Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
J Inherit Metab Dis ; 45(1): 51-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611930

RESUMO

Barth syndrome is a multisystem disorder caused by an abnormal metabolism of the mitochondrial lipid cardiolipin. In this review, we discuss physical properties, biosynthesis, membrane assembly, and function of cardiolipin. We hypothesize that cardiolipin reduces packing stress in the inner mitochondrial membrane, which arises as a result of protein crowding. According to this hypothesis, patients with Barth syndrome are unable to meet peak energy demands because they fail to concentrate the proteins of oxidative phosphorylation to a high surface density in the inner mitochondrial membrane.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/biossíntese , Cardiolipinas/fisiologia , Membranas Mitocondriais/metabolismo , Cardiolipinas/química , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
3.
J Inherit Metab Dis ; 44(4): 809-825, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594685

RESUMO

Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Redes e Vias Metabólicas/fisiologia , Cardiolipinas/biossíntese , Cardiolipinas/química , Homeostase , Humanos , Lipídeos/biossíntese , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fenótipo , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/química , Fosfolipídeos/biossíntese , Fosfolipídeos/química , Esfingolipídeos/biossíntese , Esfingolipídeos/química
4.
Cell Rep ; 34(4): 108676, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503428

RESUMO

Hypoxia, low oxygen (O2), is a key feature of all solid cancers, including hepatocellular carcinoma (HCC). Genome-wide CRISPR-Cas9 knockout library screening is used to identify reliable therapeutic targets responsible for hypoxic survival in HCC. We find that protein-tyrosine phosphatase mitochondrial 1 (PTPMT1), an important enzyme for cardiolipin (CL) synthesis, is the most significant gene and ranks just after hypoxia-inducible factor (HIF)-1α and HIF-1ß as crucial to hypoxic survival. CL constitutes the mitochondrial membrane and ensures the proper assembly of electron transport chain (ETC) complexes for efficient electron transfer in respiration. ETC becomes highly unstable during hypoxia. Knockout of PTPMT1 stops the maturation of CL and impairs the assembly of ETC complexes, leading to further electron leakage and ROS accumulation at ETC in hypoxia. Excitingly, HCC cells, especially under hypoxic conditions, show great sensitivity toward PTPMT1 inhibitor alexidine dihydrochloride (AD). This study unravels the protective roles of PTPMT1 in hypoxic survival and cancer development.


Assuntos
Cardiolipinas/biossíntese , Neoplasias Hepáticas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Sistemas CRISPR-Cas , Cardiolipinas/genética , Hipóxia Celular/fisiologia , Células HCT116 , Células Hep G2 , Xenoenxertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células PC-3 , PTEN Fosfo-Hidrolase/genética
5.
Environ Microbiol ; 22(12): 5300-5308, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929857

RESUMO

Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.


Assuntos
Acinetobacter baumannii/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cardiolipinas/biossíntese , Farmacorresistência Bacteriana , Fosfolipase D/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisofosfolipídeos/biossíntese , Mutação , Fosfolipase D/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Oxid Med Cell Longev ; 2020: 5304768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617138

RESUMO

Circadian clocks regulate metabolic processes in a tissue-specific manner, which deteriorates during aging. Skeletal muscle is the largest metabolic organ in our body, and our previous studies highlight a key role of circadian regulation of skeletal muscle mitochondria in healthy aging. However, a possible circadian regulation of cardiolipin (CL), the signature lipid class in the mitochondrial inner membrane, remains largely unclear. Here, we show that CL levels oscillate during the diurnal cycle in C2C12 myotubes. Disruption of the Ror genes, encoding the ROR nuclear receptors in the secondary loop of the circadian oscillator, in C2C12 cells was found to dampen core circadian gene expression. Importantly, several genes involved in CL synthesis, including Taz and Ptpmt1, displayed rhythmic expression which was disrupted or diminished in Ror-deficient C2C12 cells. In vivo studies using skeletal muscle tissues collected from young and aged mice showed diverse effects of the clock and aging on the oscillatory expression of CL genes, and CL levels in skeletal muscle were enhanced in aged mice relative to young mice. Finally, consistent with a regulatory role of RORs, Nobiletin, a natural agonist of RORs, was found to partially restore transcripts levels of CL synthesis genes in aged muscle under a dietary challenge condition. Together, these observations highlight a rhythmic CL synthesis in skeletal muscle that is dependent on RORs and modifiable by age and diet.


Assuntos
Envelhecimento/metabolismo , Cardiolipinas/biossíntese , Ritmo Circadiano , Dieta , Músculo Esquelético/metabolismo , Animais , Cardiolipinas/genética , Linhagem Celular , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Flavonas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
7.
Biochem Soc Trans ; 48(3): 1035-1046, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32490527

RESUMO

Cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are important anionic phospholipids widely distributed throughout all domains of life. They have key roles in several cellular processes by shaping membranes and modulating the activity of the proteins inserted into those membranes. They are synthesized by two main pathways, the so-called eukaryotic pathway, exclusively found in mitochondria, and the prokaryotic pathway, present in most bacteria and archaea. In the prokaryotic pathway, the first and the third reactions are catalyzed by phosphatidylglycerol phosphate synthase (Pgps) belonging to the transferase family and cardiolipin synthase (Cls) belonging to the hydrolase family, while in the eukaryotic pathway, those same reactions are catalyzed by unrelated homonymous enzymes: Pgps of the hydrolase family and Cls of the transferase family. Because of the enzymatic arrangement found in both pathways, it seems that the eukaryotic pathway evolved by convergence to the prokaryotic pathway. However, since mitochondria evolved from a bacterial endosymbiont, it would suggest that the eukaryotic pathway arose from the prokaryotic pathway. In this review, it is proposed that the eukaryote pathway evolved directly from a prokaryotic pathway by the neofunctionalization of the bacterial enzymes. Moreover, after the eukaryotic radiation, this pathway was reshaped by horizontal gene transfers or subsequent endosymbiotic processes.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Cardiolipinas/biossíntese , Eucariotos/enzimologia , Fosfatidilgliceróis/metabolismo , Sítios de Ligação , Vias Biossintéticas , Catálise , Evolução Molecular , Transferência Genética Horizontal , Hidrolases/metabolismo , Mitocôndrias/metabolismo , Modelos Moleculares , Fosfolipídeos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia
8.
mBio ; 11(2)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234818

RESUMO

Bacillus anthracis is a spore-forming bacterium that causes devastating infections and has been used as a bioterror agent. This pathogen can survive hostile environments through the signaling activity of two-component systems, which couple environmental sensing with transcriptional activation to initiate a coordinated response to stress. In this work, we describe the identification of a two-component system, EdsRS, which mediates the B. anthracis response to the antimicrobial compound targocil. Targocil is a cell envelope-targeting compound that is toxic to B. anthracis at high concentrations. Exposure to targocil causes damage to the cellular barrier and activates EdsRS to induce expression of a previously uncharacterized cardiolipin synthase, which we have named ClsT. Both EdsRS and ClsT are required for protection against targocil-dependent damage. Induction of clsT by EdsRS during targocil treatment results in an increase in cardiolipin levels, which protects B. anthracis from envelope damage. Together, these results reveal that a two-component system signaling response to an envelope-targeting antimicrobial induces production of a phospholipid associated with stabilization of the membrane. Cardiolipin is then used to repair envelope damage and promote B. anthracis viability.IMPORTANCE Compromising the integrity of the bacterial cell barrier is a common action of antimicrobials. Targocil is an antimicrobial that is active against the bacterial envelope. We hypothesized that Bacillus anthracis, a potential weapon of bioterror, senses and responds to targocil to alleviate targocil-dependent cell damage. Here, we show that targocil treatment increases the permeability of the cellular envelope and is particularly toxic to B. anthracis spores during outgrowth. In vegetative cells, two-component system signaling through EdsRS is activated by targocil. This results in an increase in the production of cardiolipin via a cardiolipin synthase, ClsT, which restores the loss of barrier function, thereby reducing the effectiveness of targocil. By elucidating the B. anthracis response to targocil, we have uncovered an intrinsic mechanism that this pathogen employs to resist toxicity and have revealed therapeutic targets that are important for bacterial defense against structural damage.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Cardiolipinas/biossíntese , Quinazolinas/farmacologia , Triazóis/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento , Transcrição Gênica
9.
Methods Cell Biol ; 155: 321-335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32183965

RESUMO

Mitochondria and their associated membranes actively participate in biosynthesis, trafficking, and degradation of cellular phospholipids. Two crucial lipid biosynthetic activities of mitochondria include (i) the decarboxylation of phosphatidylserine to phosphatidylethanolamine and (ii) the de novo synthesis of cardiolipin. Here we describe protocols to measure these two activities, applying isotope-labeled or exogenous substrates in combination with thin-layer chromatography or mass spectrometry.


Assuntos
Mitocôndrias/metabolismo , Fosfolipídeos/biossíntese , Animais , Cardiolipinas/biossíntese , Células Cultivadas , Drosophila melanogaster/metabolismo , Fosfatidiletanolaminas/biossíntese , Fosfatidilserinas/biossíntese
10.
Am J Physiol Heart Circ Physiol ; 318(4): H787-H800, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32056460

RESUMO

Despite advances in both medical and surgical therapies, individuals with single ventricle heart disease (SV) remain at high risk for the development of heart failure (HF). However, the molecular mechanisms underlying remodeling and eventual HF in patients with SV are poorly characterized. Cardiolipin (CL), an inner mitochondrial membrane phospholipid, is critical for proper mitochondrial function, and abnormalities in CL content and composition are known in various cardiovascular disease etiologies. The purpose of this study was to investigate myocardial CL content and composition in failing and nonfailing single right ventricle (RV) samples compared with normal control RV samples, to assess mRNA expression of CL biosynthetic and remodeling enzymes, and to quantitate relative mitochondrial copy number. A cross-sectional analysis of RV myocardial tissue from 22 failing SV (SVHF), 9 nonfailing SV (SVNF), and 10 biventricular control samples (BVNF) was performed. Expression of enzymes involved in CL biosynthesis and remodeling were analyzed using RT-qPCR and relative mitochondrial DNA copy number determined by qPCR. Normal phase high-pressure liquid chromatography coupled to electrospray ionization mass spectrometry was used to quantitate total and specific CL species. While mitochondrial copy number was not significantly different between groups, total CL content was significantly lower in SVHF myocardium compared with BVNF controls. Despite having lower total CL content however, the relative percentage of the major tetralinoleoyl CL species is preserved in SVHF samples relative to BVNF controls. Correspondingly, expression of enzymes involved in CL biosynthesis and remodeling were upregulated in SVHF samples when compared with both SVNF samples and BVNF controls.NEW & NOTEWORTHY The mechanisms underlying heart failure in the single ventricle (SV) congenital heart disease population are largely unknown. In this study we identify alterations in cardiac cardiolipin metabolism, composition, and content in children with SV heart disease. These findings suggest that cardiolipin could be a novel therapeutic target in this unique population of patients.


Assuntos
Cardiolipinas/biossíntese , Coração Univentricular/metabolismo , Cardiolipinas/genética , Criança , Pré-Escolar , DNA Mitocondrial/genética , Feminino , Ventrículos do Coração/anormalidades , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Masculino , Mitocôndrias Cardíacas/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coração Univentricular/genética , Remodelação Ventricular
11.
Lipids Health Dis ; 18(1): 53, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764880

RESUMO

BACKGROUND: Supplemented fatty acids can incorporate into cardiolipin (CL) and affect its remodeling. The change in CL species may alter the mitochondrial membrane composition, potentially disturbing the mitochondrial structure and function during inflammation. METHOD: To investigate the effect of the unsaturation of fatty acids on CL, we supplemented macrophage-like RAW264.7 cells with 18-carbon unsaturated fatty acids including oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), γ-linolenic acid (GLA, 18:3), and stearidonic acid (SDA, 18:4). Mitochondrial changes in CL were measured through mass spectrometry. RESULT: Our data indicated that OA(18:1) was the most efficient fatty acid that incorporated into CL, forming symmetrical CL without fatty acid elongation and desaturation. In addition, LA(18:2) and ALA(18:3) were further elongated before incorporation, significantly increasing the number of double bonds and the chain length of CL. GLA and SDA were not optimal substrates for remodeling enzymes. The findings of RT-qPCR experiments revealed that none of these changes in CL occurred through the regulation of CL remodeling- or synthesis-related genes. The fatty acid desaturase and transportation genes-Fads2 and Cpt1a, respectively-were differentially regulated by the supplementation of five unsaturated 18-carbon fatty acids. CONCLUSIONS: The process of fatty acid incorporation to CL was regulated by the fatty acid desaturation and transportation into mitochondria in macrophage. The double bonds of fatty acids significantly affect the incorporation process and preference. Intact OA(18:1) was incorporated to CL; LA(18:2) and ALA(18:3) were desaturated and elongated to long chain fatty acid before the incorporation; GLA(18:3) and SDA(18:4) were unfavorable for the CL incorporation.


Assuntos
Cardiolipinas/biossíntese , Ácidos Graxos Ômega-3/farmacologia , Ácido Linoleico/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido alfa-Linolênico/farmacologia , Ácido gama-Linolênico/farmacologia , Animais , Transporte Biológico , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Camundongos , Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade , Ácido alfa-Linolênico/química , Ácido alfa-Linolênico/metabolismo , Ácido gama-Linolênico/química , Ácido gama-Linolênico/metabolismo
12.
J Biol Chem ; 293(45): 17593-17605, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237174

RESUMO

Mitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31. Here, we identified a mitochondrial porin, Por1, as a protein that interacts with both Mdm31 and Mdm35 in budding yeast (Saccharomyces cerevisiae). Depletion of the porins Por1 and Por2 destabilized Ups1 and Ups2, decreased CL levels by ∼90%, and caused loss of Ups2-dependent phosphatidylethanolamine synthesis, but did not affect Ups2-independent phosphatidylethanolamine synthesis in mitochondria. Por1 mutations that affected its interactions with Mdm31 and Mdm35, but not respiratory growth, also decreased CL levels. Using HeLa cells, we show that mammalian porins also function in mitochondrial CL metabolism. We conclude that yeast porins have specific and critical functions in mitochondrial phospholipid metabolism and that porin-mediated regulation of CL metabolism appears to be evolutionarily conserved.


Assuntos
Cardiolipinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/genética , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Cell Metab ; 28(1): 159-174.e11, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29861389

RESUMO

Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional response through endoplasmic reticulum stress-mediated retrograde communication. Cardiolipin depletion in brown and beige fat abolishes adipose thermogenesis and glucose uptake, which renders animals insulin resistant. We further identify a rare human CRLS1 variant associated with insulin resistance and show that adipose CRLS1 levels positively correlate with insulin sensitivity. Thus, adipose cardiolipin has a powerful impact on organismal energy homeostasis through thermogenic fat bioenergetics.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Cardiolipinas/biossíntese , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Células Cultivadas , Metabolismo Energético , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Termogênese , Transferases (Outros Grupos de Fosfato Substituídos)/genética
14.
Curr Genet ; 64(4): 795-798, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29427078

RESUMO

Cardiolipin (CL) is a key player in bacterial cell biology. CL accumulates at the poles of rod-shaped cells; the polar localization and function of diverse bacterial proteins are CL-dependent. Cardiolipin (CL) is an unusual phospholipid comprised of a glycerol headgroup coupled with two phosphatidate moieties. CL-rich membrane domains are often visualized with the fluorescent indicator 10-N-nonyl-acridine orange (NAO). Recent data show that NAO can also indicate phosphatidylglycerol localization under different experimental conditions, in the absence of CL. The formation of CL-rich membrane domains at bacterial cell poles was predicted to occur spontaneously, by lipid microphase separation arising from the conical CL shape. New data reveal that membrane-anchored cardiolipin synthase A is targeted to the cytoplasmic membrane surface at bacterial cell poles. Thus, localized CL synthesis, interaction of CL with ClsA, and membrane curvature could all contribute to retention of CL at cell poles. These observations provide new insight regarding the mechanism for assembly of CL-rich membrane domains in prokaryotes and eukaryotes.


Assuntos
Cardiolipinas/química , Cardiolipinas/genética , Proteínas de Membrana/genética , Bactérias/genética , Cardiolipinas/biossíntese , Biologia Celular/tendências , Membrana Celular/química , Membrana Celular/genética , Proteínas de Membrana/química
15.
J Bioenerg Biomembr ; 50(1): 71-79, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29332207

RESUMO

Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.


Assuntos
Ácidos Graxos/análise , Músculo Esquelético/metabolismo , Receptores alfa dos Hormônios Tireóideos/genética , Animais , Cardiolipinas/biossíntese , Ácidos Graxos/metabolismo , Lipídeos/análise , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/química , Mitocôndrias/metabolismo , Músculo Esquelético/química , Músculo Quadríceps/química , Músculo Quadríceps/metabolismo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 447-457, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29343430

RESUMO

The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes.


Assuntos
Cardiolipinas/biossíntese , Cardiolipinas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multienzimáticos/metabolismo , Detergentes/farmacologia , Células HEK293 , Humanos , Imunoprecipitação , Microscopia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proibitinas , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 284-298, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253589

RESUMO

CDP diacylglycerol synthase (CDS) catalyses the conversion of phosphatidic acid (PA) to CDP-diacylglycerol, an essential intermediate in the synthesis of phosphatidylglycerol, cardiolipin and phosphatidylinositol (PI). CDS activity has been identified in mitochondria and endoplasmic reticulum of mammalian cells apparently encoded by two highly-related genes, CDS1 and CDS2. Cardiolipin is exclusively synthesised in mitochondria and recent studies in cardiomyocytes suggest that the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α and ß) serve as transcriptional regulators of mitochondrial biogenesis and up-regulate the transcription of the CDS1 gene. Here we have examined whether CDS1 is responsible for the mitochondrial CDS activity. We report that differentiation of H9c2 cells with retinoic acid towards cardiomyocytes is accompanied by increased expression of mitochondrial proteins, oxygen consumption, and expression of the PA/PI binding protein, PITPNC1, and CDS1 immunoreactivity. Both CDS1 immunoreactivity and CDS activity were found in mitochondria of H9c2 cells as well as in rat heart, liver and brain mitochondria. However, the CDS1 immunoreactivity was traced to a peripheral p55 cross-reactive mitochondrial protein and the mitochondrial CDS activity was due to a peripheral mitochondrial protein, TAMM41, not an integral membrane protein as expected for CDS1. TAMM41 is the mammalian equivalent of the recently identified yeast protein, Tam41. Knockdown of TAMM41 resulted in decreased mitochondrial CDS activity, decreased cardiolipin levels and a decrease in oxygen consumption. We conclude that the CDS activity present in mitochondria is mainly due to TAMM41, which is required for normal mitochondrial function.


Assuntos
Cardiolipinas/biossíntese , Diacilglicerol Colinofosfotransferase/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio/fisiologia , Animais , Cardiolipinas/genética , Linhagem Celular , Diacilglicerol Colinofosfotransferase/genética , Mitocôndrias Cardíacas/genética , Proteínas Mitocondriais/genética , Miócitos Cardíacos/citologia , Ratos
18.
Microb Pathog ; 111: 414-421, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28923603

RESUMO

We aimed in this work to evaluate the effect of static magnetic field 200 mT (SMF) on the expression of genes involved in the biosynthetic pathway of cardiolipin: g3pd, plsB, cdsA, pgsA, pgpA, cls and phosphatidylethanolamine: pssA and psd in Salmonella enterica subsp enterica serovar Hadar. Bacteria were exposed to a SMF during 3, 6 and 9 h. RNA extraction was followed by Reverse Transcriptase Polymerase Chain Reaction RT-PCR. The relative quantification of mRNA expression levels using 16S rRNA doesn't change during the time exposure. RT-PCR was done for two exposure experiments. The gene expression using RT-PCR present no significant difference in case of plsB, cdsA, pgpA, pgsA and psd genes during the different exposure times. However, a significant increase was observed in the expression of g3pd and pssA genes after 6 h and for cls gene after 3 h of exposure, but any variation was notified after 9 h of exposure. So we can conclude from this study that cls, g3pd and pssA genes are required in the adaptation of Salmonella Hadar to SMF.


Assuntos
Proteínas de Bactérias/genética , Cardiolipinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Salmonella enterica/química , Salmonella enterica/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Regulação Bacteriana da Expressão Gênica , Campos Magnéticos , Salmonella enterica/metabolismo
19.
mBio ; 8(4)2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851846

RESUMO

Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro, and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA, which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface.IMPORTANCE The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15%. Antibiotic treatment of Shigella infections is compromised by increasing antibiotic resistance, and there is no approved vaccine to prevent future infections. This has created a growing need to understand Shigella pathogenesis and identify new targets for antimicrobial therapeutics. Here we show a previously unknown role of phospholipids in S. flexneri pathogenesis. We demonstrate that cardiolipin is required in the outer membrane for proper surface localization of IcsA and in the inner membrane for cell division during growth in the host cell cytoplasm.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Cardiolipinas/biossíntese , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Actinas/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Citoplasma/metabolismo , Citoplasma/microbiologia , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação , Shigella flexneri/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Virulência
20.
Aging Cell ; 16(4): 773-784, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28514055

RESUMO

Paradoxical observations have been made regarding the role of caveolin-1 (Cav-1) during cellular senescence. For example, caveolin-1 deficiency prevents reactive oxygen species-induced cellular senescence despite mitochondrial dysfunction, which leads to senescence. To resolve this paradox, we re-addressed the role of caveolin-1 in cellular senescence in human diploid fibroblasts, A549, HCT116, and Cav-1-/- mouse embryonic fibroblasts. Cav-1 deficiency (knockout or knockdown) induced cellular senescence via a p53-p21-dependent pathway, downregulating the expression level of the cardiolipin biosynthesis enzymes and then reducing the content of cardiolipin, a critical lipid for mitochondrial respiration. Our results showed that Cav-1 deficiency decreased mitochondrial respiration, reduced the activity of oxidative phosphorylation complex I (CI), inactivated SIRT1, and decreased the NAD+ /NADH ratio. From these results, we concluded that Cav-1 deficiency induces premature senescence via mitochondrial dysfunction and silent information regulator 2 homologue 1 (SIRT1) inactivation.


Assuntos
Caveolina 1/genética , Senescência Celular/genética , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Sirtuína 1/genética , Células A549 , Animais , Cardiolipinas/biossíntese , Caveolina 1/deficiência , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Embrião de Mamíferos , Fibroblastos/patologia , Regulação da Expressão Gênica , Células HCT116 , Humanos , Camundongos , Mitocôndrias/patologia , NAD/metabolismo , Fosforilação Oxidativa , Cultura Primária de Células , Transdução de Sinais , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA