Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 12(3)2020 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235750

RESUMO

RNA secondary structures play diverse roles in positive-sense (+) RNA virus infections, but those located with the replication protein coding sequence can be difficult to investigate. Structures that regulate the translation of replication proteins pose particular challenges, as their potential involvement in post-translational steps cannot be easily discerned independent of their roles in regulating translation. In the current study, we attempted to overcome these difficulties by providing viral replication proteins in trans. Specifically, we modified the plant-infecting turnip crinkle virus (TCV) into variants that are unable to translate one (p88) or both (p28 and p88) replication proteins, and complemented their replication with the corresponding replication protein(s) produced from separate, non-replicating constructs. This approach permitted us to re-examine the p28/p88 coding region for potential RNA elements needed for TCV replication. We found that, while more than a third of the p88 coding sequence could be deleted without substantially affecting viral RNA levels, two relatively small regions, known as RSE and IRE, were essential for robust accumulation of TCV genomic RNA, but not subgenomic RNAs. In particular, the RSE element, found previously to be required for regulating the translational read-through of p28 stop codon to produce p88, contained sub-elements needed for efficient replication of the TCV genome. Application of this new approach in other viruses could reveal novel RNA secondary structures vital for viral multiplication.


Assuntos
Carmovirus/fisiologia , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/genética , Replicação Viral , Genoma Viral
2.
Sci Rep ; 10(1): 4758, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179855

RESUMO

Due to their minimal genomes, plant viruses are forced to hijack specific cellular pathways to ensure host colonization, a condition that most frequently involves physical interaction between viral and host proteins. Among putative viral interactors are the movement proteins, responsible for plasmodesma gating and genome binding during viral transport. Two of them, DGBp1 and DGBp2, are required for alpha-, beta- and gammacarmovirus cell-to-cell movement, but the number of DGBp-host interactors identified at present is limited. By using two different approaches, yeast two-hybrid and bimolecular fluorescence complementation assays, we found three Arabidopsis factors, eIF3g1, RPP3A and WRKY36, interacting with DGBp1s from each genus mentioned above. eIF3g1 and RPP3A are mainly involved in protein translation initiation and elongation phases, respectively, while WRKY36 belongs to WRKY transcription factor family, important regulators of many defence responses. These host proteins are not expected to be associated with viral movement, but knocking out WRKY36 or silencing either RPP3A or eIF3g1 negatively affected Arabidopsis infection by Turnip crinkle virus. A highly conserved FNF motif at DGBp1 C-terminus was required for protein-protein interaction and cell-to-cell movement, suggesting an important biological role.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Interações Hospedeiro-Patógeno/genética , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/fisiologia , Vírus de Plantas/fisiologia , Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos , Arabidopsis/virologia , Carmovirus/genética , Carmovirus/fisiologia , Vírus de Plantas/genética
3.
Mol Plant Microbe Interact ; 33(2): 364-375, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31880982

RESUMO

We recently reported that the p28 auxiliary replication protein encoded by turnip crinkle virus (TCV) is also responsible for eliciting superinfection exclusion (SIE) against superinfecting TCV. However, it remains unresolved whether the replication function of p28 could be separated from its ability to elicit SIE. Here, we report the identification of two single amino acid mutations that decouple these two functions. Using an Agrobacterium infiltration-based delivery system, we transiently expressed a series of p28 deletion and point mutants, and tested their ability to elicit SIE against a cointroduced TCV replicon. We found that substituting alanine (A) for valine (V) and phenylalanine (F) at p28 positions 181 and 182, respectively, modestly compromised SIE in transiently expressed p28 derivatives. Upon incorporation into TCV replicons, V181A and F182A decoupled TCV replication and SIE diametrically. Although V181A impaired SIE without detectably compromising replication, F182A abolished TCV replication but had no effect on SIE once the replication of the defective replicon was restored through complementation. Both mutations diminished accumulation of p28 protein, suggesting that p28 must reach a concentration threshold in order to elicit a strong SIE. Importantly, the severe reduction of F182A protein levels correlated with a dramatic loss in the number of intracellular p28 foci formed by p28-p28 interactions. Together, these findings not only decouple the replication and SIE functions of p28 but also unveil a concentration dependence for p28 coalescence and SIE elicitation. These data further highlight the role of p28 multimerization in driving the exclusion of secondary TCV infections.


Assuntos
Carmovirus , Replicação Viral , Carmovirus/genética , Carmovirus/fisiologia , Deleção de Sequência , Replicação Viral/genética
4.
Plant Physiol ; 180(3): 1418-1435, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31043494

RESUMO

RNA-based silencing functions as an important antiviral immunity mechanism in plants. Plant viruses evolved to encode viral suppressors of RNA silencing (VSRs) that interfere with the function of key components in the silencing pathway. As effectors in the RNA silencing pathway, ARGONAUTE (AGO) proteins are targeted by some VSRs, such as that encoded by Turnip crinkle virus (TCV). A VSR-deficient TCV mutant was used to identify AGO proteins with antiviral activities during infection. A quantitative phenotyping protocol using an image-based color trait analysis pipeline on the PlantCV platform, with temporal red, green, and blue imaging and a computational segmentation algorithm, was used to measure plant disease after TCV inoculation. This process captured and analyzed growth and leaf color of Arabidopsis (Arabidopsis thaliana) plants in response to virus infection over time. By combining this quantitative phenotypic data with molecular assays to detect local and systemic virus accumulation, AGO2, AGO3, and AGO7 were shown to play antiviral roles during TCV infection. In leaves, AGO2 and AGO7 functioned as prominent nonadditive, anti-TCV effectors, whereas AGO3 played a minor role. Other AGOs were required to protect inflorescence tissues against TCV. Overall, these results indicate that distinct AGO proteins have specialized, modular roles in antiviral defense across different tissues, and demonstrate the effectiveness of image-based phenotyping to quantify disease progression.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Proteínas Argonautas/imunologia , Carmovirus/imunologia , Processamento de Imagem Assistida por Computador/métodos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Carmovirus/genética , Carmovirus/fisiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mutação , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Ligação Proteica , Interferência de RNA/imunologia
5.
PLoS Pathog ; 13(3): e1006253, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267773

RESUMO

Diverse animal and plant viruses block the re-infection of host cells by the same or highly similar viruses through superinfection exclusion (SIE), a widely observed, yet poorly understood phenomenon. Here we demonstrate that SIE of turnip crinkle virus (TCV) is exclusively determined by p28, one of the two replication proteins encoded by this virus. p28 expressed from a TCV replicon exerts strong SIE to a different TCV replicon. Transiently expressed p28, delivered simultaneously with, or ahead of, a TCV replicon, largely recapitulates this repressive activity. Interestingly, p28-mediated SIE is dramatically enhanced by C-terminally fused epitope tags or fluorescent proteins, but weakened by N-terminal modifications, and it inversely correlates with the ability of p28 to complement the replication of a p28-defective TCV replicon. Strikingly, p28 in SIE-positive cells forms large, mobile punctate inclusions that trans-aggregate a non-coalescing, SIE-defective, yet replication-competent p28 mutant. These results support a model postulating that TCV SIE is caused by the formation of multimeric p28 complexes capable of intercepting fresh p28 monomers translated from superinfector genomes, thereby abolishing superinfector replication. This model could prove to be applicable to other RNA viruses, and offer novel targets for antiviral therapy.


Assuntos
Carmovirus/fisiologia , Superinfecção/microbiologia , Replicação Viral/fisiologia , Immunoblotting , Microscopia Confocal , Doenças das Plantas/virologia , Nicotiana/virologia
6.
Plant Cell Rep ; 35(11): 2257-2267, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27473526

RESUMO

KEY MESSAGE: A long intergenic noncoding RNA LINC - AP2 is upregulated and negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis. Plant vegetative growth and floral reproductive structure were severely retarded and distorted in Turnip crinkle virus (TCV)-infected Arabidopsis thaliana. Compared to mock-inoculated plants, the stamen filaments were shorter in flowers of TCV-infected plants. However, TCV-infected plants can still produce normal seeds through artificial pollination, indicating both its pollen and stigma were biologically functional. From our high-throughput RNA-Seq transcriptome analysis, a floral structure-related APETALA2 (AP2) gene was found to be downregulated and its neighboring long intergenic noncoding RNAs (lincRNA), At4NC069370 (named LINC-AP2 in this study), were upregulated significantly in TCV-infected plants. This LINC-AP2 was further confirmed for its existence using 5'RACE technology. LINC-AP2 overexpression (LINC-AP2 OE) transgenic Arabidopsis plants were generated to compare with TCV-infected WT plants. TCV-infected LINC-AP2 OE plants which contained lower AP2 gene expression displayed more severe symptoms (including floral structure distortion) and higher TCV-CP gene transcript and coat protein levels. Furthermore, compared to TCV-infected WT plants, TCV-infected ap2 mutant plants failed to open their flower buds and displayed more severe viral symptoms. In conclusion, upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with TCV infection in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/virologia , Carmovirus/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Doenças das Plantas/virologia , RNA Longo não Codificante/genética , Regulação para Cima/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Flores/anatomia & histologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Mutação/genética , Proteínas Nucleares/metabolismo , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transcriptoma/genética
7.
Virus Res ; 222: 94-105, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288723

RESUMO

Cross protection is a common phenomenon among closely related strain viruses in co-infected plants. However, unrelated viruses, Turnip crinkle virus (TCV) and Cucumber mosaic virus (CMV), also show an antagonistic effect in co-infected Arabidopsis plants. In many cases, viral suppressors of RNA silencing (VSRs) have important roles in the interactions between viruses in mixed infections. CMV 2b and TCV p38 are multifunctional proteins and both of them are well characterized VSRs and have important roles in operation synergistic interactions with other viruses. Here, we demonstrated antagonistic effects of TCV toward CMV and showed that RNA silencing-mediated resistance protein, RCY1 and TCV-interacting protein (TIP) of Arabidopsis plants did not affect this antagonism effect. We further showed that TCV p38 and CMV 2b could interact with each other in vivo but not in vitro. Further mutational analysis showed that C-terminal of 2b and middle domains of p38 had more important roles in the interaction between the two viruses.


Assuntos
Carmovirus/fisiologia , Cucumovirus/fisiologia , Interações Microbianas , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Inativação Gênica , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/virologia , Ligação Proteica , RNA de Plantas/genética , Proteínas Virais/química
8.
Biochem Biophys Res Commun ; 473(2): 421-7, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26987718

RESUMO

Members of the plant mitochondrial energy-dissipation pathway (MEDP) coordinate cellular energy metabolism, redox homeostasis and the balance of ROS production. However, the roles of MEDP members, particularly uncoupling protein (UCP), in resistance to turnip crinkle virus infection (TCV) are poorly understood. Here, we showed that disrupting some MEDP genes compromises plant resistance to TCV viral infection and this is partly associated with damaged photosynthetic characteristics, altered cellular redox and increased ROS production. Experiments using mutant plants with impaired cellular compartment redox poising further demonstrated that impaired chloroplast/mitochondria and cystosol redox increases the susceptibility of plants to viral infection. Our results illustrate a mechanism by which MEDP and cellular compartment redox act in concert to regulate plant resistance to viral infections.


Assuntos
Arabidopsis/fisiologia , Arabidopsis/virologia , Carmovirus/fisiologia , Mitocôndrias/virologia , Doenças das Plantas/virologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Cloroplastos/metabolismo , Cloroplastos/virologia , Genes de Plantas , Glutationa/genética , Glutationa/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fotossíntese , Doenças das Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
9.
PLoS Biol ; 13(12): e1002326, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26696443

RESUMO

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Vírus de RNA/fisiologia , RNA de Plantas/antagonistas & inibidores , RNA Interferente Pequeno/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Substituição de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carmovirus/fisiologia , Biologia Computacional/métodos , Cucumovirus/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Mutação Puntual , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Tobamovirus/fisiologia , Tymovirus/fisiologia
10.
Sci Rep ; 5: 15346, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26481091

RESUMO

Infection of plants with viruses containing multiple variants frequently leads to dominance by a few random variants in the systemically infected leaves (SLs), for which a plausible explanation is lacking. We show here that SL dominance by a given viral variant is adequately explained by its fortuitous lead in systemic spread, coupled with its resistance to superinfection by other variants. We analyzed the fate of a multi-variant turnip crinkle virus (TCV) population in Arabidopsis and N. benthamiana plants. Both wild-type and RNA silencing-defective plants displayed a similar pattern of random dominance by a few variant genotypes, thus discounting a prominent role for RNA silencing. When introduced to plants sequentially as two subpopulations, a twelve-hour head-start was sufficient for the first set to dominate. Finally, SLs of TCV-infected plants became highly resistant to secondary invasions of another TCV variant. We propose that random distribution of variant foci on inoculated leaves allows different variants to lead systemic movement in different plants. The leading variants then colonize large areas of SLs, and resist the superinfection of lagging variants in the same areas. In conclusion, superinfection resistance is the primary driver of random enrichment of viral variants in systemically infected plants.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Interferência Viral , Arabidopsis/virologia , Carmovirus/fisiologia , Ordem dos Genes , Variação Genética , Genoma Viral , Modelos Biológicos , Folhas de Planta/virologia
11.
Virus Res ; 210: 264-70, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26299399

RESUMO

The N-terminal 25 amino acids (AAs) of turnip crinkle virus (TCV) capsid protein (CP) are recognized by the resistance protein HRT to trigger a hypersensitive response (HR) and systemic resistance to TCV infection. This same region of TCV CP also contains a motif that interacts with the transcription factor TIP, as well as a nuclear localization signal (NLS). However, it is not yet known whether nuclear localization of TCV CP is needed for the induction of HRT-mediated HR and resistance. Here we present new evidence suggesting a tight correlation between nuclear inclusions formed by CP and the manifestation of HR. We show that a fraction of TCV CP localized to cell nuclei to form discrete inclusion-like structures, and a mutated CP (R6A) known to abolish HR failed to form nuclear inclusions. Notably, TIP-CP interaction augments the inclusion-forming activity of CP by tethering inclusions to the nuclear membrane. This TIP-mediated augmentation is also critical for HR resistance, as another CP mutant (R8A) known to elicit a less restrictive HR, though still self-associated into nuclear inclusions, failed to direct inclusions to the nuclear membrane due to its inability to interact with TIP. Finally, exclusion of CP from cell nuclei abolished induction of HR. Together, these results uncovered a strong correlation between nuclear localization and nuclear inclusion formation by TCV CP and induction of HR, and suggest that CP nuclear inclusions could be the key trigger of the HRT-dependent, yet TIP-reinforced, resistance to TCV.


Assuntos
Brassica napus/imunologia , Proteínas do Capsídeo/metabolismo , Carmovirus/imunologia , Carmovirus/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Brassica napus/virologia , Núcleo Celular/química , Núcleo Celular/virologia , Resistência à Doença , Corpos de Inclusão Intranuclear/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo
12.
J Proteomics ; 124: 11-24, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25892132

RESUMO

Phloem vasculature is the route that most plant viruses use to spread widely around the plant. In addition, phloem sap transports signals that trigger systemic defense responses to infection. We investigated the proteome-level changes that occur in phloem sap during virus infection using the 2D-DIGE technique. Total proteins were extracted from phloem exudates of healthy and Melon necrotic spot virus infected melon plants and analyzed by 2D-DIGE. A total of 1046 spots were detected but only 25 had significant changes in abundance. After mass spectrometry, 19 different proteins corresponding to 22 spots were further identified (13 of them up-accumulated and 9 down-accumulated). Most of them were involved in controlling redox balance and cell death. Only two of the differentially altered proteins had never been described to be present in the phloem before: a carboxylesterase and the fumarylacetoacetate hydrolase 1, both considered negative regulators of cell death. RT-PCR analysis of phloem sap RNAs revealed that the transcripts corresponding to some of the identified protein could be also loaded into the sieve elements. The impact of these proteins in the host response against viral infections and the potential involvement in regulating development, growth and stress response in melon plants is discussed. BIOLOGICAL SIGNIFICANCE: Despite the importance of phloem as an integrative pathway for resource distribution, signaling and plant virus transport little is known about the modifications induced by these pathogens in phloem sap proteome. Only one previous study has actually examined the phloem sap proteome during viral infection using conventional two-dimensional electrophoresis. Since the major limitation of this technique has been its low sensitivity, the authors only identified five phloem proteins with altered abundance. To circumvent this issue we use two-dimensional difference in-gel electrophoresis (2D DIGE) technique, which combined with DeCyder Differential Analysis Software allows a more accurate and sensitive quantitative analysis than with conventional 2D PAGE. We identified 19 different proteins which accumulation in phloem sap was altered during a compatible plant virus infection including redox and hypersensitivity response-related proteins. Therefore, this work would help to understand the basic processes that occur in phloem during plant-virus interaction.


Assuntos
Carmovirus/fisiologia , Cucurbitaceae/metabolismo , Cucurbitaceae/virologia , Floema/metabolismo , Floema/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Regulação da Expressão Gênica/fisiologia , Doenças das Plantas/virologia , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Proteoma/metabolismo
13.
Virus Res ; 206: 27-36, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25662021

RESUMO

Carmovirus is a genus of small, single-stranded, positive-strand RNA viruses in the Tombusviridae. One member of the carmoviruses, Turnip crinkle virus (TCV), has been used extensively as a model for examining the structure and function of RNA elements in 3'UTR as well as in other regions of the virus. Using a variety of genetic, biochemical and computational methods, a structure for the TCV 3'UTR has emerged where secondary structures and tertiary interactions combine to adopt higher order 3-D structures including an internal, ribosome-binding tRNA-shaped configuration that functions as a 3' cap-independent translation enhancer (3'CITE). The TCV 3'CITE also serves as a scaffold for non-canonical interactions throughout the 3'UTR and extending into the upstream open reading frame, interactions that are significantly disrupted upon binding by the RNA-dependent RNA polymerase. Long-distance interactions that connect elements in the 3'UTR with both the 5' end and the internal ribosome recoding site suggest that 3'UTR of carmoviruses are intimately involved in multiple functions in the virus life cycle. Although carmoviruses share very similar genome organizations, lengths of 5' and 3'UTRs, and structural features at the 3' end, the similarity rapidly breaks down the further removed from the 3' terminus revealing different 3'CITEs and unique virus-specific structural features. This review summarizes 20 years of work dissecting the structure and function of the 3'UTR of TCV and other carmoviruses. The astonishing structural complexity of the 3'UTRs of these simple carmoviruses provides lessons that are likely applicable to many other plant and animal RNA viruses.


Assuntos
Regiões 3' não Traduzidas , Carmovirus/genética , RNA Viral/genética , RNA Viral/metabolismo , Carmovirus/fisiologia , Modelos Moleculares , Conformação de Ácido Nucleico , Dobramento de RNA , Replicação Viral
14.
Mol Plant Microbe Interact ; 28(4): 387-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25372121

RESUMO

Melon necrotic spot virus (MNSV) (genus Carmovirus, family Tombusviridae) is a single-stranded, positive-sense RNA virus that has become an experimental model for the analysis of cell-to-cell virus movement and translation of uncapped viral RNAs, whereas little is known about its replication. Analysis of the cytopathology after MNSV infection showed the specific presence of modified organelles that resemble mitochondria. Immunolocalization of the glycine decarboxylase complex (GDC) P protein in these organelles confirmed their mitochondrial origin. In situ hybridization and immunolocalization experiments showed the specific localization of positive-sense viral RNA, capsid protein (CP), and double-stranded (ds)RNA in these organelles meaning that replication of the virus takes place in association with them. The three-dimensional reconstructions of the altered mitochondria showed the presence of large, interconnected, internal dilations which appeared to be linked to the outside cytoplasmic environment through pores and/or complex structures, and with lipid bodies. Transient expression of MNSV p29 revealed that its specific target is mitochondria. Our data document the extensive reorganization of host mitochondria induced by MNSV, which provides a protected environment to viral replication, and show that the MNSV p29 protein is the primary determinant of this effect in the host.


Assuntos
Carmovirus/fisiologia , Cucurbitaceae/virologia , Interações Hospedeiro-Patógeno/fisiologia , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Replicação Viral/fisiologia , Carmovirus/patogenicidade , Cucurbitaceae/citologia , Cucurbitaceae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Doenças das Plantas , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Virology ; 462-463: 71-80, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25092463

RESUMO

Infection of plants by multiple viruses is common in nature. Cucumber mosaic virus (CMV) and Turnip crinkle virus (TCV) belong to different families, but Arabidopsis thaliana and Nicotiana benthamiana are commonly shared hosts for both viruses. In this study, we found that TCV provides effective resistance to infection by CMV in Arabidopsis plants co-infected by both viruses, and this antagonistic effect is much weaker when the two viruses are inoculated into different leaves of the same plant. However, similar antagonism is not observed in N. benthamiana plants. We further demonstrate that disrupting the RNA silencing-mediated defense of the Arabidopsis host does not affect this antagonism, but capsid protein (CP or p38)-defective mutant TCV loses the ability to repress CMV, suggesting that TCV CP plays an important role in the antagonistic effect of TCV toward CMV in Arabidopsis plants co-infected with both viruses.


Assuntos
Arabidopsis/virologia , Proteínas do Capsídeo/metabolismo , Carmovirus/fisiologia , Cucumovirus/fisiologia , Interferência Viral , Proteínas do Capsídeo/genética , Carmovirus/genética , Deleção de Genes
16.
PLoS One ; 8(9): e74000, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019944

RESUMO

The p23 is a unique protein in the Hibiscus chlorotic ringspot virus which belongs to Family Tombusviridae Genus Carmovirus. Our previous results showed that the p23 is indispensable for host-specific replication and is localized in the nucleus with a novel nuclear localization signal. To investigate additional function(s) of p23, mutations of basic amino acids lysine (K), arginine (R) and histidine (H) that abolish its nuclear localization, were introduced into a biologically active full-length cDNA clone p223 of HCRSV for testing its effects on virus replication and virus movement in vivo. Primer-specific reverse transcription-PCR was conducted to detect gene transcript level of p23 and viral coat protein separately. Virus replication and its coat protein expression were detected by fluorescent in situ hybridization and Western blot, respectively. The effect of p23 was further confirmed by using artificial microRNA inoculation-mediated silencing. Results showed that the two mutants were able to replicate in protoplasts but unable to move from inoculated leaves to newly emerged leaves. Both the p23 and the CP genes of HCRSV were detected in the newly emerged leaves of infected plants but CP was not detected by Western blot and no symptom was observed on those leaves at 19 days post inoculation. This study demonstrates that when p23 is prevented from entering the nucleus, it results in restriction of virus long distance movement which in turn abrogates symptom expression in the newly emerged leaves. We conclude that the p23 protein of HCRSV is required for virus long distance movement.


Assuntos
Aminoácidos/genética , Carmovirus/fisiologia , Mutação , Sinais de Localização Nuclear/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Sequência de Bases , Western Blotting , Primers do DNA , Hibiscus/virologia , Hibridização in Situ Fluorescente , MicroRNAs/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Virais/fisiologia , Replicação Viral
17.
J Virol ; 87(22): 11987-2002, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986599

RESUMO

The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation.


Assuntos
Regiões 5' não Traduzidas/genética , Arabidopsis/metabolismo , Carmovirus/fisiologia , Elementos Facilitadores Genéticos/genética , Vírus do Mosaico/fisiologia , Biossíntese de Proteínas , RNA Viral/metabolismo , Ribossomos/metabolismo , Regiões 3' não Traduzidas/genética , Arabidopsis/genética , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Fator de Iniciação 4E em Eucariotos/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Saccharomyces cerevisiae
18.
Mol Plant Microbe Interact ; 25(12): 1574-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23134059

RESUMO

In both Hibiscus chlorotic ringspot virus (HCRSV)-infected and HCRSV coat protein (CP) agroinfiltrated plant leaves, we showed that sulfur metabolism pathway related genes-namely, sulfite oxidase (SO), sulfite reductase, and adenosine 5'-phosphosulfate kinase-were upregulated. It led us to examine a plausible relationship between sulfur-enhanced resistance (SED) and HCRSV infection. We broadened an established method to include different concentrations of sulfur (0S, 1S, 2S, and 3S) to correlate them to symptom development of HCRSV-infected plants. We treated plants with glutathione and its inhibitor to verify the SED effect. Disease resistance was induced through elevated glutathione contents during HCRSV infection. The upregulation of SO was related to suppression of symptom development induced by sulfur treatment. In this study, we established that HCRSV-CP interacts with SO which, in turn, triggers SED and leads to enhanced plant resistance. Thus, we have discovered a new function of SO in the SED pathway. This is the first report to demonstrate that the interaction of a viral protein and host protein trigger SED in plants. It will be interesting if such interaction applies generally to other host-pathogen interactions that will lead to enhanced pathogen defense.


Assuntos
Proteínas do Capsídeo/genética , Carmovirus/fisiologia , Hibiscus/imunologia , Doenças das Plantas/imunologia , Sulfito Oxidase/genética , Enxofre/metabolismo , Vias Biossintéticas , Proteínas do Capsídeo/metabolismo , Carmovirus/genética , Cloroplastos/metabolismo , Cistina/análise , Cistina/metabolismo , Regulação da Expressão Gênica de Plantas , Glutationa/análise , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Hibiscus/enzimologia , Hibiscus/genética , Hibiscus/virologia , Interações Hospedeiro-Patógeno , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peroxissomos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doenças das Plantas/virologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão , Plântula/enzimologia , Plântula/genética , Plântula/imunologia , Plântula/virologia , Sulfito Oxidase/metabolismo , Enxofre/farmacologia , Regulação para Cima , Proteínas Virais/genética , Proteínas Virais/metabolismo
19.
J Virol ; 86(12): 6847-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22496240

RESUMO

While RNA silencing is a potent antiviral defense in plants, well-adapted plant viruses are known to encode suppressors of RNA silencing (VSR) that can neutralize the effectiveness of RNA silencing. As a result, most plant genes involved in antiviral silencing were identified by using debilitated viruses lacking silencing suppression capabilities. Therefore, it remains to be resolved whether RNA silencing plays a significant part in defending plants against wild-type viruses. We report here that, at a higher plant growth temperature (26°C) that permits rigorous replication of Turnip crinkle virus (TCV) in Arabidopsis, plants containing loss-of-function mutations within the Dicer-like 2 (DCL2), Argonaute 2 (AGO2), and HEN1 RNA methyltransferase genes died of TCV infection, whereas the wild-type Col-0 plants survived to produce viable seeds. To account for the critical role of DCL2 in ensuring the survival of wild-type plants, we established that higher temperature upregulates the activity of DCL2 to produce viral 22-nucleotide (nt) small interfering RNAs (vsRNAs). We further demonstrated that DCL2-produced 22-nt vsRNAs were fully capable of silencing target genes, but that this activity was suppressed by the TCV VSR. Finally, we provide additional evidence supporting the notion that TCV VSR suppresses RNA silencing through directly interacting with AGO2. Together, these results have revealed a specialized RNA silencing pathway involving DCL2, AGO2, and HEN1 that provides the host plants with a competitive edge against adapted viruses under environmental conditions that facilitates robust virus reproduction.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Carmovirus/fisiologia , Proteínas de Ciclo Celular/imunologia , Doenças das Plantas/virologia , Proteínas de Ligação a RNA/imunologia , Ribonuclease III/imunologia , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas Argonautas , Carmovirus/genética , Proteínas de Ciclo Celular/genética , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Temperatura , Replicação Viral
20.
J Virol ; 86(8): 4065-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345459

RESUMO

The majority of the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) was previously identified as forming a highly interactive structure with a ribosome-binding tRNA-shaped structure (TSS) acting as a scaffold and undergoing a widespread conformational shift upon binding to RNA-dependent RNA polymerase (RdRp). Tertiary interactions in the region were explored by identifying two highly detrimental mutations within and adjacent to a hairpin H4 upstream of the TSS that reduce translation in vivo and cause identical structural changes in the loop of the 3' terminal hairpin Pr. Second-site changes that compensate for defects in translation/accumulation and reverse the structural differences in the Pr loop were found in the Pr stem, as well as in a specific stem within the TSS and within the capsid protein (CP) coding region, suggesting that the second-site changes were correcting a conformational defect and not restoring specific base pairing. The RdRp-mediated conformational shift extended upstream through this CP open reading frame (ORF) region after bypassing much of an intervening, largely unstructured region, supporting a connection between 3' elements and coding region elements. These data suggest that the Pr loop, TSS, and H4 are central elements in the regulation of translation and replication in TCV and allow for development of an RNA interactome that maps the higher-order structure of a postulated RNA domain within the 3' region of a plus-strand RNA virus.


Assuntos
Regiões 3' não Traduzidas , Carmovirus/genética , Carmovirus/metabolismo , Biossíntese de Proteínas , RNA Viral/química , Replicação Viral , Sequência de Bases , Carmovirus/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA