Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 282: 119112, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123747

RESUMO

In this study, a biodegradable photodynamic antibacterial film (Car-Cur) was prepared using casting method with κ-Carrageenan (κ-Car) as film-forming substrate and curcumin-ß-cyclodextrin (Cur-ß-CD) complex as photosensitizer. The comprehensive performance of this Car-Cur film was investigated. The obtained results showed that the concentration of Cur-ß-CD was an important factor determining the properties of film including tensile strength (TS) elongation at break (EB), water vapor permeability (WVP), water content (WC) and thermal stability. When the concentration of Cur-ß-CD is 1%, the film demonstrated the maximum TS and EB, increased thermal stability, with desirable WVP and WC. Furthermore, this film also showed good photodynamic antibacterial potential against Staphylococcus aureus and Escherichia coli upon irradiation of blue LED light. Moreover, the film can be degraded in the soil in one week. In conclusion, our results suggested Car-Cur photodynamic film could be developed as biodegradable antimicrobial packaging material for food preservation.


Assuntos
Antibacterianos , Carragenina , Curcumina , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes , Staphylococcus aureus/efeitos dos fármacos , beta-Ciclodextrinas , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/efeitos da radiação , Carragenina/administração & dosagem , Carragenina/química , Carragenina/efeitos da radiação , Curcumina/administração & dosagem , Curcumina/química , Curcumina/efeitos da radiação , Escherichia coli/crescimento & desenvolvimento , Embalagem de Alimentos , Temperatura Alta , Luz , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Staphylococcus aureus/crescimento & desenvolvimento , Vapor , Resistência à Tração , beta-Ciclodextrinas/administração & dosagem , beta-Ciclodextrinas/química , beta-Ciclodextrinas/efeitos da radiação
2.
PLoS One ; 12(7): e0180129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28708833

RESUMO

Carrageenan has been proved as potent growth promoting substance in its depolymerized form. However, relatively little is known about its role in counteracting the adverse effects of drought stress on plants. In a pot experiment, lemongrass (Cymbopogon flexuosus Steud.), grown under different water stress regimes [(100% field capacity (FC), 80% FC and 60% FC)], was sprayed with 40, 80 and 120 mg L-1 of gamma irradiated carrageenan (ICA). Foliar application of ICA mitigated the harmful effects of drought stress to various extents and improved the biochemical characteristics, quality attributes and active constituents (citral and geraniol) of lemongrass significantly. Among the applied treatments, ICA-80 mg L-1 proved the best in alleviating detrimental effects of drought. However, drought stress (80 and 60% FC), irrespective of the growth stages, had an adverse impact on most of the studied attributes. Generally, 60% FC proved more deleterious than 80% FC. At 80% FC, application of ICA-80 mg L-1 elevated the essential oil (EO) content by 18.9 and 25%, citral content by 7.33 and 8.19% and geraniol content by 9.2 and 8.9% at 90 and 120 days after planting (DAP), respectively, as compared to the deionized-water (DW) spray treatment (80% FC+ DW). Whereas, at 60% FC, foliar application of 80 mg L-1 ICA significantly augmented the EO content by 15.4 and 17.8% and active constituents viz. citral and geraniol, by 5.01 and 5.62% and by 6.06 and 5.61% at 90 and 120 DAP, respectively, as compared to the control (water-spray treatment).


Assuntos
Carragenina/farmacologia , Cymbopogon/efeitos dos fármacos , Óleos Voláteis/análise , Água/metabolismo , Anidrases Carbônicas/metabolismo , Carragenina/química , Carragenina/efeitos da radiação , Cromatografia Gasosa , Cymbopogon/crescimento & desenvolvimento , Cymbopogon/fisiologia , Secas , Raios gama , Nitrato Redutase/metabolismo , Óleos Voláteis/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo
3.
Adv Healthc Mater ; 2(6): 895-907, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23281344

RESUMO

Kappa carrageenan (κ-CA) is a natural-origin polymer that closely mimics the glycosaminoglycan structure, one of the most important constituents of native tissues extracellular matrix. Previously, it has been shown that κ-CA can crosslink via ionic interactions rendering strong, but brittle hydrogels. In this study, we introduce photocrosslinkable methacrylate moieties on the κ-CA backbone to create physically and chemically crosslinked hydrogels highlighting their use in the context of tissue engineering. By varying the degree of methacrylation, the effect on hydrogel crosslinking was investigated in terms of hydration degree, dissolution profiles, morphological, mechanical, and rheological properties. Furthermore, the viability of fibroblast cells cultured inside the photocrosslinked hydrogels was investigated. The combination of chemical and physical crosslinking procedures enables the formation of hydrogels with highly versatile physical and chemical properties, while maintaining the viability of encapsulated cells. To our best knowledge, this is the first study reporting the synthesis of photocrosslinkable κ-CA with controllable compressive moduli, swelling ratios and pore size distributions. Moreover, by micromolding approaches, spatially controlled geometries and cell distribution patterns could be obtained, thus enabling the development of cell-material platforms that can be applied and tailored to a broad range of tissue engineering strategies.


Assuntos
Carragenina/química , Sobrevivência Celular/fisiologia , Hidrogéis/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Animais , Carragenina/efeitos da radiação , Força Compressiva , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/efeitos da radiação , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Dureza , Hidrogéis/efeitos da radiação , Luz , Teste de Materiais , Camundongos , Células NIH 3T3 , Fotoquímica/métodos , Viscosidade
4.
Int J Biol Macromol ; 42(1): 55-61, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17977594

RESUMO

The conformational associative properties of kappa-, iota-, and lambda-carrageenan and agar with irradiation dose were studied by dynamic light scattering. The random scission of the carrageenans and agar by gamma irradiation resulted in the formation of polydispersed lower molecular weight fragments. At high doses, the system moves towards uniformity. Conformational change from coil to helix was observed in all carrageenans and agar at doses up to 100 kGy. The conformational change in lambda-carrageenan may be due to the irregular and hybrid structure of this polysaccharide. Only agar and lambda-carrageenan still undergo conformational transition at a high dose of 200 kGy. Gelation is observed for kappa-, iota-carrageenan up to a dose of 50 kGy while gelation is still observed at 100 kGy for agar. Increase in the hydrodynamic radius with decreasing temperatures for the non-irradiated carrageenans follows this order: lambda-carrageenan>kappa-carrageenan>iota-carrageenan. Slight increases in hydrodynamic radius were observed with irradiation.


Assuntos
Ágar/química , Ágar/efeitos da radiação , Carragenina/química , Carragenina/efeitos da radiação , Configuração de Carboidratos/efeitos da radiação , Sequência de Carboidratos , Raios gama , Luz , Dados de Sequência Molecular , Espalhamento de Radiação , Temperatura
5.
Int J Biol Macromol ; 34(1-2): 81-8, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15178013

RESUMO

Investigation of the dynamic behavior of irradiated kappa carrageenan (in KCl) as a function of irradiation dose and temperature was done by dynamic light scattering (DLS). The intensity correlation function (ICF) shifted towards shorter relaxation times with increasing radiation dose as a result of radiolysis. The characteristic decay time distribution function, G(gamma), indicates the presence of fast and slow mode peaks respectively at around 0.1-10 ms and 100-1000 ms. A peak broadening of the fast mode peak in G(gamma) appeared with decreasing temperature, indicating that coil-to-helical conformational transition took place. The conformation transition temperature (CTT) decreased with increasing radiation dose. No transition was observed for kappa-carrageenan irradiated at 200 kGy. A new faster relaxation mode appeared at around 0.1-1 ms at temperatures below the CTT. This peak is found in kappa-carrageenan irradiated at doses exclusively between 75 and 175 kGy. The peak height of this mode is largest at 100 kGy which corresponds to the optimum biologic activity of kappa-carrageenan reported previously.


Assuntos
Carragenina/química , Carragenina/efeitos da radiação , Carragenina/farmacologia , Relação Dose-Resposta à Radiação , Géis , Luz , Peso Molecular , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Espalhamento de Radiação , Fatores de Tempo , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA