Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 165(1): 105-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24652345

RESUMO

The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants.


Assuntos
Parede Celular/metabolismo , Carofíceas/citologia , Carofíceas/metabolismo , Pectinas/metabolismo , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Celulose/metabolismo , Carofíceas/efeitos dos fármacos , Carofíceas/ultraestrutura , Ácido Edético/análogos & derivados , Ácido Edético/farmacologia , Epitopos/metabolismo , Análise em Microsséries , Modelos Biológicos , Pectinas/química , Pectinas/imunologia , Poligalacturonase/metabolismo , Polissacarídeo-Liases/metabolismo
2.
Plant J ; 68(2): 201-11, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21707800

RESUMO

Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.


Assuntos
Evolução Biológica , Parede Celular/química , Carofíceas/química , Lignina/análise , Polissacarídeos/análise , Anticorpos Monoclonais , Parede Celular/genética , Parede Celular/ultraestrutura , Celulose/análise , Carofíceas/genética , Carofíceas/ultraestrutura , Ácido Edético/análogos & derivados , Ácido Edético/química , Embriófitas/química , Embriófitas/genética , Embriófitas/ultraestrutura , Epitopos , Imunofluorescência , Genes de Plantas/genética , Glicoproteínas/análise , Análise em Microsséries , Pectinas/análise , Filogenia , Plantas , Hidróxido de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA