Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.558
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003041

RESUMO

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Assuntos
Carbono , Carvão Vegetal , Ferro , Oxirredução , Ferro/química , Carvão Vegetal/química , Carbono/química , Poluentes Químicos da Água/química
2.
J Environ Sci (China) ; 147: 268-281, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003046

RESUMO

The study of microbial hydrocarbons removal is of great importance for the development of future bioremediation strategies. In this study, we evaluated the removal of a gaseous mixture containing toluene, m-xylene, ethylbenzene, cyclohexane, butane, pentane, hexane and heptane in aerated stirred bioreactors inoculated with Rhodococcus erythropolis and operated under non-sterile conditions. For the real-time measurement of hydrocarbons, a novel systematic approach was implemented using Selected-Ion Flow Tube Mass Spectrometry (SIFT-MS). The effect of the carbon source (∼9.5 ppmv) on (i) the bioreactors' performance (BR1: dosed with only cyclohexane as a single hydrocarbon versus BR2: dosed with a mixture of the 8 hydrocarbons) and (ii) the evolution of microbial communities over time were investigated. The results showed that cyclohexane reached a maximum removal efficiency (RE) of 53% ± 4% in BR1. In BR2, almost complete removal of toluene, m-xylene and ethylbenzene, being the most water-soluble and easy-to-degrade carbon sources, was observed. REs below 32% were obtained for the remaining compounds. By exposing the microbial consortium to only the five most recalcitrant hydrocarbons, REs between 45% ± 5% and 98% ± 1% were reached. In addition, we observed that airborne microorganisms populated the bioreactors and that the type of carbon source influenced the microbial communities developed. The abundance of species belonging to the genus Rhodococcus was below 10% in all bioreactors at the end of the experiments. This work provides fundamental insights to understand the complex behavior of gaseous hydrocarbon mixtures in bioreactors, along with a systematic approach for the development of SIFT-MS methods.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Hidrocarbonetos , Rhodococcus , Rhodococcus/metabolismo , Reatores Biológicos/microbiologia , Hidrocarbonetos/metabolismo , Carbono/metabolismo , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/análise , Espectrometria de Massas , Tolueno/metabolismo , Xilenos/metabolismo , Butanos/metabolismo , Derivados de Benzeno , Pentanos
3.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003065

RESUMO

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Assuntos
Antibacterianos , Gado , Esterco , Microbiologia do Solo , Animais , Solo/química , Sequestro de Carbono , Carbono/metabolismo , Fósforo , Reciclagem , Poluentes do Solo/metabolismo , Bovinos , Suínos , Nitrogênio/análise , Oxitetraciclina
4.
J Environ Sci (China) ; 148: 1-12, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095148

RESUMO

In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso­tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.


Assuntos
Carbono , Corantes Fluorescentes , Mercúrio , Pontos Quânticos , Poluentes Químicos da Água , Mercúrio/análise , Carbono/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Pontos Quânticos/química , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Fluorescência
5.
J Environ Sci (China) ; 148: 139-150, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095153

RESUMO

Herein, a modified screen printed carbon electrode (SPCE) based on a composite material, graphene oxide-gold nanoparticles (GO-AuNPs), and poly(3-aminobenzoic acid)(P3ABA) for the detection of paraquat (PQ) is introduced. The modified electrode was fabricated by drop casting of the GO-AuNPs, followed by electropolymerization of 3-aminobenzoic acid to achieve SPCE/GO-AuNPs/P3ABA. The morphology and microstructural characteristics of the modified electrodes were revealed by scanning electron microscopy (SEM) for each step of modification. The composite GO-AuNPs can provide high surface area and enhance electroconductivity of the electrode. In addition, the presence of negatively charged P3ABA notably improved PQ adsorption and electron transfer rate, which stimulate redox reaction on the modified electrode, thus improving the sensitivity of PQ analysis. The SPCE/GO-AuNPs/P3ABA offered a wide linear range of PQ determination (10-9-10-4 mol/L) and low limit of detection (LOD) of 0.45 × 10-9 mol/L or 0.116 µg/L, which is far below international safety regulations. The modified electrode showed minimum interference effect with percent recovery ranging from 96.5% to 116.1% after addition of other herbicides, pesticides, metal ions, and additives. The stability of the SPCE/GO-AuNPs/P3ABA was evaluated, and the results indicated negligible changes in the detection signal over 9 weeks. Moreover, this modified electrode was successfully implemented for PQ analysis in both natural and tapped water with high accuracy.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Nanopartículas Metálicas , Paraquat , Grafite/química , Paraquat/análise , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Carbono/química , Poluentes Químicos da Água/análise , Herbicidas/análise
6.
J Environ Sci (China) ; 148: 321-335, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095168

RESUMO

Sewage sludge in cities of Yangzi River Belt, China, generally exhibits a lower organic content and higher silt contentdue to leakage of drainage system, which caused low bioenergy recovery and carbon emission benefits in conventional anaerobic digestion (CAD). Therefore, this paper is on a pilot scale, a bio-thermophilic pretreatment anaerobic digestion (BTPAD) for low organic sludge (volatile solids (VS) of 4%) was operated with a long-term continuous flow of 200 days. The VS degradation rate and CH4 yield of BTPAD increased by 19.93% and 53.33%, respectively, compared to those of CAD. The analysis of organic compositions in sludge revealed that BTPAD mainly improved the hydrolysis of proteins in sludge. Further analysis of microbial community proportions by high-throughput sequencing revealed that the short-term bio-thermophilic pretreatment was enriched in Clostridiales, Coprothermobacter and Gelria, was capable of hydrolyzing acidified proteins, and provided more volatile fatty acid (VFA) for the subsequent reaction. Biome combined with fluorescence quantitative polymerase chain reaction (PCR) analysis showed that the number of bacteria with high methanogenic capacity in BTPAD was much higher than that in CAD during the medium temperature digestion stage, indicating that short-term bio-thermophilic pretreatment could provide better methanogenic conditions for BTPAD. Furthermore, the greenhouse gas emission footprint analysis showed that short-term bio-thermophilic pretreatment could reduce the carbon emission of sludge anaerobic digestion system by 19.18%.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Reatores Biológicos/microbiologia , Metano/metabolismo , Metano/análise , Carbono/metabolismo , Carbono/análise , China , Biocombustíveis
7.
J Environ Sci (China) ; 149: 254-267, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181640

RESUMO

As a new electrochemical technology, capacitive deionization (CDI) has been increasingly applied in environmental water treatment and seawater desalination. In this study, functional groups modified porous hollow carbon (HC) were synthesized as CDI electrode material for removing Na+ and Cl- in salty water. Results showed that the average diameter of HC was approximately 180 nm, and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups, respectively. The sulfonic acid functionalized HC (HC-S) showed better electrochemical and desalting performance than the amino-functionalized HC (HCN), with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl. Additionally, 92.63% capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S. The main findings prove that HC-S is viable as an electrode material for desalination by high-performance CDI applications.


Assuntos
Carbono , Eletrodos , Purificação da Água , Purificação da Água/métodos , Carbono/química , Porosidade , Adsorção , Água do Mar/química , Salinidade , Cloreto de Sódio/química
8.
J Environ Sci (China) ; 149: 358-373, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181649

RESUMO

Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide. Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem. Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables. In this study, we propose a machine learning algorithm for carbon emissions, a Bayesian optimized XGboost regression model, using multi-year energy carbon emission data and nighttime lights (NTL) remote sensing data from Shaanxi Province, China. Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models, with an R2 of 0.906 and RMSE of 5.687. We observe an annual increase in carbon emissions, with high-emission counties primarily concentrated in northern and central Shaanxi Province, displaying a shift from discrete, sporadic points to contiguous, extended spatial distribution. Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns, with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering. Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissions more accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment. This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.


Assuntos
Algoritmos , Monitoramento Ambiental , Aprendizado de Máquina , China , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Carbono/análise , Teorema de Bayes , Tecnologia de Sensoriamento Remoto , Poluição do Ar/estatística & dados numéricos , Poluição do Ar/análise
9.
J Environ Sci (China) ; 149: 524-534, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181664

RESUMO

Carbonaceous aerosol, including organic carbon (OC) and elemental carbon (EC), has significant influence on human health, air quality and climate change. Accurate measurement of carbonaceous aerosol is essential to reduce the uncertainty of radiative forcing estimation and source apportionment. The accurate separation of OC and EC is controversial due to the charring of OC. Therefore, the development of reference materials (RM) for the validation of OC/EC separation is an important basis for further study. Previous RMs were mainly based on ambient air sampling, which could not provide traceability of OC and EC concentration. To develop traceable RMs with known OC/EC contents, our study applied an improved aerosol generation and mixing technique, providing uniform deposition of particles on quartz filters. To generate OC aerosol with similar pyrolytic property of ambient aerosol, both water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC) were used, and amorphous carbon was selected for EC surrogate. The RMs were analyzed using different protocols. The homogeneity within the filter was validated, reaching below 2%. The long-term stability of RMs has been validated with RSD ranged from 1.7%-3.2%. Good correlation was observed between nominal concentration of RMs with measured concentration by two protocols, while the difference of EC concentration was within 20%. The results indicated that the newly developed RMs were acceptable for the calibration of OC and EC, which could improve the accuracy of carbonaceous aerosol measurement. Moreover, the laboratory-generated EC-RMs could be suitable for the calibration of equivalent BC concentration by Aethalometers.


Assuntos
Aerossóis , Poluentes Atmosféricos , Carbono , Monitoramento Ambiental , Carbono/análise , Aerossóis/análise , Monitoramento Ambiental/métodos , Calibragem , Poluentes Atmosféricos/análise
10.
PLoS One ; 19(8): e0306128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088465

RESUMO

Current strategies to hold surface warming below a certain level, e. g., 1.5 or 2°C, advocate limiting total anthropogenic cumulative carbon emissions to ∼0.9 or ∼1.25 Eg C (1018 grams carbon), respectively. These allowable emission budgets are based on a near-linear relationship between cumulative emissions and warming identified in various modeling efforts. The IPCC assesses this near-linear relationship with high confidence in its Summary for Policymakers (§D1.1 and Figure SPM.10). Here we test this proportionality in specially designed simulations with a latest-generation Earth system model (ESM) that includes an interactive carbon cycle with updated terrestrial ecosystem processes, and a suite of CMIP simulations (ZecMIP, ScenarioMIP). We find that atmospheric CO2 concentrations can differ by ∼100 ppmv and surface warming by ∼0.31°C (0.46°C over land) for the same cumulated emissions (≈1.2 Eg C, approximate carbon budget for 2°C target). CO2 concentration and warming per 1 Eg of emitted carbon (Transient Climate Response to Cumulative Carbon Emissions; TCRE) depend not just on total emissions, but also on the timing of emissions, which heretofore have been mainly overlooked. A decomposition of TCRE reveals that oceanic heat uptake is compensating for some, but not all, of the pathway dependence induced by the carbon cycle response. The time dependency clearly arises due to lagged carbon sequestration processes in the oceans and specifically on land, viz., ecological succession, land-cover, and demographic changes, etc., which are still poorly represented in most ESMs. This implies a temporally evolving state of the carbon system, but one which surprisingly apportions carbon into land and ocean sinks in a manner that is independent of the emission pathway. Therefore, even though TCRE differs for different pathways with the same total emissions, it is roughly constant when related to the state of the carbon system, i. e., the amount of carbon stored in surface sinks. While this study does not fundamentally invalidate the established TCRE concept, it does uncover additional uncertainties tied to the carbon system state. Thus, efforts to better understand this state dependency with observations and refined models are needed to accurately project the impact of future emissions.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Dióxido de Carbono/análise , Ecossistema , Carbono/análise , Aquecimento Global , Atmosfera/química , Modelos Climáticos
11.
PLoS One ; 19(8): e0306567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39088477

RESUMO

Winter wheat (Triticum aestivum, L.) production in the semi-arid US Northern High Plains (NHP) is challenged by frequent droughts and water-limited, low fertility soils. Composted cattle manure (compost) and cover crops (CC) are known to provide agroecosystem services such as improved soil health, and in the CC case, increased plant diversity, and competition with weedy species. The main concern of planting CC in winter wheat fallow rotation in regions that are more productive than the NHP, however, is the soil moisture depletion. It is unknown however, whether addition of CC to compost-amended soils in the NHP will improve soil properties and agroecosystem health without compromising already low soil water content. The main objective of this study was to assess the effects of four CC treatments amended with compost (45 Mg ha-1) or inorganic fertilizer (IF) (.09 Mg ha-1 mono-ammonium phosphate, 11-52-0 and 1.2 Mg ha-1ammonium sulfate, 21-0-0) on the presence of weeds, soil and plant total carbon (C), nitrogen (N), and biological dinitrogen (N2) fixation (BNF). Mycorrhizal Mix (MM), Nitrogen Fixer Mix (NF), Soil Building Mix (SB), a monoculture of phacelia (Phacelia tanacetifolia Benth L.) (PH), and a no CC control (no CC) were grown in native soil kept at 7% soil moisture in a greenhouse for a period of nine weeks. When amended with compost, MM was the most beneficial (48 g m-2 BNF and 1.7% soil C increase). SB had the highest germination, aboveground biomass, and decreased weed biomass by 60%. It also demonstrated the second highest amount of BNF (40 g m-2) and soil C increase by 1.5%. On contrary, IF hindered BNF by almost 70% in all legume-containing CC treatments and reduced soil C by 15%.


Assuntos
Produtos Agrícolas , Fertilizantes , Solo , Triticum , Solo/química , Produtos Agrícolas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Esterco , Animais , Ecossistema , Carbono/análise , Carbono/metabolismo , Agricultura/métodos , Bovinos , Plantas Daninhas/crescimento & desenvolvimento , Micorrizas/fisiologia
12.
Glob Chang Biol ; 30(8): e17453, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39099457

RESUMO

Soil organic carbon (SOC) accrual, and particularly the formation of fine fraction carbon (OCfine), has a large potential to act as sink for atmospheric CO2. For reliable estimates of this potential and efficient policy advice, the major limiting factors for OCfine accrual need to be understood. The upper boundary of the correlation between fine mineral particles (silt + clay) and OCfine is widely used to estimate the maximum mineralogical capacity of soils to store OCfine, suggesting that mineral surfaces get C saturated. Using a dataset covering the temperate zone and partly other climates on OCfine contents and a SOC turnover model, we provide two independent lines of evidence, that this empirical upper boundary does not indicate C saturation. Firstly, the C loading of the silt + clay fraction was found to strongly exceed previous saturation estimates in coarse-textured soils, which raises the question of why this is not observed in fine-textured soils. Secondly, a subsequent modelling exercise revealed, that for 74% of all investigated soils, local net primary production (NPP) would not be sufficient to reach a C loading of 80 g C kg-1 silt + clay, which was previously assumed to be a general C saturation point. The proportion of soils with potentially enough NPP to reach that point decreased strongly with increasing silt + clay content. High C loadings can thus hardly be reached in more fine-textured soils, even if all NPP would be available as C input. As a pragmatic approach, we introduced texture-dependent, empirical maximum C loadings of the fine fraction, that decreased from 160 g kg-1 in coarse to 75 g kg-1 in most fine-textured soils. We conclude that OCfine accrual in soils is mainly limited by C inputs and is strongly modulated by texture, mineralogy, climate and other site properties, which could be formulated as an ecosystem capacity to stabilise SOC.


Assuntos
Carbono , Ecossistema , Solo , Solo/química , Carbono/análise , Sequestro de Carbono , Modelos Teóricos
13.
BMC Genom Data ; 25(1): 74, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090581

RESUMO

Trait heritability and the response to selection depend on genetic variation, a prerequisite to developing sorghum varieties with desirable agronomic traits and high carbon sequestration for sustainable crop production and soil health. The present study aimed to assess the extent of genetic variability and associations among agronomic and carbon storage traits in selected sorghum genotypes to identify the best candidates for production or breeding. Fifty genotypes were evaluated at Ukulinga, Bethlehem and Silverton sites in South Africa during the 2022/23 growing season. The following agronomic and carbon storage traits were collected: days to 50% heading (DTH), days to 50% maturity (DTM), plant height (PH), total plant biomass (PB), shoot biomass (SB), root biomass (RB), root-to-shoot biomass ratio (RS), grain yield (GY), harvest index (HI), shoot carbon content (SCc), root carbon content (RCc), grain carbon content (GCc), total plant carbon stock (PCs), shoot carbon stock (SCs), root carbon stock (RCs), and root-to-shoot carbon stock ratio (RCs/SCs), and grain carbon stock (GCs). Higher genotypic coefficient of variations (GCVs) were recorded for GY at 45.92%, RB (39.24%), RCs/SCs (38.45), and RCs (34.62). Higher phenotypic coefficient of variations (PCVs) were recorded for PH (68.91%), followed by GY (51.8%), RB (50.51%), RS (41.96%), RCs/SCs (44.90%), and GCs (41.90%). High broad-sense heritability and genetic advance were recorded for HI (83.76 and 24.53%), GY (78.59 and 9.98%), PB (74.14 and 13.18%) and PCs (53.63 and 37.57%), respectively, suggesting a marked genetic contribution to the traits. Grain yield exhibited positive association with HI (r = 0.76; r = 0.79), DTH (r = 0.13; r = 0.31), PH (r = 0.1; r = 0.27), PB (r = 0.01; r = 0.02), RB (r = 0.05; r = 0.06) based on genotypic and phenotypic correlations, respectively. Further, the path analysis revealed significant positive direct effects of SB (0.607) and RB (0.456) on GY. The RS exerted a positive and significant indirect effect (0.229) on grain yield through SB. The study revealed that PB, SB, RB, RS, RCs, and RCs/SCs are the principal traits when selecting sorghum genotypes with high yield and carbon storage capacity.


Assuntos
Carbono , Variação Genética , Genótipo , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Variação Genética/genética , Carbono/metabolismo , Biomassa , Fenótipo , Grão Comestível/genética , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
14.
PLoS One ; 19(8): e0307774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093909

RESUMO

Raising attentions have focused on how to alleviate greenhouse gas (GHG) emissions from orchard system while simultaneously increase fruit production. Microalgae-based biofertilizer represents a promising resource for improving soil fertility and higher productivity. However, the effects of microalgae application more especially live microalgae on GHG emissions are understudied. In this study, fruit yield and quality, GHG emissions, as well as soil organic carbon and nitrogen fractions were examined in a hawthorn orchard, under the effects of live microalgae-based biofertilizer applied at three doses and two modes. Compared with conventional fertilization, microalgae improved hawthorn yield by 15.7%-29.6% with a maximal increment at medium dose by root application, and significantly increased soluble and reducing sugars contents at high dose. While microalgae did not increase GHG emissions except for nitrous oxide at high dose by root application, instead it significantly increased methane uptake by 1.5-2.3 times in root application. In addition, microalgae showed an increasing trend in soil organic carbon content, and significantly increased the contents of soil dissolved organic carbon and microbial biomass carbon, as well as soil ammonium nitrogen and dissolved organic nitrogen at medium dose with root application. Overall, the results indicated that the live microalgae could be used as a green biofertilizer for improving fruit yield without increasing GHG emissions intensity and the comprehensive greenhouse effect, in particular at medium dose with root application. We presume that if lowering chemical fertilizer rates, application of the live microalgae-based biofertilizer may help to reduce nitrous oxide emissions without compromising fruit yield and quality.


Assuntos
Crataegus , Fertilizantes , Frutas , Gases de Efeito Estufa , Microalgas , Nitrogênio , Solo , Fertilizantes/análise , Gases de Efeito Estufa/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Solo/química , Nitrogênio/análise , Nitrogênio/metabolismo , Crataegus/crescimento & desenvolvimento , Carbono/análise , Carbono/metabolismo , Biomassa , Metano/análise , Metano/metabolismo , Óxido Nitroso/análise , Óxido Nitroso/metabolismo
15.
Luminescence ; 39(8): e4848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092486

RESUMO

Herein, luminous blue carbon quantum dots (CDs) employing Anisomeles indica (Catmint) were reported with imaging, self-targeting, and therapeutic effects on triple-negative breast cancer (TNBC, MDA-MB-231) cells. The salient features of CDs generated from catmint are as follows: i) optical studies confirm CDs with excitation-dependent emission; ii) high-throughput characterization authenticates the formation of CDs with near-spherical shape with diameter ranging between 5 and 15 nm; iii) CDs induce cytotoxicity (3.22 ± 0.64 µg/ml) in triple-negative breast cancer (TNBC, MDA-MB-231) cells; iv) fluorescence microscopy demonstrates that CDs promote apoptosis by increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential; v) CDs significantly up-regulate pro-apoptotic gene expression levels such as caspases-8/9/3. Finally, our work demonstrates that catmint-derived CDs are prospective nanotheranostics that augment cancer targeting and imaging.


Assuntos
Apoptose , Carbono , Pontos Quânticos , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Pontos Quânticos/química , Humanos , Apoptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Carbono/química , Carbono/farmacologia , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Lamiaceae/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química
16.
Glob Chang Biol ; 30(8): e17432, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092542

RESUMO

How terrestrial ecosystems will accumulate carbon as the climate continues to change is a major source of uncertainty in projections of future climate. Under growth-stimulating environmental change, time lags inherent in population and community dynamic processes have been posed to dampen, or alternatively amplify, short-term carbon gain in terrestrial vegetation, but these outcomes can be difficult to predict. To theoretically frame this problem, we developed a simple model of vegetation dynamics that identifies the stage-structured demographic and competitive processes that could govern the timescales of carbon storage and loss. We show that demographic lags associated with growth-stimulating environmental change can allow a rapid increase in population-level carbon storage that is lost back to the atmosphere in later years. However, this transient carbon storage only emerges when environmental change increases the transition of adult individuals into a larger size class that suffers markedly higher mortality. Otherwise, demographic lags simply slow carbon accumulation. Counterintuitively, an analogous tradeoff between maximum adult size and survivorship in two-species models, coupled with environmental change-driven replacement, does not generate the transient carbon gain seen in the single-species models. Instead lags in competitive replacement slow the approach to the eventual carbon trajectory. Together, our results suggest that time lags inherent in demographic and compositional turnover tend to slow carbon accumulation in systems responding to growth-stimulating environmental change. Only under specific conditions will lagged demographic processes in such systems drive transient carbon accumulation, conditions that investigators can examine in nature to help project future carbon trajectories.


Assuntos
Mudança Climática , Ecossistema , Carbono/metabolismo , Carbono/análise , Plantas/metabolismo , Sequestro de Carbono , Modelos Biológicos , Dinâmica Populacional , Modelos Teóricos , Ciclo do Carbono
17.
BMC Genomics ; 25(1): 763, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107700

RESUMO

Edible fungi cultivation serves as an efficient biological approach to transforming agroforestry byproducts, particularly Korshinsk peashrub (KP) branches into valuable mushroom (Lentinus edodes) products. Despite the widespread use of KP, the molecular mechanisms underlying its regulation of mushroom development remain largely unknown. In this study, we conducted a combined analysis of transcriptome and metabolism of mushroom fruiting bodies cultivated on KP substrates compared to those on apple wood sawdust (AWS) substrate. Our aim was to identify key metabolic pathways and genes that respond to the effects of KP substrates on mushrooms. The results revealed that KP induced at least a 1.5-fold increase in protein and fat content relative to AWS, with 15% increase in polysaccharide and total sugar content in mushroom fruiting bodies. There are 1196 differentially expressed genes (DEGs) between mushrooms treated with KP relative to AWS. Bioinformatic analysis show significant enrichments in amino acid metabolic process, oxidase activity, malic enzyme activity and carbon metabolism among the 698 up-regulated DEGs induced by KP against AWS. Additionally, pathways associated with organic acid transport and methane metabolism were significantly enriched among the 498 down-regulated DEGs. Metabolomic analysis identified 439 differentially abundant metabolites (DAMs) in mushrooms treated with KP compared to AWS. Consistent with the transcriptome data, KEGG analysis on metabolomic dataset suggested significant enrichments in carbon metabolism, alanine, aspartate and glutamate metabolism among the up-regulated DAMs by KP. In particular, some DAMs were enhanced by 1.5-fold, including D-glutamine, L-glutamate, glucose and pyruvate in mushroom samples treated with KP relative to AWS. Targeted metabolomic analysis confirmed the contents of DAMs related to glutamate metabolism and energy metabolism. In conclusion, our findings suggest that reprogrammed carbon metabolism and oxidoreductase pathways act critical roles in the enhanced response of mushroom to KP substrates.


Assuntos
Carbono , Transcriptoma , Carbono/metabolismo , Oxirredutases/metabolismo , Oxirredutases/genética , Redes e Vias Metabólicas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Agaricales/genética , Agaricales/metabolismo , Cogumelos Shiitake/metabolismo , Cogumelos Shiitake/genética , Carpóforos/metabolismo , Carpóforos/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
18.
PLoS One ; 19(8): e0308562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110718

RESUMO

On Arctic shelves, benthic food-webs are tightly linked to overlying primary production. In the seasonal ice zone, sympagic (ice-associated) primary production can be a major source of carbon for the benthos on productive inflow shelves. However, the role of sympagic organic matter is less well-understood in food webs of heavily ice-covered, less- productive outflow shelves, such as the northeast Greenland shelf. Highly branched isoprenoid biomarkers (HBIs) were used to track the relative distribution of sympagic and pelagic organic matter in the water column, sediments, and benthic fauna of the northeast Greenland shelf and fjords. Low pelagic HBI presence throughout the study area indicated a generally low production by pelagic diatoms (at the time of sampling). This was reflected in the benthos, as ~90% of their assimilated carbon was estimated to come from sympagic sources, indicating a benthic food-web highly reliant on sympagic production. This reliance was higher in coastal areas than on the open shelf, where the potentially higher pelagic productivity and shallower water on banks likely increased contributions of pelagic organic matter. As declining ice cover and reduced production of fast-sinking ice algae projected for Arctic shelves will likely result in weaker coupling between ice algae and the benthos, with possible consequences for future benthic-community structure and function.


Assuntos
Cadeia Alimentar , Regiões Árticas , Camada de Gelo , Diatomáceas/metabolismo , Groenlândia , Sedimentos Geológicos , Animais , Biomarcadores/metabolismo , Carbono/metabolismo
19.
Physiol Plant ; 176(4): e14463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113602

RESUMO

The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal. When Rubisco purified from five C3 species was bound to magnesium rather than manganese, the specificity for CO2 over O2, (Sc/o) increased by 25% and the ratio of the maximum velocities of carboxylation / oxygenation (Vcmax/Vomax) increased by 39%. For the recombinant plastidial malic enzyme, the forward reaction (malate decarboxylation) was 30% slower and the reverse reaction (pyruvate carboxylation) was three times faster when bound to manganese rather than magnesium. Adding 6-phosphoglycerate and NADP+ inhibited carboxylation and oxygenation when Rubisco was bound to magnesium and stimulated oxygenation when it was bound to manganese. Conditions that favored RuBP oxygenation stimulated Rubisco to convert as much as 15% of the total RuBP consumed into pyruvate. These results are consistent with a stromal biochemical pathway in which (1) Rubisco when associated with manganese converts a substantial amount of RuBP into pyruvate, (2) malic enzyme when associated with manganese carboxylates a substantial portion of this pyruvate into malate, and (3) chloroplasts export additional malate into the cytoplasm where it generates NADH for assimilating nitrate into amino acids. Thus, plants may regulate the activities of magnesium and manganese in leaves to balance organic carbon and organic nitrogen as atmospheric CO2 fluctuates.


Assuntos
Cloroplastos , Ribulose-Bifosfato Carboxilase , Cloroplastos/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ligantes , Dióxido de Carbono/metabolismo , Manganês/metabolismo , Ciclo do Carbono , Oxigênio/metabolismo , Fotossíntese/fisiologia , Magnésio/metabolismo , Metais/metabolismo , Cinética , Carbono/metabolismo , Malatos/metabolismo , Malato Desidrogenase/metabolismo
20.
J Biomed Mater Res B Appl Biomater ; 112(8): e35463, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39115314

RESUMO

Secondary healing of fractured bones requires an application of an appropriate fixator. In general, steel or titanium devices are used mostly. However, in recent years, composite structures arise as an attractive alternative due to high strength to weight ratio and other advantages like, for example, radiolucency. According to Food and Drug Administration (FDA), the only unidirectionally reinforced composite allowed to be implanted in human bodies is carbon fiber (CF)-reinforced poly-ether-ether-ketone (PEEK). In this work, the healing process of long bone assembled with CF/PEEK plates with cross- and angle-ply lay-up configurations is studied in the framework of finite element method. The healing is simulated by making use of the mechanoregulation model basing on the Prendergast theory. Cells transformation is determined by the octahedral shear strain and interstitial fluid velocity. The process runs iteratively assuming single load cycle each day. The fracture is subjected to axial and transverse forces. In the computations, the Abaqus program is used. It is shown that the angle-ply lamination scheme of CF/PEEK composite seems to provide better conditions for the transformation of the soft callus into the bone tissue.


Assuntos
Benzofenonas , Placas Ósseas , Fibra de Carbono , Consolidação da Fratura , Cetonas , Polietilenoglicóis , Polímeros , Cetonas/química , Fibra de Carbono/química , Polietilenoglicóis/química , Polímeros/química , Humanos , Carbono/química , Fraturas Ósseas , Análise de Elementos Finitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA