Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.387
Filtrar
1.
J Transl Med ; 22(1): 485, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773518

RESUMO

BACKGROUND: The maintenance of mitochondrial homeostasis is critical for tumor initiation and malignant progression because it increases tumor cell survival and growth. The molecular events controlling mitochondrial integrity that facilitate the development of hepatocellular carcinoma (HCC) remain unclear. Here, we report that UBX domain-containing protein 1 (UBXN1) hyperactivation is essential for mitochondrial homeostasis and liver tumorigenesis. METHODS: Oncogene-induced mouse liver tumor models were generated with the Sleeping Beauty (SB) transposon delivery system. Assessment of HCC cell growth in vivo and in vitro, including tumour formation, colony formation, TUNEL and FACS assays, was conducted to determine the effects of UBXN1 on HCC cells, as well as the involvement of the UBXN1-prohibitin (PHB) interaction in mitochondrial function. Coimmunoprecipitation (Co-IP) was used to assess the interaction between UBXN1 and PHB. Liver hepatocellular carcinoma (LIHC) datasets and HCC patient samples were used to assess the expression of UBXN1. RESULTS: UBXN1 expression is commonly upregulated in human HCCs and mouse liver tumors and is associated with poor overall survival in HCC patients. UBXN1 facilitates the growth of human HCC cells and promotes mouse liver tumorigenesis driven by the NRas/c-Myc or c-Myc/shp53 combination. UBXN1 interacts with the inner mitochondrial membrane protein PHB and sustains PHB expression. UBXN1 inhibition triggers mitochondrial damage and liver tumor cell apoptosis. CONCLUSIONS: UBXN1 interacts with PHB and promotes mitochondrial homeostasis during liver tumorigenesis.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Homeostase , Neoplasias Hepáticas , Mitocôndrias , Proibitinas , Animais , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Mitocôndrias/metabolismo , Carcinogênese/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proliferação de Células , Camundongos , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Apoptose
2.
Theranostics ; 14(7): 2835-2855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38773970

RESUMO

Rationale: The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL). Here, we used the CRISPR/Cas9 library screening technique to detect TMZ-related gene targets that might play roles in acquiring drug resistance, using overexpressed KRAS-G12C mutant GBM cell lines. The study identified a key therapeutic strategy to address the chemoresistance against the MES subtype of GBM. Methods: The CRISPR-Cas9 library screening was used to discover genes associated with TMZ resistance in the U87-KRAS (U87-MG which is overexpressed KRAS-G12C mutant) cells. The patient-derived GBM primary cell line TBD0220 was used for experimental validations in vivo and in vitro. Chromatin isolation by RNA purification (ChIRP) and chromatin immunoprecipitation (ChIP) assays were used to elucidate the silencing mechanism of tumor suppressor genes in the MES-GBM subtype. The small-molecule inhibitor EPIC-0412 was obtained through high-throughput screening. Transmission electron microscopy (TEM) was used to characterize the exosomes (Exos) secreted by GBM cells after TMZ treatment. Blood-derived Exos-based targeted delivery of siRNA, TMZ, and EPIC-0412 was optimized to tailor personalized therapy in vivo. Results: Using the genome-wide CRISPR-Cas9 library screening, we found that the ERBIN gene could be epigenetically regulated in the U87-KRAS cells. ERBIN overexpression inhibited the RAS signaling and downstream proliferation and invasion effects of GBM tumor cells. EPIC-0412 treatment inhibited tumor proliferation and EMT progression by upregulating the ERBIN expression both in vitro and in vivo. Genome-wide CRISPR-Cas9 screening also identified RASGRP1(Ras guanine nucleotide-releasing protein 1) and VPS28(Vacuolar protein sorting-associated protein 28) genes as synthetically lethal in response to TMZ treatment in the U87-KRAS cells. We found that RASGRP1 activated the RAS-mediated DDR pathway by promoting the RAS-GTP transformation. VPS28 promoted the Exos secretion and decreased intracellular TMZ concentration in GBM cells. The targeted Exos delivery system encapsulating drugs and siRNAs together showed a powerful therapeutic effect against GBM in vivo. Conclusions: We demonstrate a new mechanism by which ERBIN is epigenetically silenced by the RAS signaling in the MES subtype of GBM. Restoration of the ERBIN expression with EPIC-0412 significantly inhibits the RAS signaling downstream. RASGRP1 and VPS28 genes are associated with the promotion of TMZ resistance through RAS-GDP to RAS-GTP transformation and TMZ efflux, as well. A quadruple combination therapy based on a targeted Exos delivery system demonstrated significantly reduced tumor burden in vivo. Therefore, our study provides new insights and therapeutic approaches for regulating tumor progression and TMZ resistance in the MES-GBM subtype.


Assuntos
Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos , Exossomos , Glioblastoma , Temozolomida , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Animais , Exossomos/metabolismo , Exossomos/genética , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Carcinogênese/genética , Carcinogênese/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Med Sci ; 21(6): 1176-1186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774752

RESUMO

Background: To uncover the potential significance of JAK-STAT-SOCS1 axis in penile cancer, our study was the pioneer in exploring the altered expression processes of JAK-STAT-SOCS1 axis in tumorigenesis, malignant progression and lymphatic metastasis of penile cancer. Methods: In current study, the comprehensive analysis of JAK-STAT-SOCS1 axis in penile cancer was analyzed via multiple analysis approaches based on GSE196978 data, single-cell data (6 cancer samples) and bulk RNA data (7 cancer samples and 7 metastasis lymph nodes). Results: Our study observed an altered molecular expression of JAK-STAT-SOCS1 axis during three different stages of penile cancer, from tumorigenesis to malignant progression to lymphatic metastasis. STAT4 was an important dominant molecule in penile cancer, which mediated the immunosuppressive tumor microenvironment by driving the apoptosis of cytotoxic T cell and was also a valuable biomarker of immune checkpoint inhibitor treatment response. Conclusions: Our findings revealed that the complexity of JAK-STAT-SOCS1 axis and the predominant role of STAT4 in penile cancer, which can mediate tumorigenesis, malignant progression, and lymphatic metastasis. This insight provided valuable information for developing precise treatment strategies for patients with penile cancer.


Assuntos
Progressão da Doença , Janus Quinases , Metástase Linfática , Neoplasias Penianas , Fator de Transcrição STAT4 , Proteína 1 Supressora da Sinalização de Citocina , Humanos , Masculino , Neoplasias Penianas/patologia , Neoplasias Penianas/genética , Neoplasias Penianas/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Metástase Linfática/patologia , Metástase Linfática/genética , Janus Quinases/metabolismo , Fator de Transcrição STAT4/metabolismo , Fator de Transcrição STAT4/genética , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Carcinogênese/patologia , Transdução de Sinais , Microambiente Tumoral/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia
4.
Front Immunol ; 15: 1310376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720887

RESUMO

Introduction: Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods: We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results: We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion: Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.


Assuntos
Neoplasias Hipofaríngeas , Análise de Célula Única , Microambiente Tumoral , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patologia , Neoplasias Hipofaríngeas/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Carcinogênese/genética , Análise de Sequência de RNA , Transcriptoma , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Regulação Neoplásica da Expressão Gênica , Masculino
5.
Cell Mol Life Sci ; 81(1): 214, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733529

RESUMO

The non-coding RNAs comprise a large part of human genome lack of capacity in encoding functional proteins. Among various members of non-coding RNAs, the circular RNAs (circRNAs) have been of importance in the pathogenesis of human diseases, especially cancer. The circRNAs have a unique closed loop structure and due to their stability, they are potential diagnostic and prognostic factors in cancer. The increasing evidences have highlighted the role of circRNAs in the modulation of proliferation and metastasis of cancer cells. On the other hand, metastasis has been responsible for up to 90% of cancer-related deaths in patients, requiring more investigation regarding the underlying mechanisms modulating this mechanism. EMT enhances metastasis and invasion of tumor cells, and can trigger resistance to therapy. The cells demonstrate dynamic changes during EMT including transformation from epithelial phenotype into mesenchymal phenotype and increase in N-cadherin and vimentin levels. The process of EMT is reversible and its reprogramming can disrupt the progression of tumor cells. The aim of current review is to understanding the interaction of circRNAs and EMT in human cancers and such interaction is beyond the regulation of cancer metastasis and can affect the response of tumor cells to chemotherapy and radiotherapy. The onco-suppressor circRNAs inhibit EMT, while the tumor-promoting circRNAs mediate EMT for acceleration of carcinogenesis. Moreover, the EMT-inducing transcription factors can be controlled by circRNAs in different human tumors.


Assuntos
Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Neoplasias , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Plasticidade Celular/genética , Animais , Regulação Neoplásica da Expressão Gênica
6.
Mol Cancer ; 23(1): 90, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711083

RESUMO

BACKGROUND: Metabolic reprogramming and epigenetic alterations contribute to the aggressiveness of pancreatic ductal adenocarcinoma (PDAC). Lactate-dependent histone modification is a new type of histone mark, which links glycolysis metabolite to the epigenetic process of lactylation. However, the role of histone lactylation in PDAC remains unclear. METHODS: The level of histone lactylation in PDAC was identified by western blot and immunohistochemistry, and its relationship with the overall survival was evaluated using a Kaplan-Meier survival plot. The participation of histone lactylation in the growth and progression of PDAC was confirmed through inhibition of histone lactylation by glycolysis inhibitors or lactate dehydrogenase A (LDHA) knockdown both in vitro and in vivo. The potential writers and erasers of histone lactylation in PDAC were identified by western blot and functional experiments. The potential target genes of H3K18 lactylation (H3K18la) were screened by CUT&Tag and RNA-seq analyses. The candidate target genes TTK protein kinase (TTK) and BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) were validated through ChIP-qPCR, RT-qPCR and western blot analyses. Next, the effects of these two genes in PDAC were confirmed by knockdown or overexpression. The interaction between TTK and LDHA was identified by Co-IP assay. RESULTS: Histone lactylation, especially H3K18la level was elevated in PDAC, and the high level of H3K18la was associated with poor prognosis. The suppression of glycolytic activity by different kinds of inhibitors or LDHA knockdown contributed to the anti-tumor effects of PDAC in vitro and in vivo. E1A binding protein p300 (P300) and histone deacetylase 2 were the potential writer and eraser of histone lactylation in PDAC cells, respectively. H3K18la was enriched at the promoters and activated the transcription of mitotic checkpoint regulators TTK and BUB1B. Interestingly, TTK and BUB1B could elevate the expression of P300 which in turn increased glycolysis. Moreover, TTK phosphorylated LDHA at tyrosine 239 (Y239) and activated LDHA, and subsequently upregulated lactate and H3K18la levels. CONCLUSIONS: The glycolysis-H3K18la-TTK/BUB1B positive feedback loop exacerbates dysfunction in PDAC. These findings delivered a new exploration and significant inter-relationship between lactate metabolic reprogramming and epigenetic regulation, which might pave the way toward novel lactylation treatment strategies in PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Regulação Neoplásica da Expressão Gênica , Glicólise , Histonas , L-Lactato Desidrogenase , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Humanos , Histonas/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Camundongos , Retroalimentação Fisiológica , Epigênese Genética , Carcinogênese/metabolismo , Carcinogênese/genética , Prognóstico , Proliferação de Células , Feminino
7.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732173

RESUMO

Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention.


Assuntos
Adenocarcinoma de Pulmão , Quinase 4 Dependente de Ciclina , RNA Helicases DEAD-box , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Animais , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/metabolismo , Regulação para Cima , Camundongos , Ciclo Celular/genética , Proliferação de Células , Camundongos Nus
8.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731846

RESUMO

Activated TGFß signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFß-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFß-responsive, stroma-specific genes to infer TGFß-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFß-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFß-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas B-raf , Células Estromais , Fator de Crescimento Transformador beta , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Mutação , Transcriptoma , Transdução de Sinais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise de Célula Única , Perfilação da Expressão Gênica , Adenoma/genética , Adenoma/patologia , Adenoma/metabolismo
9.
Cell Death Dis ; 15(5): 313, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702326

RESUMO

CD24 is overexpressed in various tumours and considered a regulator of cell migration, invasion, and proliferation. Recent studies have found that CD24 on ovarian cancer (OC) and triple-negative breast cancer cells interacts with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10) on tumour-associated macrophages (TAMs) to inhibit phagocytosis by macrophages. Because of its multiple roles in regulating the immune response and tumorigenesis, CD24 is a very promising therapeutic target. However, the regulatory mechanism of CD24 in OC remains unclear. Here, we found that the long noncoding RNA (lncRNA) IL21-AS1, which was upregulated in OC, inhibited macrophage-mediated phagocytosis and promoted OC cell proliferation and apoptosis inhibition. More importantly, after IL21-AS1 knockdown, a significant survival advantage was observed in mice engrafted with tumours. Mechanistically, we identified IL21-AS1 as a hypoxia-induced lncRNA. Moreover, IL21-AS1 increased HIF1α-induced CD24 expression under hypoxic conditions. In parallel, we found that IL21-AS1 acted as a competing endogenous RNA (ceRNA) for miR-561-5p to regulate CD24 expression. Finally, IL21-AS1 increased CD24 expression in OC and facilitated OC progression. Our findings provide a molecular basis for the regulation of CD24, thus highlighting a potential strategy for targeted treatment of OC.


Assuntos
Antígeno CD24 , Carcinogênese , Neoplasias Ovarianas , Fagocitose , RNA Longo não Codificante , Antígeno CD24/metabolismo , Antígeno CD24/genética , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fagocitose/genética , Animais , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos Nus , Apoptose/genética , Camundongos Endogâmicos BALB C , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
10.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38713636

RESUMO

Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail ("I-tail") gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.


Assuntos
Neoplasias da Mama , Receptores da Prolactina , Humanos , Receptores da Prolactina/metabolismo , Receptores da Prolactina/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas ras/metabolismo , Proteínas ras/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Prolactina/metabolismo , Prolactina/farmacologia
11.
Nat Commun ; 15(1): 4266, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769298

RESUMO

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Assuntos
Carcinogênese , Indóis , Neoplasias Hepáticas , Proteínas Proto-Oncogênicas c-myc , Triptofano , Triptofano/metabolismo , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Indóis/metabolismo , Indóis/farmacologia , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Camundongos , Carcinogênese/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Cinurenina/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Masculino
12.
Cell Death Dis ; 15(5): 354, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773094

RESUMO

Cancer cells undergo metabolic reprogramming in response to hostile microenvironments, such as energy stress; however, the underlying mechanisms remain largely unclear. It is also unknown whether energy stress-responsive circular RNA (circRNA) is involved in the regulation of glucose metabolism. Here we report that circDDX21 is upregulated in response to glucose deprivation by the transcription factor c-Myc. Functionally, circDDX21 is shown to promote glycolysis by increasing PGAM1 expression. Mechanistically, circDDX21 interacts with the RNA binding protein PABPC1, disrupting its association with the ubiquitin E3 ligase MKRN3. This disassociation attenuates MKRN3-mediated PABPC1 ubiquitination and enhances the binding of PABPC1 to PGAM1 mRNA, thereby leading to PGAM1 mRNA stabilization. The ability of the circDDX21-PGAM1 axis to promote hepatocellular carcinogenesis is validated in a xenograft mouse model. Additionally, in clinical hepatocellular carcinoma tissues, there is a positive correlation between circDDX21 and PGAM1 expression. These findings establish circDDX21 as an important regulator of glycolysis and suggest circDDX21 as a potential therapeutic target for hepatocellular carcinoma.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Glicólise , Neoplasias Hepáticas , RNA Circular , Humanos , Glicólise/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Animais , RNA Circular/genética , RNA Circular/metabolismo , Camundongos , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos Nus , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Metabolismo Energético/genética , Ubiquitinação , Masculino , Camundongos Endogâmicos BALB C
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714266

RESUMO

Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of free cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Our team discovered that CDA deficiency is associated with several aspects of genetic instability, such as increased sister chromatid exchange and ultrafine anaphase bridge frequencies. Based on these results, we sought (1) to determine how CDA deficiency contributes to genetic instability, (2) to explore the possible relationships between CDA deficiency and carcinogenesis, and (3) to develop a new anticancer treatment targeting CDA-deficient tumors. This review summarizes our major findings indicating that CDA deficiency is associated with a genetic instability that does not confer an increased cancer risk. In light of our results and published data, I propose a novel hypothesis that loss of CDA, by reducing basal PARP-1 activity and increasing Tau levels, may reflect an attempt to prevent, slow or reverse the process of carcinogenesis.


Assuntos
Carcinogênese , Citidina Desaminase , Poli(ADP-Ribose) Polimerase-1 , Humanos , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Carcinogênese/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas tau/metabolismo , Proteínas tau/genética , Instabilidade Genômica
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734320

RESUMO

Cells of multicellular organisms generate heterogeneity in a controlled and transient fashion during embryogenesis, which can be reactivated in pathologies such as cancer. Although genomic heterogeneity is an important part of tumorigenesis, continuous generation of phenotypic heterogeneity is central for the adaptation of cancer cells to the challenges of tumorigenesis and response to therapy. Here I discuss the capacity of generating heterogeneity, hereafter called cell hetness, in cancer cells both as the activation of hetness oncogenes and inactivation of hetness tumor suppressor genes, which increase the generation of heterogeneity, ultimately producing an increase in adaptability and cell fitness. Transcriptomic high hetness states in therapy-tolerant cell states denote its importance in cancer resistance to therapy. The definition of the concept of hetness will allow the understanding of its origins, its control during embryogenesis, its loss of control in tumorigenesis and cancer therapeutics and its active targeting.


Assuntos
Carcinogênese , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Neoplasias/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Heterogeneidade Genética , Oncogenes/genética , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Genes Supressores de Tumor , Regulação Neoplásica da Expressão Gênica
15.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38705997

RESUMO

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Assuntos
Melanoma , Neuropeptídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Fosforilação , Ligação Proteica , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
16.
Sci Rep ; 14(1): 10507, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714727

RESUMO

Glioma, particularly glioblastomas (GBM), is incurable brain tumor. The most targeted receptor tyrosine kinase (RTKs) drugs did not bring benefit to GBM patients. The mechanism of glioma growth continues to be explored to find more effective treatment. Here, we reported that Ser/Thr protein kinase YANK2 (yet another kinase 2) is upregulated in glioma tissues and promotes the growth and proliferation of glioma in vitro and in vivo. Further, we confirmed that oncogene Fyn directly activated YANK2 through phosphorylation its Y110, and Fyn-mediated YANK2 phosphorylation at Y110 site promotes glioma growth by increasing its stability. Finally, YANK2 was proved to be a novel upstream kinase of p70S6K and promotes glioma growth by directly phosphorylating p70S6K at T389. Taken together, we found a new mTOR-independent p70S6K activation pathway, Fyn-YANK2-p70S6K, which promotes glioma growth, and YANK2 is a potential oncogene and serves as a novel therapeutic target for glioma.


Assuntos
Proliferação de Células , Glioma , Proteínas Proto-Oncogênicas c-fyn , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Serina-Treonina Quinases TOR , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Humanos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Serina-Treonina Quinases TOR/metabolismo , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Animais , Linhagem Celular Tumoral , Fosforilação , Carcinogênese/genética , Carcinogênese/metabolismo , Camundongos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica
17.
Bull Exp Biol Med ; 176(5): 612-616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38730106

RESUMO

We experimentally demonstrated that chronic social stress during the development of a depression-like state enhances lung metastasis and modifies the expression of many carcinogenesis- and apoptosis-related genes in the hypothalamus of mice, including genes involved in lung cancer pathogenesis in humans. Analysis of the expression of genes encoding the major clinical markers of lung cancer in the hypothalamus of mice with depression-like behavior revealed increased expression of the Eno2 gene encoding neuron-specific enolase, a blood marker of lung cancer progression in humans. It was shown that the expression of this gene in the hypothalamus correlated with the expression of many carcinogenesis- and apoptosis-related genes. The discovered phenomenon may have a fundamental significance and requires further studies.


Assuntos
Apoptose , Carcinogênese , Depressão , Hipotálamo , Neoplasias Pulmonares , Fosfopiruvato Hidratase , Animais , Camundongos , Hipotálamo/metabolismo , Hipotálamo/patologia , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Apoptose/genética , Depressão/genética , Depressão/metabolismo , Depressão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinogênese/genética , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo
18.
Ann Med ; 56(1): 2282184, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738386

RESUMO

AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.


AURKA plays an important role in the control of the proliferation, invasion, cell cycle regulation and self-renewal of cancer stem cells.Small molecule kinase inhibitors targeting AURKA have been developed, but the overall response rate of patients in clinical trials is not ideal, prompting us to pay attention to the non-kinase activity of AURKA.This review focuses on the nuclear function of AURKA and its oncogenic properties independent of kinase activity, demonstrating that the nuclear substrate of AURKA and the remote allosteric site of the kinase may be targets of anticancer therapy.


Assuntos
Aurora Quinase A , Carcinogênese , Núcleo Celular , Humanos , Aurora Quinase A/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Núcleo Celular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteínas Quinases/farmacologia , Animais
19.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744809

RESUMO

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Assuntos
Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Metiltransferases , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-akt , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Transdução de Sinais , RNA de Transferência/metabolismo , RNA de Transferência/genética , Mitocôndrias/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Proliferação de Células
20.
Nat Commun ; 15(1): 4108, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750011

RESUMO

MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.


Assuntos
Carcinogênese , Proteínas Proto-Oncogênicas B-raf , Proteínas com Domínio T , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos , Diferenciação Celular , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Knockout , Feminino , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA