. E. coli expressing the evolved 4.1 APH(3')-IIIa also exhibited a four-fold decrease in fitness (as measured by counting colony forming units in liquid cultures with the same optical density) compared with isogenic cells expressing the wild-type protein under non-selective conditions. We speculate that these fitness costs, in combination with the prevalence of other amikacin-modifying enzymes, hinder the evolution of APH(3')-IIIa in clinical settings.


Assuntos
Amicacina/farmacologia , Proteínas de Escherichia coli/genética , Canamicina Quinase/genética , Mutação/efeitos dos fármacos , Antibacterianos/farmacologia , Biocatálise , Cristalografia por Raios X , Evolução Molecular Direcionada/métodos , Relação Dose-Resposta a Droga , Estabilidade Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Aptidão Genética , Canamicina Quinase/química , Canamicina Quinase/metabolismo , Cinética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Terciária de Proteína
13.
J Microbiol Biotechnol ; 23(11): 1529-35, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23928847

RESUMO

Tuberculosis is a worldwide epidemic disease caused by Mycobacterium tuberculosis, with an estimated one-third of the human population currently affected. Treatment of this disease with aminoglycoside antibiotics has become less effective owing to antibiotic resistance. Recent determination of the crystal structure of the M. tuberculosis Rv3168 protein suggests a structure similar to that of Enterococcus faecalis APH(3')-IIIa, and that this protein may be an aminoglycoside phosphotransferase. To determine whether Rv3168 confers antibiotic resistance against kanamycin, we performed dose-response antibiotic resistance experiments using kanamycin. Expression of the Rv3168 protein in Escherichia coli conferred antibiotic resistance against 100 µM kanamycin, a concentration that effected cell growth arrest in the parental E. coli strain and an E. coli strain expressing the Rv3168(D249A) mutant, in which the catalytic Asp249 residue was mutated to alanine. Furthermore, we detected phosphotransferase activity of Rv3168 against kanamycin as a substrate. Moreover, docking simulation of kanamycin into the Rv3168 structure suggests that kanamycin fits well into the substrate binding pocket of the protein, and that the phosphorylation-hydroxyl-group of kanamycin was located at a position similar to that in E. faecalis APH(3')-IIIa. On the basis of these results, we suggest that the Rv3168 mediates kanamycin resistance in M. tuberculosis, likely through phosphotransferase targeting of kanamycin.


Assuntos
Antibacterianos/farmacologia , Canamicina Quinase/metabolismo , Resistência a Canamicina , Canamicina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Expressão Gênica , Canamicina Quinase/química , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular
14.
J Struct Biol ; 183(1): 76-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23747390

RESUMO

Aminoglycoside 4-phosphotransferase-Ia (APH(4)-Ia)/Hygromycin B phosphotransferase (Hph) inactivates the aminoglycoside antibiotic hygromycin B (hygB) via phosphorylation. The crystal structure of the binary complex of APH(4)-Ia with hygB was recently reported. To characterize substrate recognition by the enzyme, we determined the crystal structure of the ternary complex of non-hydrolyzable ATP analog AMP-PNP and hygB with wild-type, thermostable Hph mutant Hph5, and apo-mutant enzyme forms. The comparison between the ternary complex and apo structures revealed that Hph undergoes domain movement upon binding of AMP-PNP and hygB. This was about half amount of the case of APH(9)-Ia. We also determined the crystal structures of mutants in which the conserved, catalytically important residues Asp198 and Asn203, and the non-conserved Asn202, were converted to Ala, revealing the importance of Asn202 for catalysis. Hph5 contains five amino acid substitutions that alter its thermostability by 16°C; its structure revealed that 4/5 mutations in Hph5 are located in the hydrophobic core and appear to increase thermostability by strengthening hydrophobic interactions.


Assuntos
Higromicina B/química , Canamicina Quinase/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sítios de Ligação , Cristalografia , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Estabilidade Proteica , Temperatura
15.
Biochem J ; 454(2): 191-200, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23758273

RESUMO

Activity of the aminoglycoside phosphotransferase APH(3')-Ia leads to resistance to aminoglycoside antibiotics in pathogenic Gram-negative bacteria, and contributes to the clinical obsolescence of this class of antibiotics. One strategy to rescue compromised antibiotics such as aminoglycosides is targeting the enzymes that confer resistance with small molecules. We demonstrated previously that ePK (eukaryotic protein kinase) inhibitors could inhibit APH enzymes, owing to the structural similarity between these two enzyme families. However, limited structural information of enzyme-inhibitor complexes hindered interpretation of the results. In addition, cross-reactivity of compounds between APHs and ePKs represents an obstacle to their use as aminoglycoside adjuvants to rescue aminoglycoside antibiotic activity. In the present study, we structurally and functionally characterize inhibition of APH(3')-Ia by three diverse chemical scaffolds, anthrapyrazolone, 4-anilinoquinazoline and PP (pyrazolopyrimidine), and reveal distinctions in the binding mode of anthrapyrazolone and PP compounds to APH(3')-Ia compared with ePKs. Using this observation, we identify PP derivatives that select against ePKs, attenuate APH(3')-Ia activity and rescue aminoglycoside antibiotic activity against a resistant Escherichia coli strain. The structures described in the present paper and the inhibition studies provide an important opportunity for structure-based design of compounds to target aminoglycoside phosphotransferases for inhibition, potentially overcoming this form of antibiotic resistance.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Canamicina Quinase/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Acinetobacter baumannii/enzimologia , Antracenos/química , Antracenos/metabolismo , Antracenos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Canamicina/química , Canamicina/metabolismo , Canamicina/farmacologia , Canamicina Quinase/química , Canamicina Quinase/genética , Canamicina Quinase/metabolismo , Testes de Sensibilidade Microbiana , Conformação Molecular , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-23805415

RESUMO

Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides ineffective. The most widely disseminated means of resistance to this class of antibiotics is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs). There are two principal strategies to overcoming the effects of AMEs. The first approach involves the design of novel aminoglycosides that can evade modification. Although this strategy has yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in the long term. The second approach entails the development of molecules that interfere with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Although such a molecule has yet to enter clinical development, the search for AME inhibitors has been greatly facilitated by the wealth of structural information amassed in recent years. In particular, aminoglycoside phosphotransferases or kinases (APHs) have been studied extensively and crystal structures of a number of APHs with diverse regiospecificity and substrate specificity have been elucidated. In this review, we present a comprehensive overview of the available APH structures and recent progress in APH inhibitor development, with a focus on the structure-guided strategies.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Inibidores Enzimáticos/isolamento & purificação , Canamicina Quinase/química , Canamicina Quinase/metabolismo , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Descoberta de Drogas/métodos , Inibidores Enzimáticos/metabolismo , Canamicina Quinase/antagonistas & inibidores , Modelos Moleculares , Conformação Proteica
17.
Biochemistry (Mosc) ; 77(11): 1258-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23240563

RESUMO

We demonstrate for the first time the role of phosphorylation in the regulation of activities of enzymes responsible for inactivation of aminoglycoside antibiotics. The aminoglycoside phosphotransferase VIII (APHVIII) from the actinobacterial strain Streptomyces rimosus ATCC 10970 is an enzyme regulated by protein kinases. Two serine residues in APHVIII are shown to be phosphorylated by protein kinases from extracts of the kanamycin-resistant strain S. rimosus 683 (a derivative of strain ATCC 10970). Using site-directed mutagenesis and molecular modeling, we have identified the Ser146 residue in the activation loop of the enzyme as the key site for Ca2+-dependent phosphorylation of APHVIII. Comparison of the kanamycin kinase activities of the unphosphorylated and phosphorylated forms of the initial and mutant APHVIII shows that the Ser146 modification leads to a 6-7-fold increase in the kanamycin kinase activity of APHVIII. Thus, Ser146 in the activation loop of APHVIII is crucial for the enzyme activity. The resistance of bacterial cells to kanamycin increases proportionally. From the practical viewpoint, our results increase prospects for creation of highly effective test systems for selecting inhibitors of human and bacterial serine/threonine protein kinases based on APHVIII constructs and corresponding human and bacterial serine/threonine protein kinases.


Assuntos
Proteínas de Bactérias/metabolismo , Canamicina Quinase/metabolismo , Streptomyces/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Ativação Enzimática , Canamicina Quinase/química , Canamicina Quinase/genética , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
PLoS One ; 6(5): e19589, 2011 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-21573013

RESUMO

Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3')-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3')-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eukaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides.


Assuntos
Células Eucarióticas/metabolismo , Isoquinolinas/química , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Sítios de Ligação , Caseína Quinase I/antagonistas & inibidores , Caseína Quinase I/química , Caseína Quinase I/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Canamicina Quinase/antagonistas & inibidores , Canamicina Quinase/química , Canamicina Quinase/metabolismo , Nucleotídeos/química , Nucleotídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica/efeitos dos fármacos
19.
J Mol Biol ; 409(3): 450-65, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21477597

RESUMO

The bacterial enzyme aminoglycoside phosphotransferase(3')-IIIa (APH) confers resistance against a wide range of aminoglycoside antibiotics. In this study, we use the Gaussian network model to investigate how the binding of nucleotides and antibiotics influences the dynamics and thereby the ligand binding properties of APH. Interestingly, in NMR experiments, the dynamics differ significantly in various APH complexes, although crystallographic studies indicate that no larger conformational changes occur upon ligand binding. Isothermal titration calorimetry also shows different thermodynamic contributions to ligand binding. Formation of aminoglycoside-APH complexes is enthalpically driven, while the enthalpic change upon aminoglycoside binding to the nucleotide-APH complex is much smaller. The differential effects of nucleotide binding and antibiotic binding to APH can be explained theoretically by single-residue fluctuations and correlated motions of the enzyme. The surprising destabilization of ß-sheet residues upon nucleotide binding, as seen in hydrogen/deuterium exchange experiments, shows that the number of closest neighbors does not fully explain residue flexibility. Additionally, we must consider correlated motions of dynamic protein domains, which show that not only connectivity but also the overall protein architecture is important for protein dynamics.


Assuntos
Trifosfato de Adenosina/química , Antibacterianos/química , Farmacorresistência Bacteriana , Canamicina Quinase/química , Redes e Vias Metabólicas , Ligação Proteica , Especificidade por Substrato , Termodinâmica
20.
Antimicrob Agents Chemother ; 54(5): 1909-13, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231391

RESUMO

Antibiotic kinases, which include aminoglycoside and macrolide phosphotransferases (APHs and MPHs), pose a serious threat to currently used antimicrobial therapies. These enzymes show structural and functional homology with Ser/Thr/Tyr kinases, which is suggestive of a common ancestor. Surprisingly, recent in vitro studies using purified antibiotic kinase enzymes have revealed that a number are able to utilize GTP as the antibiotic phospho donor, either preferentially or exclusively compared to ATP, the canonical phosphate donor in most biochemical reactions. To further explore this phenomenon, we examined three enzymes, APH(3')-IIIa, APH(2'')-Ib, and MPH(2')-I, using a competitive assay that mimics in vivo nucleotide triphosphate (NTP) concentrations and usage by each enzyme. Downstream analysis of reaction products by high-performance liquid chromatography enabled the determination of partitioning of phosphate flux from NTP donors to antibiotics. Using this ratio along with support from kinetic analysis and inhibitor studies, we find that under physiologic concentrations of NTPs, APH(3')-IIIa exclusively uses ATP, MPH(2')-I exclusively uses GTP, and APH(2'')-Ib is able to use both species with a preference for GTP. These differences reveal likely different pathways in antibiotic resistance enzyme evolution and can be exploited in selective inhibitor design to counteract resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/enzimologia , Canamicina Quinase/metabolismo , Nucleotídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Ligação Competitiva/fisiologia , Farmacorresistência Bacteriana/fisiologia , Guanosina Trifosfato/metabolismo , Canamicina Quinase/química , Canamicina Quinase/genética , Modelos Químicos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA