Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Sci Adv ; 10(19): eadj5185, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728403

RESUMO

CK1 kinases participate in many signaling pathways, and their regulation is of meaningful biological consequence. CK1s autophosphorylate their C-terminal noncatalytic tails, and eliminating these tails increases substrate phosphorylation in vitro, suggesting that the autophosphorylated C-termini act as inhibitory pseudosubstrates. To test this prediction, we comprehensively identified the autophosphorylation sites on Schizosaccharomyces pombe Hhp1 and human CK1ε. Phosphoablating mutations increased Hhp1 and CK1ε activity toward substrates. Peptides corresponding to the C-termini interacted with the kinase domains only when phosphorylated, and substrates competitively inhibited binding of the autophosphorylated tails to the substrate binding grooves. Tail autophosphorylation influenced the catalytic efficiency with which CK1s targeted different substrates, and truncating the tail of CK1δ broadened its linear peptide substrate motif, indicating that tails contribute to substrate specificity as well. Considering autophosphorylation of both T220 in the catalytic domain and C-terminal sites, we propose a displacement specificity model to describe how autophosphorylation modulates substrate specificity for the CK1 family.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Especificidade por Substrato , Fosforilação , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Humanos , Domínio Catalítico , Ligação Proteica , Peptídeos/metabolismo , Peptídeos/química , Mutação , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase 1 épsilon/genética , Sequência de Aminoácidos
2.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780468

RESUMO

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pteridinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pteridinas/farmacologia , Pteridinas/química , Pteridinas/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Linhagem Celular Tumoral
3.
Neurobiol Dis ; 196: 106516, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677657

RESUMO

Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology. Here we pursued studies to investigate in cellular models and in vitro how CK1ε and CK1δ (a closely related family sub-member) mediate TDP-43 phosphorylation in disease. We first validated the binding interaction between TDP-43 and either CK1δ and CK1ε using kinase activity assays and predictive bioinformatic database. We utilized novel inducible cellular models that generated translocated phosphorylated TDP-43 (pTDP-43) and cytoplasmic aggregation. Reducing CK1 kinase activity with siRNA or small molecule chemical inhibitors resulted in significant reduction of pTDP-43, in both soluble and insoluble protein fractions. We also established CK1δ and CK1ε are the primary kinases that phosphorylate TDP-43 compared to CK2α, CDC7, ERK1/2, p38α/MAPK14, and TTBK1, other identified kinases that have been implicated in TDP-43 phosphorylation. Throughout our studies, we were careful to examine both the soluble and insoluble TDP-43 protein fractions, the critical protein fractions related to protein aggregation diseases. These results identify CK1s as critical kinases involved in TDP-43 hyperphosphorylation and aggregation in cellular models and in vitro, and in turn are potential therapeutic targets by way of CK1δ/ε inhibitors.


Assuntos
Esclerose Lateral Amiotrófica , Caseína Quinase 1 épsilon , Caseína Quinase Idelta , Proteínas de Ligação a DNA , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Humanos , Caseína Quinase Idelta/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Células HEK293
4.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361750

RESUMO

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from Acacia auriculiformis stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases. Betulin was shown to inhibit Abelson murine leukemia viral oncogene homolog 1 (ABL1) kinase, casein kinase 1ε (CK1ε), glycogen synthase kinase 3α/ß (GSK-3 α/ß), Janus kinase 3 (JAK3), NIMA Related Kinase 6 (NEK6), and vascular endothelial growth factor receptor 2 kinase (VEGFR2) with activities in the micromolar range for each. The effect of betulin on the cell viability of doxorubicin-resistant K562R chronic myelogenous leukemia cells was then verified to investigate its putative use as an anti-cancer compound. Betulin was shown to modulate the mitogen-activated protein (MAP) kinase pathway, with activity similar to that of imatinib mesylate, a known ABL1 kinase inhibitor. The interaction of betulin and ABL1 was studied by molecular docking, revealing an interaction of the inhibitor with the ABL1 ATP binding pocket. Together, these data demonstrate that betulin is a multi-target inhibitor of protein kinases, an activity that can contribute to the anticancer properties of the natural compound and to potential treatments for leukemia.


Assuntos
Acacia/química , Antineoplásicos Fitogênicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Triterpenos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Apoptose/genética , Sítios de Ligação , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Células K562 , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Quinases Relacionadas a NIMA/antagonistas & inibidores , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Casca de Planta/química , Extratos Vegetais/química , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-abl/química , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Transdução de Sinais , Triterpenos/química , Triterpenos/isolamento & purificação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Cancer Med ; 10(9): 3139-3152, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33818013

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common malignant disease worldwide. Although the diagnosis and treatment of HCC have greatly improved in the recent years, there is still a lack of accurate methods to predict the prognosis of patients. Evidence has shown that Hippo signaling in tissues adjacent to HCC plays a significant role in HCC development. In the present study, we aimed to construct a model based on the expression of Hippo-related genes (HRGs) in tissues adjacent to HCC to predict the prognosis of HCC patients. METHODS: Gene expression data of paired normal tissues adjacent to HCC (PNTAH) and clinical information were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The HRG signature was constructed using four canonical Hippo-related pathways. Univariate Cox regression analysis was used to screen survival-related HRGs. LASSO and multivariate Cox regression analyses were used to construct the prognostic model. The true and false positive rates of the model were confirmed using receiver operating characteristic (ROC) analysis. RESULTS: The prognostic model was constructed based on the expression levels of five HRGs (NF2, MYC, BIRC3, CSNK1E, and MINK1) in PNTAH. The mortality rate of HCC patients increased as the risk score determined by the model increased. Furthermore, the risk score was found to be an independent risk factor for the survival of patients. ROC analysis showed that the prognostic model had a better predictive value than the other conventional clinical parameters. Moreover, the reliability of the prognostic model was confirmed in TCGA-LIHC cohort. A nomogram was generated to predict patient survival. An exploration of the predictive value of the model in HCC tissues indicated that the model is PNTAH-specific. CONCLUSIONS: We developed and validated a prognostic model based on the expression levels of five HRGs in PNTAH, and this model should be helpful in predicting the prognosis of patients with HCC.


Assuntos
Carcinoma Hepatocelular/genética , Expressão Gênica , Neoplasias Hepáticas/genética , Fígado , Proteínas de Neoplasias/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Caseína Quinase 1 épsilon/genética , Caseína Quinase 1 épsilon/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Via de Sinalização Hippo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Nomogramas , Prognóstico , Modelos de Riscos Proporcionais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Curva ROC , Fatores de Risco , Transcriptoma , Adulto Jovem
6.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899434

RESUMO

Casein Kinase 1 epsilon (CK1ε) is a member of the serine (Ser)/threonine (Thr) CK1 family, known to have crucial roles in several biological scenarios and, ever more frequently, in pathological contexts, such as cancer. Recently, the human DEAD-box RNA helicase 3 X-linked (DDX3X), involved in cancer proliferation and viral infections, has been identified as one of CK1ε substrates and its positive regulator in the Wnt/ß-catenin network. However, the way by which these two proteins influence each other has not been fully clarified. In order to further investigate their interplay, we defined the kinetic parameters of CK1ε towards its substrates: ATP, casein, Dvl2 and DDX3X. CK1ε affinity for ATP depends on the nature of the substrate: increasing of casein concentrations led to an increase of KmATP, while increasing DDX3X reduced it. In literature, DDX3X is described to act as an allosteric activator of CK1ε. However, when we performed kinase reactions combining DDX3X and casein, we did not find a positive effect of DDX3X on casein phosphorylation by CK1ε, while both substrates were phosphorylated in a competitive manner. Moreover, CK1ε positively stimulates DDX3X ATPase activity. Our data provide a more detailed kinetic characterization on the functional interplay of these two proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Caseínas/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Caseína Quinase 1 épsilon/genética , RNA Helicases DEAD-box/genética , Humanos , Cinética , Fosforilação , Proteínas Wnt/genética , beta Catenina/genética
7.
Biochem Biophys Res Commun ; 532(3): 406-413, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32888647

RESUMO

The canonical Wnt signaling pathway plays a crucial role in embryonic development, tissue homeostasis and cancer progression. The binding of Wnt ligands to their cognate receptors, the Frizzled (Fzd) family of proteins, recruits Dishevelled segment polarity protein (Dvl) to the plasma membrane and induces its phosphorylation via casein kinase 1 (CK1), which leads to the activation of ß-catenin. Previous studies showed that Dishevelled-associating protein with a high frequency of leucine residues (Daple) is an important component of the Wnt signaling pathway and essential for Dvl phosphorylation. However, the mechanism by which Daple promotes CK1-mediated phosphorylation of Dvl is not fully understood. In this study, we found that Daple overexpression induced CK1ε-mediated Dvl2 phosphorylation at threonine 224 (Thr224). A Daple mutant (Daple ΔGCV) that lacks a carboxyl-terminal motif to associate with Dvl, retained the ability to interact with CK1ε, but did not induce Dvl phosphorylation, suggesting the importance of the Daple/Dvl/CK1ε trimeric protein complex. We further found that Thr224 phosphorylation of Dvl was required for full activation of ß-catenin transcriptional activity. Consistent with this, wild-type Daple promoted ß-catenin transcriptional activity, following dissociation of ß-catenin and axin. Finally, Wnt3a stimulation increased the membrane localization of Daple and its association with Dvl, and Daple knockdown attenuated Wnt3a-mediated ß-catenin transcriptional activity. Collectively, these data suggested a essential role of spatial Daple localization in CK1ε-mediated activation of Dvl in the canonical Wnt signaling pathway.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Proteínas Desgrenhadas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteínas de Transporte/metabolismo , Proteínas Desgrenhadas/química , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células L , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/genética , Fosforilação , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
8.
PLoS Genet ; 16(8): e1008820, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750048

RESUMO

The core planar polarity proteins are essential mediators of tissue morphogenesis, controlling both the polarised production of cellular structures and polarised tissue movements. During development the core proteins promote planar polarisation by becoming asymmetrically localised to opposite cell edges within epithelial tissues, forming intercellular protein complexes that coordinate polarity between adjacent cells. Here we describe a novel protein complex that regulates the asymmetric localisation of the core proteins in the Drosophila pupal wing. DAnkrd49 (an ankyrin repeat protein) and Bride of Doubletime (Bdbt, a non-canonical FK506 binding protein family member) physically interact, and regulate each other's levels in vivo. Loss of either protein results in a reduction in core protein asymmetry and disruption of the placement of trichomes at the distal edge of pupal wing cells. Post-translational modifications are thought to be important for the regulation of core protein behaviour and their sorting to opposite cell edges. Consistent with this, we find that loss of DAnkrd49 or Bdbt leads to reduced phosphorylation of the core protein Dishevelled and to decreased Dishevelled levels both at cell junctions and in the cytoplasm. Bdbt has previously been shown to regulate activity of the kinase Discs Overgrown (Dco, also known as Doubletime or Casein Kinase Iε), and Dco itself has been implicated in regulating planar polarity by phosphorylating Dsh as well as the core protein Strabismus. We demonstrate that DAnkrd49 and Bdbt act as dominant suppressors of Dco activity. These findings support a model whereby Bdbt and DAnkrd49 act together to modulate the activity of Dco during planar polarity establishment.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Morfogênese , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Caseína Quinase 1 épsilon/genética , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Mutação com Perda de Função , Ligação Proteica , Transporte Proteico , Proteínas de Ligação a Tacrolimo/genética , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento
9.
Sci Rep ; 10(1): 6797, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321936

RESUMO

Human casein kinase 1 delta (CK1δ) and epsilon (CK1ε) are members of a conserved family of abundant, ubiquitously expressed serine/threonine kinases that regulate multiple cellular processes including circadian rhythm and endocytosis. Here, we have investigated the localization and interactomes of endogenously tagged CK1δ and CK1ε during interphase and mitosis. CK1δ and CK1ε localize to centrosomes throughout the cell cycle, and in interphase cells to the nucleus, and in both a diffuse and punctate pattern in the cytoplasm. Also, for the first time, they were detected at the midbody during cell division. Mass spectrometry analysis identified a total of 181 proteins co-purifying with a Venus multifunctional (VM)-tagged CK1δ and/or CK1ε. GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1), a protein required for efficient endocytosis, was consistently one of the most abundant interacting partners. We demonstrate that GAPVD1 is a substrate of CK1δ/ε with up to 38 phosphorylated residues in vitro and in vivo. Wildtype and a phosphomimetic mutant of GAPVD1, but not a phospho-ablating mutant, were able to rescue defects in transferrin and EGF internalization caused by loss of endogenous GAPVD1. Our results indicate that GAPVD1 is an important interacting partner and substrate of CK1δ/ε for endocytosis.


Assuntos
Sistemas CRISPR-Cas , Caseína Quinase 1 épsilon/genética , Caseína Quinase Idelta/genética , Endocitose/genética , Marcação de Genes/métodos , Fosfoproteínas/genética , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Células HEK293 , Células HeLa , Humanos , Interfase/genética , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Especificidade por Substrato
10.
FASEB J ; 34(5): 6466-6478, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32175635

RESUMO

Osteoarthritis (OA) is a high-morbidity skeletal disease worldwide and the exact mechanisms underlying OA pathogenesis are not fully understood. Casein kinase 1 epsilon (CK1ε) is a serine/threonine protein kinase, but its relationship with OA is still unknown. We demonstrated that CK1ε was upregulated in articular cartilage of human patients with OA and mice with experimentally induced OA. Activity of CK1ε, demonstrated by analysis of phosphorylated substrates, was significantly elevated in interleukin (IL)-1ß-induced OA-mimicking chondrocytes. CK1ε inhibitor or CK1ε short hairpin RNA (shRNA) partially blocked matrix metalloproteinase (MMP) expression by primary chondrocytes induced by IL-1ß, and also inhibited cartilage destruction in knee joints of experimental OA model mice. Conversely, overexpression of CK1ε promoted chondrocyte catabolism. Previous studies indicated that CK1ε was involved in canonical Wnt/ß-catenin signaling and noncanonical Wnt/c-Jun N-terminal kinase (JNK) signaling pathway. Interestingly, the activity of JNK but not ß-catenin decreased after CK1ε knockdown in IL-1ß-treated chondrocytes in vitro, and JNK inhibition reduced MMP expression in chondrocytes overexpressing CK1ε, which illustrated that CK1ε-mediated OA was based on JNK pathway. In conclusion, our results demonstrate that CK1ε promotes OA development, and inhibition of CK1ε could be a potential strategy for OA treatment in the future.


Assuntos
Cartilagem Articular/patologia , Caseína Quinase 1 épsilon/metabolismo , Condrócitos/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Osteoartrite/patologia , Animais , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Caseína Quinase 1 épsilon/genética , Células Cultivadas , Condrócitos/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo , Fosforilação , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(4): 1962-1970, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932442

RESUMO

Necroptosis is a regulated necrotic cell death pathway, mediated by a supermolecular complex called the necrosome, which contains receptor-interacting protein kinase 1 and 3 (RIPK1, RIPK3) and mixed-lineage kinase domain-like protein (MLKL). Phosphorylation of human RIPK3 at serine 227 (S227) has been shown to be required for downstream MLKL binding and necroptosis progression. Tandem immunoprecipitation of RIPK3 reveals that casein kinase 1 (CK1) family proteins associate with the necrosome upon necroptosis induction, and this interaction depends on the kinase activity of RIPK3. In addition, CK1 proteins colocalize with RIPK3 puncta during necroptosis. Importantly, CK1 proteins directly phosphorylate RIPK3 at S227 in vitro and in vivo. Loss of CK1 proteins abolishes S227 phosphorylation and blocks necroptosis. Furthermore, a RIPK3 mutant with mutations in the CK1 recognition motif fails to be phosphorylated at S227, does not bind or phosphorylate MLKL, and is unable to activate necroptosis. These results strongly suggest that CK1 proteins are necrosome components which are responsible for RIPK3-S227 phosphorylation.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Ialfa/metabolismo , Caseína Quinase Idelta/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina/metabolismo , Caseína Quinase 1 épsilon/genética , Caseína Quinase Ialfa/genética , Caseína Quinase Idelta/genética , Células HeLa , Humanos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Serina/genética
12.
Biochem Biophys Res Commun ; 523(3): 809-815, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31954519

RESUMO

Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide that responds poorly to existing therapies. The Casein kinase 1 (CK1) isoforms CK1δ and CK1ε are reported to be highly expressed in several tumor types, and both genetic and pharmacological inhibition of CK1δ/ε activity has deleterious effects on tumor cell growth. IC261, an CK1δ/ε selectively inhibitor, shows anti-tumor effect against pancreatic tumor and glioblastoma, but its role in HCC remains poorly characterized. In our research, IC261 displayed time- and dose-dependent inhibition of HCC cell proliferation, and induced G2/M arrest and cell apoptosis in vitro. However, the anti-tumor effects of IC261 was independent of CK1δ/ε. Additionally, IC261 was verified to induce centrosome fragmentation during mitosis independent of CK1δ status, and intraperitoneal injection of IC261 to HCCLM3 xenograft models inhibited tumor growth. Taken together, our data indicated that IC261 has therapeutic potential for HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase Idelta/antagonistas & inibidores , Indóis/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Floroglucinol/análogos & derivados , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Carcinoma Hepatocelular/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Humanos , Indóis/farmacologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Floroglucinol/farmacologia , Floroglucinol/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
13.
Brain Pathol ; 30(2): 283-297, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376192

RESUMO

Alzheimer's disease (AD) is characterized by the presence of extracellular amyloid ß plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated microtubule-associated protein tau in the brain. Aggregation of transactive response DNA-binding protein of 43 kDa (TDP-43) in the neuronal cytoplasm is another feature of AD. However, how TDP-43 is associated with AD pathogenesis is unknown. Here, we found that casein kinase 1ε (CK1ε) phosphorylated TDP-43 at Ser403/404 and Ser409/410. In AD brains, the level of CK1ε was dramatically increased and positively correlated with the phosphorylation of TDP-43 at Ser403/404 and Ser409/410. Overexpression of CK1ε promoted its cytoplasmic aggregation and suppressed TDP-43-promoted tau mRNA instability and tau exon 10 inclusion, leading to an increase of tau and 3R-tau expressions. Levels of CK1ε and TDP-43 phosphorylation were positively correlated with the levels of total tau and 3R-tau in human brains. Furthermore, we observed, in pilot immunohistochemical studies, that the severe tau pathology was accompanied by robust TDP-43 pathology and a high level of CK1ε. Taken together, our findings suggest that the elevation of CK1ε in AD brain may phosphorylate TDP-43, promote its cytoplasmic aggregation and suppress its function in tau mRNA processing, leading to acceleration/exacerbation of tau pathology. Thus, the elevation of CK1ε may link TDP-43 to tau pathogenesis in AD brain.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Caseína Quinase 1 épsilon/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Fosforilação , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
14.
J Vet Med Sci ; 81(11): 1680-1684, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31582600

RESUMO

The molecular clock network in mast cells has been shown to be a factor responsible for circadian regulation of allergic inflammation. PF670462 is a selective inhibitor of casein kinase 1δ and ε (CK1δ/ε) that control the posttranslational modification of clock proteins. The aims of this study were to evaluate the effects of PF670462 on gene and protein expression of FcεRI, the high-affinity IgE receptor, in canine mast cells and on IgE-mediated immediate-type cutaneous reactions in dogs. PF670462 decreased mRNA expression of FcεRIα and ß, but not γ, and protein expression of FcεRI in a canine mast cell line. Furthermore, PF670462 suppressed IgE-mediated immediate-type cutaneous erythema in dogs. These findings indicate that CK1δ/ε function as regulators for FcεRI expression and IgE-mediated cutaneous reactions in dogs.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Idelta/antagonistas & inibidores , Doenças do Cão/metabolismo , Imunoglobulina E/metabolismo , Pirimidinas/farmacologia , Receptores de IgE/metabolismo , Anafilaxia , Animais , Caseína Quinase 1 épsilon/genética , Doenças do Cão/genética , Cães , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Mastócitos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de IgE/genética
15.
Eur Rev Med Pharmacol Sci ; 23(17): 7327-7337, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31539119

RESUMO

OBJECTIVE: Prostate cancer, one of the most common malignant tumors in urology, now has become a malignant disease that seriously threatens the health of men in China. Although there are a large number of clinical studies on the treatment of patients with prostate cancer, many patients have entered the advanced stage of diagnosis, and little is known about its pathogenesis. MATERIALS AND METHODS: We identified a series of ncRNA and TF by differential expression analysis, co-expression analysis, enrichment analysis, connectivity analysis, and hypergeometric test strategies for prostate cancer expression genomes. RESULTS: 53 modules related to prostate cancer PC-3 cells were obtained, involving module focusing of 4448 genes. Based on these modules, we predicted that miR-26a-5p, miR-130a-3p, miR-519d-3p, etc. have important regulatory effects on prostate cancer PC-3 cells. At the same time, a series of transcription factors (relating to RELA, SOX10, TP53, and TWIST2, etc.) were obtained and may play a key regulatory role in prostate cancer PC-3 cell-related modules. CONCLUSIONS: These results suggest that FENDRR in prostate cancer may reduce tumor invasion in prostate cancer PC-3 cells by targeting CSNK1E, which may have favourable effort to better understand the underlying pathogenesis of prostate cancer and provide a tough theoretical basis for further studying prostate cancer.


Assuntos
Caseína Quinase 1 épsilon/genética , Regulação para Baixo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , Caseína Quinase 1 épsilon/metabolismo , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
16.
Biochem Biophys Res Commun ; 517(2): 310-316, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31353086

RESUMO

The ATR-dependent DNA damage checkpoint is one of the major checkpoint pathways. The interaction between the Rad17-RFC2-5 and 9-1-1 complexes is central to the ATR-Chk1 pathway. However, little is known about the regulation of the interaction. We recently showed that vertebrate Rad17 proteins share a conserved C-terminal tail and that the C-terminal tails have a conserved amino acid motif named iVERGE that must be intact for the interaction between Rad17 and the 9‒1‒1 complex. In human Rad17, the Y665 and S667 residues are conserved in iVERGE. The Rad17-S667 residue is phosphorylated by CK2, and the phosphorylation is important for the interaction with the 9‒1‒1 complex. Here, we show that a C-terminal threonine residue of Rad17, T670 in human Rad17, is constitutively phosphorylated in vivo. The T670 phosphorylation is important for the S667 phosphorylation, and vice versa. Phosphomimetic mutations in the T670 residue promote the interaction with the 9-1-1 complex. The T670 and Y665 residues show functional redundancy, and their roles are dependent on the S667 phosphorylation. Rad17-T670 is phosphorylated by casein kinase 1δ/ε. Our data suggest that iVERGE integrates multiple signaling pathways to regulate the ATR-Chk1 pathway.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase Idelta/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mapas de Interação de Proteínas , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células COS , Proteínas de Ciclo Celular/química , Chlorocebus aethiops , Dano ao DNA , Humanos , Fosforilação , Transdução de Sinais
17.
Elife ; 82019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090542

RESUMO

The conserved core planar polarity pathway is essential for coordinating polarised cell behaviours and the formation of polarised structures such as cilia and hairs. Core planar polarity proteins localise asymmetrically to opposite cell ends and form intercellular complexes that link the polarity of neighbouring cells. This asymmetric segregation is regulated by phosphorylation through poorly understood mechanisms. We show that loss of phosphorylation of the core protein Strabismus in the Drosophila pupal wing increases its stability and promotes its clustering at intercellular junctions, and that Prickle negatively regulates Strabismus phosphorylation. Additionally, loss of phosphorylation of Dishevelled - which normally localises to opposite cell edges to Strabismus - reduces its stability at junctions. Moreover, both phosphorylation events are independently mediated by Casein Kinase Iε. We conclude that Casein Kinase Iε phosphorylation acts as a switch, promoting Strabismus mobility and Dishevelled immobility, thus enhancing sorting of these proteins to opposite cell edges.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Polaridade Celular , Proteínas Desgrenhadas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Proteínas de Membrana/metabolismo , Animais , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pupa/enzimologia , Pupa/fisiologia , Asas de Animais/enzimologia , Asas de Animais/fisiologia
18.
Nat Commun ; 10(1): 1804, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000703

RESUMO

Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Proteínas Desgrenhadas/metabolismo , Domínios PDZ/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Técnicas Biossensoriais , Caseína Quinase 1 épsilon/genética , Proteínas Desgrenhadas/genética , Ensaios Enzimáticos/métodos , Transferência Ressonante de Energia de Fluorescência , Receptores Frizzled/metabolismo , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Microscopia de Fluorescência/métodos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oócitos , Fosforilação/fisiologia , Análise de Célula Única/métodos , Xenopus laevis
19.
Bioorg Med Chem Lett ; 28(23-24): 3681-3684, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30385160

RESUMO

Our internal casein kinase 1ε lead inhibitor, compound 1 was partially cleared by the polymorphic cytochrome P450 2D6. CYP2D6 involvement in metabolism implies more extensive clinical trials. We therefore wanted to reduce the contribution to clearance by this enzyme. We utilized metabolism reports for compound 1 performed in recombinant CYP2D6 together with structure-metabolism variation in structures of closely related analogs in order to see if we could incorporate similar substitution patterns in our lead compound. In addition, we utilized a previously established docking method using a modified CYP2D6 crystal structure to see if the metabolism patterns in CYP2D6 could be reproduced to afford the metabolites in the metabolism reports as well as those for the compounds used in the structure-metabolism relationship. All three of these steps, the metabolism report, the establishment of structure-metabolism relationships and the docking, lead to compound 10 where CYP2D6 was not involved in the clearance pathways.


Assuntos
Caseína Quinase 1 épsilon/antagonistas & inibidores , Citocromo P-450 CYP2D6/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Sítios de Ligação , Caseína Quinase 1 épsilon/metabolismo , Cristalografia por Raios X , Citocromo P-450 CYP2D6/genética , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
J Biol Chem ; 293(42): 16337-16347, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30166345

RESUMO

Intrinsically disordered regions (IDRs) are protein regions that lack persistent secondary or tertiary structure under native conditions. IDRs represent >40% of the eukaryotic proteome and play a crucial role in protein-protein interactions. The classical approach for identification of these interaction interfaces is based on mutagenesis combined with biochemical techniques such as coimmunoprecipitation or yeast two-hybrid screening. This approach either provides information of low resolution (large deletions) or very laboriously tries to precisely define the binding epitope via single amino acid substitutions. Here, we report the use of a peptide microarray based on the human scaffold protein AXIN1 for high-throughput and -resolution mapping of binding sites for several AXIN1 interaction partners in vitro For each of the AXIN1-binding partners tested, i.e. casein kinase 1 ϵ (CK1ϵ); c-Myc; peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1); and p53, we found at least three different epitopes, predominantly in the central IDR of AXIN1. We functionally validated the specific AXIN1-CK1ϵ interaction identified here with epitope-mimicking peptides and with AXIN1 variants having deletions of short binding epitopes. On the basis of these results, we propose a model in which AXIN1 competes with dishevelled (DVL) for CK1ϵ and regulates CK1ϵ-induced phosphorylation of DVL and activation of Wnt/ß-catenin signaling.


Assuntos
Proteína Axina/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Peptídeos/metabolismo , Análise Serial de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Ligação Competitiva , Proteínas Desgrenhadas/metabolismo , Humanos , Fosforilação , Ligação Proteica , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA