Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.387
Filtrar
1.
Theranostics ; 14(7): 2675-2686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773981

RESUMO

Cyanine dyes are widely used organic probes for in vivo imaging due to their tunable fluorescence. They can form complexes with endogenous albumin, resulting in enhanced brightness and photostability. However, this binding is uncontrollable and irreversible, leading to considerable nonspecific background signals and unregulated circulation time. Methods: Here, we connect varying numbers of 4-(4-iodophenyl) butanoic acid (IP) as albumin-binding moieties (ABM) to the cyanine dye, enabling dynamic and controllable binding with albumin. Meanwhile, we provide a blocking method to completely release the dye from covalent capture with albumin, resulting in specific targeting fluorescence. Furthermore, we evaluate the pharmacokinetics and tumor targeting of the developed dyes. Results: The engineered dyes can dynamically and selectively bind with multiple albumins to change the in situ size of assemblies and circulation time, providing programmable regulation over the imaging time window. The nucleophilic substitution of meso-Cl with water-soluble amino acids or targeting peptides for IP-engineered dye further addresses the nonspecific signals caused by albumin, allowing for adjustable angiography time and efficient tumor targeting. Conclusion: This study rationalizes the binding modes of dyes and proteins, applicable to a wide range of near-infrared (NIR) dyes for improving their in vivo molecular imaging.


Assuntos
Albuminas , Corantes Fluorescentes , Imagem Óptica , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Albuminas/química , Albuminas/metabolismo , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem , Camundongos , Humanos , Carbocianinas/química , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
2.
ACS Nano ; 18(20): 13019-13034, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723021

RESUMO

Photodynamic therapy (PDT) and photothermal therapy (PTT) possess different merits in cancer phototherapy, but the tumor microenvironment becomes unfavorable during the phototheranostic progress. Herein, we report a self-adaptive cyanine derivative Cy5-TPA with the PDT-dominated state to PTT-dominated state autoswitch feature for enhanced photoimmunotherapy. The incorporation of rotatable triphenylamine (TPA) moiety renders Cy5-TPA with the temperature or intramolecular-motion regulated photoactivities, which shows preferable reactive oxygen species (ROS) generation at lower temperature while stronger photothermal conversion at higher ones. Such a promising feature permits the in situ switch from PDT-dominated state to PTT-dominated state along with intratumoral temperature increase during laser irradiation, which also works in line with the concurrently reduced intratumoral oxygen level, exhibiting a self-adaptive phototherapeutic behavior to maximize the phototherapeutic antitumor outcome. Most importantly, the self-adaptive PDT-dominated state to PTT-dominated state switch also facilitates the sequential generation and release of damage-associated molecular patterns during immunogenic cell death (ICD). Hence, Cy5-TPA demonstrates excellent photoimmunotherapy performance in ICD induction, dendritic cell maturation, and T cell activation for tumor eradication and metastasis inhibition.


Assuntos
Imunoterapia , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Terapia Fototérmica , Camundongos Endogâmicos BALB C , Carbocianinas/química , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral/efeitos dos fármacos
3.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690966

RESUMO

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Assuntos
Neoplasias da Mama , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , RNA , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/análise , Pontos Quânticos/química , RNA/metabolismo , RNA/análise , Feminino , Carbocianinas/química , Técnicas Biossensoriais/métodos
4.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702709

RESUMO

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Assuntos
Carbocianinas , Mitocôndrias , Recidiva Local de Neoplasia , Terapia Fototérmica , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Terapia Fototérmica/métodos , Humanos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Carbocianinas/química , Imagem Óptica/métodos , Camundongos , Cirurgia Assistida por Computador/métodos , Corantes Fluorescentes/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Raios Infravermelhos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Verde de Indocianina/farmacologia
5.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732037

RESUMO

Mitochondria are the energy factories of a cell, and depending on the metabolic requirements, the mitochondrial morphology, quantity, and membrane potential in a cell change. These changes are frequently assessed using commercially available probes. In this study, we tested the suitability of three commercially available probes-namely 5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolo-carbocyanine iodide (JC-1), MitoTracker Red CMX Rox (CMXRos), and tetramethylrhodamine methyl ester (TMRM)-for assessing the mitochondrial quantity, morphology, and membrane potential in living human mesoangioblasts in 3D with confocal laser scanning microscope (CLSM) and scanning disk confocal microscope (SDCM). Using CLSM, JC-1, and CMXRos-but not TMRM-uncovered considerable background and variation. Using SDCM, the background signal only remained apparent for the JC-1 monomer. Repetitive imaging of CMXRos and JC-1-but not TMRM-demonstrated a 1.5-2-fold variation in signal intensity between cells using CLSM. The use of SDCM drastically reduced this variation. The slope of the relative signal intensity upon repetitive imaging using CLSM was lowest for TMRM (-0.03) and highest for CMXRos (0.16). Upon repetitive imaging using SDCM, the slope varied from 0 (CMXRos) to a maximum of -0.27 (JC-1 C1). Conclusively, our data show that TMRM staining outperformed JC-1 and CMXRos dyes in a (repetitive) 3D analysis of the entire mitochondrial quantity, morphology, and membrane potential in living cells.


Assuntos
Imageamento Tridimensional , Microscopia Confocal , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Microscopia Confocal/métodos , Imageamento Tridimensional/métodos , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Carbocianinas/química , Rodaminas/química
6.
Anal Chem ; 96(15): 5985-5991, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38557031

RESUMO

Super-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, SA-Cy5, designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane. The unique feature of SA-Cy5 lies in its ability to overcome photobleaching. When the dye on the cell membrane undergoes photobleaching, it is rapidly replaced by an intact probe from the buffer pool outside the cell membrane. This dynamic replacement ensures that the fluorescence intensity on the cell membrane remains stable over time. Under the super-resolution structured illumination microscopy (SIM), the cell membrane can be continuously imaged for 60 min with a time resolution of 20 s. This extended imaging period allows for the observation of substructural dynamics of the cell membrane, including the growth and fusion of filamentous pseudopodia and the fusion of vesicles. Additionally, this buffering strategy introduces a novel approach to address the issue of poor photostability associated with the cyanine dyes.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Carbocianinas/química , Corantes Fluorescentes/química , Membrana Celular
7.
J Phys Chem B ; 128(16): 3910-3918, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607690

RESUMO

Viscosity, at the subcellular level, plays a crucial role as a physicochemical factor affecting microenvironment homeostasis. Abnormal changes in mitochondrial viscosity often lead to various diseases in the organism. Based on the twisted intramolecular charge transfer mechanism, four hemicyanine dye fluorescent probes (HT-SA, HT-SA-S, HT-Bzh, and HT-NA) were designed and synthesized for viscosity response. The single bond between the nitrogen-containing heterocycle and the carbon-carbon double in the structure of the probe bond served as the viscosity response site. Finally, the probe HT-Bzh was screened as the optimal mitochondrial viscosity probe according to its responsiveness, targeting, and interference resistance. The fluorescence intensity of the probe HT-Bzh increased 22-fold when the viscosity was increased from 13.75 to 811.2 cP. In summary, all four viscosity probes we have developed can be used in different applications depending on the external environment, providing a valuable reference for the design of potential tools to address viscosity monitoring in biological systems.


Assuntos
Carbocianinas , Corantes Fluorescentes , Mitocôndrias , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Viscosidade , Carbocianinas/química , Mitocôndrias/metabolismo , Mitocôndrias/química , Humanos , Células HeLa , Estrutura Molecular , Imagem Óptica
8.
Theranostics ; 14(6): 2526-2543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646640

RESUMO

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Assuntos
Ácido Clodrônico , Pulmão , Macrófagos Peritoneais , Nanopartículas , Animais , Ácido Clodrônico/farmacologia , Ácido Clodrônico/administração & dosagem , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Pulmão/metabolismo , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , RNA Interferente Pequeno/administração & dosagem , Fator de Transcrição GATA6/metabolismo , Lipossomos , Camundongos Endogâmicos C57BL , Carbocianinas/química , Movimento Celular/efeitos dos fármacos , Citometria de Fluxo
9.
Chem Commun (Camb) ; 60(36): 4785-4788, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38602157

RESUMO

We show that covalent labelling of sialic acids on live cell surfaces or mucin increases the fluorescence of the fluorescence molecular rotors (FMRs) CCVJ, Cy3 and thioazole orange, enabling wash-free imaging of cell surfaces. Dual labelling with an FMR and an environmentally insensitive dye allows detection of changes that occur, for example, when cross-linking is altered.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Humanos , Polissacarídeos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/análise , Carbocianinas/química , Coloração e Rotulagem/métodos , Fluorescência , Quinolinas/química , Benzotiazóis/química
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124324, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38676983

RESUMO

Antibiotic-free therapies are highly needed due to the limited success of conventional approaches especially against biofilm related infections. In this direction, antimicrobial phototherapy, either in the form of antimicrobial photothermal therapy (aPTT) or antimicrobial photodynamic therapy (aPDT), have appeared to be highly promising candidates in recent years. These are local and promising approaches for antibiotic resistant bacterial infections and biofilms. Organic small photosensitizers (PSs) are extensively preferred in antimicrobial phototherapy applications as they offer a great opportunity to combine therapeutic action (aPTT, aPDT or both) with fluorescence imaging on a single molecule. In this study, the bactericidal effect of cationic chlorinated hemicyanine (Cl-Hem)-based type I PS, which can function as a dual aPDT/aPTT agent, was investigated on both planktonic cells and biofilms of different gram-positive (E. faecalis and S. epidermidis) and gram-negative bacteria (P. aeruginosa and K. pneumoniae) with and without 640 nm laser irradiation. Cl-Hem was shown to induce a selective phototheranostic activity against gram-positive bacteria (E. faecalis and S. epidermidis). Cl-Hem exhibited both dose and laser irradiation time dependent bactericidal effect on planktonic and biofilms of S. epidermidis. These results clearly showed that highly potent Cl-Hem can treat resistant microbial infections, while allowing fluorescence detection at the same time. High biofilm reduction observed with combined aPDT/aPTT action of Cl-Hem together with its non-cytotoxic nature points out that Cl-Hem is a promising PS for antibacterial and antibiofilm treatments.


Assuntos
Antibacterianos , Biofilmes , Bactérias Gram-Positivas , Halogenação , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Carbocianinas/química , Carbocianinas/farmacologia , Humanos
11.
J Mater Chem B ; 12(18): 4441-4450, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639071

RESUMO

In this study, we report a small molecule optical marker BI-CyG derived from the structural engineering of a cyanine scaffold. The developed probe offers suitable advantages over existing cyanine-based albumin specific probes in terms of its excitation and emission wavelengths, which are 760 and 830-832 nm, respectively. Structural tuning of the cyanine architecture leading to extended π-conjugation and resulting in a suitable bathochromic shift in the emission wavelength of the probe is represented in this study. The probe besides emitting in the NIR region, also possesses the desirable characteristics of being a potential target selective optical marker, as established from various biophysical studies. Molecular modelling and simulation studies provided critical insights into the binding of the probe in the protein microenvironment, which was further supported by experimental studies. The probe displayed intracellular albumin selectivity and was utilized for demonstrating alteration in albumin levels in pathological states such as hyperglycemia in hepatic cells. The present study also sheds some light on using BI-CyG as an imaging probe and on the role of metformin as a suitable drug for balancing hyperglycemia-induced reduced intra-hepatic albumin levels. The study, thus, attempts to highlight the structural derivatization of cyanine to afford a potential probe for serum albumin and its deployment to image altering albumin levels in an induced pathological condition, hyperglycemia.


Assuntos
Carbocianinas , Hiperglicemia , Carbocianinas/química , Humanos , Fígado/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Sondas Moleculares/química , Animais , Raios Infravermelhos , Albuminas/química , Albuminas/metabolismo , Estrutura Molecular , Imagem Óptica
12.
Biomater Sci ; 12(10): 2614-2625, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38591255

RESUMO

Chlorambucil (Cbl) is a DNA alkylating drug in the nitrogen mustard family, but the clinical applications of nitrogen mustard antitumor drugs are frequently limited by their poor aqueous solubility, poor cellular uptake, lack of targeting, and severe side effects. Additionally, mitochondria are the energy factories for cells, and tumor cells are more susceptible to mitochondrial dysfunction than some healthy cells, thus making mitochondria an important target for tumor therapy. As a proof-of-concept, direct delivery of Cbl to tumor cells' mitochondria will probably bring about new opportunities for the nitrogen mustard family. Furthermore, IR775 chloride is a small-molecule lipophilic cationic heptamethine cyanine dye with potential advantages of mitochondria targeting, near-infrared (NIR) fluorescence imaging, and preferential internalization towards tumor cells. Here, an amphiphilic drug conjugate was facilely prepared by covalently coupling chlorambucil with IR775 chloride and further self-assembly to form a carrier-free self-delivery theranostic system, in which the two components are both functional units aimed at theranostic improvement. The theranostic IR775-Cbl potentiated typical "1 + 1 > 2" tumor inhibition through specific accumulation in mitochondria, which triggered a remarkable decrease in mitochondrial membrane potential and ATP generation. In vivo biodistribution and kinetic monitoring were achieved by real-time NIR fluorescence imaging to observe its transport inside a living body. Current facile mitochondria-targeting modification with clinically applied drugs was promising for endowing traditional drugs with targeting, imaging, and improved potency in disease theranostics.


Assuntos
Carbocianinas , Clorambucila , Mitocôndrias , Nanopartículas , Clorambucila/química , Clorambucila/farmacologia , Clorambucila/administração & dosagem , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Humanos , Nanopartículas/química , Carbocianinas/química , Camundongos , Polímeros/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Nanomedicina Teranóstica , Indóis/química , Indóis/farmacologia , Indóis/administração & dosagem , Feminino
13.
Mikrochim Acta ; 191(5): 288, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671226

RESUMO

As a neurodegenerative disorder, Alzheimer's disease (AD) is characterized by cognitive dysfunction and behavioral impairment. Among the various genetic risk factors for AD, apoE4 gene plays a pivotal role in the onset and progression of AD, and detection of apoE4 gene holds significance for prevention and early diagnosis of AD. Herein, dual-signal fluorescence detection of fragments associated with apoE ε4 allele near codon 112 (Tc1) and codon 158 (Tc2) was achieved using DNA tetrahedron nanostructure (DTN). The Förster resonance energy transfer (FRET) process in the DTN was initiated in which the nucleic acid intercalating dye thiazole orange (TO) served as the donor and the cyanine dyes of cyanine3 (Cy3) and cyanine5 (Cy5) at the two vertices of DTN served as the acceptors. In the presence of Tc1 and Tc2, the FRET process between TO and the cyanine dyes was hindered by the enzymatic cleavage reaction, which ensures the dual-signal fluorescence assay of apoE4 gene sites. The limit of detection for Tc1 and Tc2 was estimated to be 0.82 nM and 0.77 nM, respectively, and the whole assay was accomplished within 1 h on a microplate reader. The proposed method thus possesses the advantages of easy operation, short detection time, and high-throughput capability.


Assuntos
Apolipoproteína E4 , Carbocianinas , DNA , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Apolipoproteína E4/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Corantes Fluorescentes/química , DNA/química , DNA/genética , Carbocianinas/química , Benzotiazóis/química , Nanoestruturas/química , Quinolinas/química , Limite de Detecção
14.
Anal Chim Acta ; 1303: 342521, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609263

RESUMO

BACKGROUND: Theranostic nanoplatforms with integrated diagnostic imaging and multiple therapeutic functions play a vital role in precise diagnosis and efficient treatment for breast cancer, but unfortunately, these nanoplatforms are usually stuck in single-site imaging and single mode of treatment, causing unsatisfactory diagnostic and therapeutic efficiency. Herein, a dual biomarkers-activatable facile hollow mesoporous MnO2 (H-MnO2)-based theranostic nanoplatform, DNAzyme@H-MnO2-MUC1 aptamer (DHMM), was constructed for the simultaneous multi-site diagnosis and multiple treatment of breast cancer. RESULTS: The DHMM acted as an integrated diagnostic and therapeutic nanoplatform that realizes multi-site fluorescence imaging-guided high-efficient photothermal/chemodynamic/gene synergistic therapy (PTT/CDT/GT) for breast cancer. The H-MnO2 exhibits high loading capacity for Cy5-MUC1 aptamer (3.05 pmoL µg-1) and FAM-DNAzyme (3.37 pmoL µg-1), and excellent quenching for the probes. In the presence of MUC1 on the cell membrane and GSH in the cytoplasm, Cy5-MUC1 aptamer and FAM-DNAzyme was activated triggering dual-channel fluorescence imaging at different sites. Moreover, the self-supplied Mn2+ was further supplied as DNAzyme cofactors to catalytic cleavage intracellular EGR-1 mRNA for high-efficient GT and stimulated the Fenton-like reaction for CDT. The H-MnO2 also showcases a favorable photothermal performance with a photothermal conversion efficiency of 44.16%, which ultimately contributes to multi-site fluorescence imaging-guided synergistic treatment with an apoptosis rate of 71.82%. SIGNIFICANCE: This dual biomarker-activatable multiple therapeutic nanoplatform was realized multi-site fluorescence imaging-guided PTT/CDT/GT combination therapy for breast cancer with higher specificity and efficiency, which provides a promising theranostic nanoplatform for the precision and efficiency of breast cancer treatment.


Assuntos
Carbocianinas , DNA Catalítico , Neoplasias , Medicina de Precisão , Compostos de Manganês , Óxidos , Imagem Óptica , Biomarcadores
15.
Biomed Mater ; 19(3)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626777

RESUMO

This study developed a probe Fe3O4-Cy5.5-trastuzumab with fluorescence and magnetic resonance imaging functions that can target breast cancer with high HER2 expression, aiming to provide a new theoretical method for the diagnosis of early breast cancer. Fe3O4-Cy5.5-trastuzumab nanoparticles were combined with Fe3O4for T2imaging and Cy5.5 for near-infrared imaging, and coupled with trastuzumab for HER2 targeting. We characterized the nanoparticles used transmission electron microscopy, hydration particle size, Zeta potential, UV and Fourier transform infrared spectroscopy, and examined its magnetism, fluorescence, and relaxation rate related properties. CCK-8 and blood biochemistry analysis evaluated the biosafety and stability of the nanoparticles, and validated the targeting ability of Fe3O4-Cy5.5 trastuzumab nanoparticles throughin vitroandin vivocell and animal experiments. Characterization results showed the successful synthesis of Fe3O4-Cy5.5-trastuzumab nanoparticles with a diameter of 93.72 ± 6.34 nm. The nanoparticles showed a T2relaxation rate 42.29 mM-1s-1, magnetic saturation strength of 27.58 emg g-1. Laser confocal and flow cytometry uptake assay showed that the nanoparticles could effectively target HER2 expressed by breast cancer cells. As indicated byin vitroandin vivostudies, Fe3O4-Cy5.5-trastuzumab were specifically taken up and effectively aggregated to tumour regions with prominent NIRF/MR imaging properties. CCK-8, blood biochemical analysis and histological results suggested Fe3O4-Cy5.5-trastuzumab that exhibited low toxicity to major organs and goodin vivobiocompatibility. The prepared Fe3O4-Cy5.5-trastuzumab exhibited excellent targeting, NIRF/MR imaging performance. It is expected to serve as a safe and effective diagnostic method that lays a theoretical basis for the effective diagnosis of early breast cancer. This study successfully prepared a kind of nanoparticles with near-infrared fluorescence imaging and T2imaging properties, which is expected to serve as a new theory and strategy for early detection of breast cancer.


Assuntos
Neoplasias da Mama , Carbocianinas , Imageamento por Ressonância Magnética , Receptor ErbB-2 , Trastuzumab , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Tamanho da Partícula , Receptor ErbB-2/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Trastuzumab/química
16.
Nanotechnology ; 35(30)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38631329

RESUMO

Modified fluorescent nanoparticles continue to emerge as promising candidates for drug delivery, bioimaging, and labeling tools for various biomedical applications. The ability of nanomaterials to fluorescently label cells allow for the enhanced detection and understanding of diseases. Silica nanoparticles have a variety of unique properties that can be harnessed for many different applications, causing their increased popularity. In combination with an organic dye, fluorescent nanoparticles demonstrate a vast range of advantageous properties including long photostability, surface modification, and signal amplification, thus allowing ease of manipulation to best suit bioimaging purposes. In this study, the Stöber method with tetraethyl orthosilicate (TEOS) and a fluorescent dye sulfo-Cy5-amine was used to synthesize fluorescent silica nanoparticles. The fluorescence spectra, zeta potential, quantum yield, cytotoxicity, and photostability were evaluated. The increased intracellular uptake and photostability of the dye-silica nanoparticles show their potential for bioimaging.


Assuntos
Corantes Fluorescentes , Nanopartículas , Dióxido de Silício , Dióxido de Silício/química , Corantes Fluorescentes/química , Nanopartículas/química , Humanos , Carbocianinas/química , Sobrevivência Celular/efeitos dos fármacos , Imagem Óptica/métodos
17.
J Biochem Mol Toxicol ; 38(4): e23679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38486411

RESUMO

Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.


Assuntos
Antineoplásicos , Benzimidazóis , Carbocianinas , Carcinoma , Chalcona , Chalconas , Humanos , Prolil Hidroxilases , Chalconas/farmacologia , Antineoplásicos/farmacologia , Laranja de Acridina , Apoptose , Microambiente Tumoral
18.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38458969

RESUMO

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Assuntos
Benzimidazóis , Carbocianinas , Doenças Mitocondriais , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ácido Oleanólico/análogos & derivados , Saponinas , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Astrócitos/metabolismo , Astrócitos/patologia , Pilocarpina/toxicidade , Fator de Necrose Tumoral alfa/genética , Caspases/metabolismo , Interleucina-6 , Transdução de Sinais , Inflamação/metabolismo
19.
Anal Chem ; 96(11): 4487-4494, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451469

RESUMO

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Assuntos
Carbocianinas , DNA Catalítico , Guanina/análogos & derivados , Pontos Quânticos , Humanos , DNA Catalítico/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Desmetilação
20.
ACS Nano ; 18(11): 8437-8451, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501308

RESUMO

Molecular imaging in the second near-infrared window (NIR-II) provides high-fidelity visualization of biopathological events in deep tissue. However, most NIR-II probes produce "always-on" output and demonstrate poor signal specificity toward biomarkers. Herein, we report a series of hemicyanine reporters (HBCs) with tunable emission to NIR-II window (715-1188 nm) and structurally amenable to constructing activatable probes. Such manipulation of emission wavelengths relies on rational molecular engineering by integrating benz[c,d]indolium, benzo[b]xanthonium, and thiophene moieties to a conventional hemicyanine skeleton. In particular, HBC4 and HBC5 possess bright and record long emission over 1050 nm, enabling improved tissue penetration depth and superior signal to background ratio for intestinal tract mapping than NIR-I fluorophore HC1. An activatable inflammatory reporter (AIR-PE) is further constructed for pH-triggered site-specific release in colon. Due to minimized background interference, oral gavage of AIR-PE allows clear delineation of irritated intestines and assessment of therapeutic responses in a mouse model of inflammatory bowel disease (IBD) through real-time NIRF-II imaging. Benefiting from its high fecal clearance efficiency (>90%), AIR-PE can also detect IBD and evaluate the effectiveness of colitis treatments via in vitro optical fecalysis, which outperforms typical clinical assays including fecal occult blood testing and histological examination. This study thus presents NIR-II molecular scaffolds that are not only applicable to developing versatile activatable probes for early diagnosis and prognostic monitoring of deeply seated diseases but also hold promise for future clinical translations.


Assuntos
Carbocianinas , Doenças Inflamatórias Intestinais , Imagem Óptica , Animais , Camundongos , Prognóstico , Imagem Óptica/métodos , Corantes Fluorescentes , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Diagnóstico Precoce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA