Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 45(6): 1354-1364, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31280399

RESUMO

Motor neuron disease (MND) is a progressive neurodegenerative disease with no effective treatment. One of the principal pathological hallmarks is the deposition of TAR DNA binding protein 43 (TDP-43) in cytoplasmic inclusions. TDP-43 aggregation occurs in both familial and sporadic MND; however, the mechanism of endogenous TDP-43 aggregation in disease is incompletely understood. This study focused on the induction of cytoplasmic accumulation of endogenous TDP-43 in the motor neuronal cell line NSC-34. The endoplasmic reticulum (ER) stressor tunicamycin induced casein kinase 1 (CK1)-dependent cytoplasmic accumulation of endogenous TDP-43 in differentiated NSC-34 cells, as seen by immunocytochemistry. Immunoblotting showed that induction of ER stress had no effect on abundance of TDP-43 or phosphorylated TDP-43 in the NP-40/RIPA soluble fraction. However, there were significant increases in abundance of TDP-43 and phosphorylated TDP-43 in the NP-40/RIPA-insoluble, urea-soluble fraction, including high molecular weight species. In all cases, these increases were lowered by CK1 inhibition. Thus ER stress signalling, as induced by tunicamycin, causes CK1-dependent phosphorylation of TDP-43 and its consequent cytosolic accumulation.


Assuntos
Caseína Quinase I/biossíntese , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Corpos de Inclusão/metabolismo , Neurônios Motores/metabolismo , Antibacterianos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citosol/efeitos dos fármacos , Citosol/patologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Humanos , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/patologia , Doença dos Neurônios Motores/induzido quimicamente , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tunicamicina/toxicidade
2.
Anal Biochem ; 549: 99-106, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29559334

RESUMO

Casein kinase 1 (CK1) is a widely expressed Ser/Thr kinase in eukaryotic organisms that is involved in various cellular processes (e.g., circadian rhythm and apoptosis). Therefore, preparing highly active CK1 and investigating its properties in vitro have important implications for understanding the biological roles of the kinase. However, recombinant CK1 undergoes autoinactivation via autophosphorylation in Escherichia coli cells and thus is undesirably prepared as a phosphorylated and inactivated kinase. To circumvent this problem, we established a protein expression system using E. coli strain BL21(DE3)pλPP in which λ protein phosphatase (λPPase) is constitutively expressed. Using this system, recombinant CK1 isoforms (α, δ and ε) were readily prepared as unphosphorylated forms. Furthermore, we found that CK1s prepared using BL21(DE3)pλPP showed markedly higher activity than those prepared by the conventional BL21(DE3). Finally, we demonstrated that the kinase activity of CK1δ from BL21(DE3)pλPP was higher than that prepared by a conventional method consisting of troublesome steps such as in vitro λPPase treatment. Thus, this simple method using BL21(DE3)pλPP is valuable for preparing highly active CK1s. It may also be applicable to other kinases that are difficult to prepare because of phosphorylation in E. coli cells.


Assuntos
Bacteriófago lambda/enzimologia , Caseína Quinase I , Escherichia coli , Expressão Gênica , Fosfoproteínas Fosfatases/biossíntese , Proteínas Virais/biossíntese , Bacteriófago lambda/genética , Caseína Quinase I/biossíntese , Caseína Quinase I/química , Caseína Quinase I/genética , Caseína Quinase I/isolamento & purificação , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Fosfoproteínas Fosfatases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais/genética
3.
Cell Prolif ; 51(2): e12426, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29277934

RESUMO

OBJECTIVES: Ten-eleven translocation 1 (TET1) is a DNA methylcytosine (mC) dioxygenase discovered recently that can convert 5-mC into 5-hydroxymethylcytosine (5hmC). We previously reported that TET1 promotes odontoblastic differentiation of human dental pulp cells (hDPCs). The gene encoding the family with sequence similarity 20, member C (FAM20C) protein, is a potential TET1 target and showed demethylation during odontoblastic differentiation of hDPCs in our previous study. This study aimed to explore whether TET1-mediated hydroxymethylation could activate the FAM20C gene, thereby regulating hDPC differentiation. MATERIALS AND METHODS: The expression pattern of FAM20C and its potential changes during odontoblastic induction of hDPCs were assessed by Western blotting. Lentivirus-mediated transduction with short hairpin RNA (shRNA) was used to knock down FAM20C and TET1 expression in hDPCs. The mineralization potential of hDPCs was evaluated with an ALPase activity assay and by observing the mineralized matrix deposition and the expression of odontoblast-related markers DSPP and DMP1. Recombinant human FAM20C protein (rhFAM20C) was reintroduced into shTET1 cells in a rescue experiment. The dynamic hydroxymethylation status of the FAM20C gene promoter was examined using hydroxymethylated DNA immunoprecipitation (IP)-PCR. Chromatin IP-PCR and agarose gel electrophoresis were utilized to validate the recruitment of TET1 to its target loci in the FAM20C promoter. RESULTS: FAM20C protein level was upregulated after the odontoblastic induction of hDPCs. shRNA-mediated FAM20C suppression reduced the expression of DSPP and DMP1 after odontoblastic induction for 7 and 14 days. ALPase activity was reduced on day 7, and the formation of mineralized nodules was attenuated on day 14 after odontoblastic induction in FAM20C-inhibited hDPCs. Genomic 5hmC levels significantly decreased, and total 5mC levels increased in TET1-deficient hDPCs. In addition, a significant reduction in FAM20C also emerged. The rhFAM20C treatment of shTET1 cells attenuated the mineralization abnormalities caused by TET1 depletion. TET1 depletion prompted a decline in 5hmC levels in several regions on the FAM20C promoter. Enhanced TET1 recruitment was detected at the corresponding loci in the FAM20C promoter during odontoblastic induction. CONCLUSION: TET1 knockdown suppressed odontoblastic differentiation by restraining its direct binding to FAM20C promoter, and hence inhibiting FAM20C hydroxymethylation and subsequent transcription. These results suggest that TET1 potentially promotes the cytodifferentiation potential of hDPCs through its DNA demethylation machinery and upregulation of FAM20C protein expression.


Assuntos
Calcificação Fisiológica , Caseína Quinase I/biossíntese , Diferenciação Celular , Polpa Dentária/enzimologia , Proteínas da Matriz Extracelular/biossíntese , Regulação Enzimológica da Expressão Gênica , Oxigenases de Função Mista/biossíntese , Odontoblastos/enzimologia , Proteínas Proto-Oncogênicas/biossíntese , Adolescente , Adulto , Caseína Quinase I/genética , Polpa Dentária/citologia , Proteínas da Matriz Extracelular/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Metilação , Oxigenases de Função Mista/genética , Odontoblastos/citologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética
4.
Methods Mol Biol ; 1496: 197-215, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27632012

RESUMO

Members of the four-jointed and VLK families of secretory pathway kinases appear to be responsible for the phosphorylation of secreted proteins and proteoglycans. These enzymes have been implicated in many biological processes and mutations in several of these kinases cause human diseases. Here, we describe methods to purify and assay two members of the four-jointed family of secretory kinases: the Fam20C protein kinase and the Fam20B proteoglycan kinase.


Assuntos
Caseína Quinase I/química , Caseína Quinase I/isolamento & purificação , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/isolamento & purificação , Animais , Caseína Quinase I/biossíntese , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Humanos , Células Sf9 , Spodoptera
5.
Int J Oncol ; 44(4): 1199-206, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481495

RESUMO

UVB-induced inflammation, in particular the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) E2, has been implicated in photocarcinogenesis. UVB-induced COX-2 has been associated with ß-catenin signaling in keratinocytes. However, a definitive role for COX-2 in the activation of ß-catenin signaling as well as its role in UVB-induced skin tumors has not been established. We report that exposure of the skin to UVB resulted in a time- and dose-dependent activation of ß-catenin in C3H/HeN mice. This response was COX-2-dependent as UVB-exposed COX-2-deficient mice exhibited significantly lower levels of UVB-induced activation of ß-catenin. Moreover, treatment of mice with indomethacin, a COX-2 inhibitor, and an EP2 antagonist inhibited UVB-induced ß-catenin signaling. Exposure of SKH-1 hairless mice to UVB radiation (180 mJ/cm2) 3 times a week for 24 weeks resulted in activation of ß-catenin signaling in UVB-irradiated skin as well as UVB-induced skin tumors. Concomitantly, the levels of CK1α and GSK-3ß, which are responsible for ß-catenin signaling, were reduced while the levels of c-Myc and cyclin D1, which are downstream targets of ß-catenin, were increased. To further verify the role of UVB-induced inflammation in activation of ß-catenin signaling, a high-fat-diet model was used. Administration of high-fat diet exacerbated UVB-induced inflammation. Administration of the high-fat diet enhanced ß-catenin signaling and the levels of its downstream targets (c-Myc, cyclin D1, cyclin D2, MMP-2 and MMP-9) in UVB-exposed skin and skin tumors in SKH-1 mice. These data suggest that UV-induced COX-2/PGE2 stimulates ß-catenin signaling, and that ß-catenin activation may contribute to skin carcinogenesis.


Assuntos
Ciclo-Oxigenase 2/genética , Prostaglandinas E/biossíntese , Neoplasias Cutâneas/imunologia , Pele/imunologia , beta Catenina/imunologia , Animais , Caseína Quinase I/biossíntese , Ciclina D1/biossíntese , Ciclina D2/biossíntese , Ciclo-Oxigenase 2/biossíntese , Inibidores de Ciclo-Oxigenase 2/farmacologia , Dieta Hiperlipídica , Feminino , Quinase 3 da Glicogênio Sintase/biossíntese , Glicogênio Sintase Quinase 3 beta , Indometacina/farmacologia , Inflamação , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Prostaglandinas E/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/biossíntese , Receptores de Prostaglandina E Subtipo EP2/biossíntese , Receptores de Prostaglandina E Subtipo EP4/biossíntese , Transdução de Sinais , Pele/patologia , Neoplasias Cutâneas/patologia , Raios Ultravioleta/efeitos adversos , beta Catenina/biossíntese
6.
PLoS One ; 8(11): e79287, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260187

RESUMO

Casein kinase 1 (CK1) plays an important role in eukaryotic signaling pathways, and their substrates include key regulatory proteins involved in cell differentiation, proliferation and chromosome segregation. The Leishmania genome encodes six potential CK1 isoforms, of which five have orthologs in other trypanosomatidae. Leishmania donovani CK1 isoform 4 (Ldck1.4, orthologous to LmjF27.1780) is unique to Leishmania and contains a putative secretion signal peptide. The full-length gene and three shorter constructs were cloned and expressed in E. coli as His-tag proteins. Only the full-length 62.3 kDa protein showed protein kinase activity indicating that the N-terminal and C-terminal domains are essential for protein activity. LdCK1.4-FLAG was stably over expressed in L. donovani, and shown by immunofluorescence to be localized primarily in the cytosol. Western blotting using anti-FLAG and anti-CK1.4 antibodies showed that this CK1 isoform is expressed and secreted by promastigotes. Over expression of LdCK1.4 had a significant effect on promastigote growth in culture with these parasites growing to higher cell densities than the control parasites (wild-type or Ld:luciferase, P<0.001). Analysis by flow cytometry showed a higher percentage, ∼4-5-fold, of virulent metacyclic promastigotes on day 3 among the LdCK1.4 parasites. Finally, parasites over expressing LdCK1.4 gave significantly higher infections of mouse peritoneal macrophages compared to wild-type parasites, 28.6% versus 6.3%, respectively (p = 0.0005). These results suggest that LdCK1.4 plays an important role in parasite survival and virulence. Further studies are needed to validate CK1.4 as a therapeutic target in Leishmania.


Assuntos
Caseína Quinase I/biossíntese , Regulação Enzimológica da Expressão Gênica , Leishmania donovani/enzimologia , Leishmania donovani/patogenicidade , Leishmaniose Visceral/enzimologia , Proteínas de Protozoários/biossíntese , Fatores de Virulência/biossíntese , Animais , Caseína Quinase I/genética , Leishmania donovani/genética , Leishmaniose Visceral/genética , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Fatores de Virulência/genética
7.
Eukaryot Cell ; 10(11): 1455-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926330

RESUMO

Casein kinases regulate a wide range of cellular functions in eukaryotes, including phosphorylation of proteins that are substrates for degradation via the ubiquitin-proteasome system (UPS). Our previous study demonstrated that Fbp1, a component of the SCF(FBP1) E3 ligase complex, was essential for Cryptococcus virulence. Because the Saccharomyces cerevisiae homolog of Fbp1, Grr1, requires casein kinase I (Yck1 and Yck2) to phosphorylate its substrates, we investigated the function of casein kinase I in Cryptococcus neoformans. In this report, we identified a C. neoformans casein kinase I protein homolog, Cck1. Similar to Fbp1, the expression of Cck1 is negatively regulated by glucose and during mating. cck1 null mutants showed significant virulence attenuation in a murine systemic infection model, but Cck1 was dispensable for the development of classical virulence factors (capsule, melanin, and growth at 37°C). cck1 mutants were hypersensitive to SDS treatment, indicating that Cck1 is required for cell integrity. The functional overlap between Cck1 and Fbp1 suggests that Cck1 may be required for the phosphorylation of Fbp1 substrates. Interestingly, the cck1 mutant also showed increased sensitivity to osmotic stress and oxidative stress, suggesting that Cck1 regulates both cell integrity and the cellular stress response. Our results show that Cck1 regulates the phosphorylation of both Mpk1 and Hog1 mitogen-activated protein kinases (MAPKs), demonstrating that Cck1 regulates cell integrity via the Mpk1 pathway and regulates cell adaptation to stresses via the Hog1 pathway. Overall, our study revealed that Cck1 plays important roles in regulating multiple signaling pathways and is required for fungal pathogenicity.


Assuntos
Caseína Quinase I/metabolismo , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Transdução de Sinais , Caseína Quinase I/biossíntese , Caseína Quinase I/genética , Parede Celular/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Glucose , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Pressão Osmótica , Estresse Oxidativo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estresse Fisiológico , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
Oncogene ; 25(9): 1340-8, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16247451

RESUMO

Tumors comprise genetically heterogeneous cell populations, whose growth and survival depend on multiple signaling pathways. This has spurred the development of multitargeted therapies, including small molecules that can inhibit multiple kinases. A major challenge in designing such molecules is to determine which kinases to inhibit in each cancer to maximize efficacy and therapeutic index. We describe an approach to this problem implementing RNA interference technology. In order to identify Akt-cooperating kinases, we screened a library of kinase-directed small interfering RNAs (siRNAs) for enhanced cancer cell killing in the presence of Akt inhibitor A-443654. siRNAs targeting casein kinase I gamma 3 (CSNK1G3) or the inositol polyphosphate multikinase (IPMK) significantly enhanced A-443654-mediated cell killing, and caused decreases in Akt Ser-473 and ribosomal protein S6 phosphorylation. Small molecules targeting CSNK1G3 and/or IPMK in addition to Akt may thus exhibit increased efficacy and have the potential for improved therapeutic index.


Assuntos
Caseína Quinase I/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Antineoplásicos/farmacologia , Caseína Quinase I/genética , Morte Celular , Testes Genéticos/métodos , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Isoenzimas , Neoplasias/genética , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Interferente Pequeno , Transdução de Sinais
9.
Mol Biochem Parasitol ; 141(1): 15-27, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15811523

RESUMO

Previous affinity chromatography experiments have described the unexpected binding of an isoform of casein kinase I (CK1) from Leishmania mexicana, Trypanosoma cruzi, Plasmodium falciparum and Toxoplasma gondii to an immobilized cyclin-dependent kinase (CDK) inhibitor (purvalanol B). In order to further evaluate CK1 as a potential anti-parasitic target, two T. gondii CK1 genes were cloned by PCR using primers derived from a putative CK1 gene fragment identified from a T. gondii EST database. The genes are predicted to encode a smaller polypeptide of 38 kDa (TgCK1alpha) and larger 49 kDa isoform bearing a C-terminal extension (TgCK1beta). Enzymatically active recombinant FLAG-epitope tagged TgCK1alpha and TgCK1beta enzymes were immuno-precipitated from transiently transfected T. gondii parasites. While TgCK1alpha expression was found to be cytosolic, TgCK1beta was expressed predominantly at the plasma membrane. Deletion mapping showed that the C-terminal domain of TgCK1beta confers this membrane-association. Recombinant TgCK1alpha and TgCK1beta isoforms were also expressed in E. coli and biochemically characterized. A 38kDa native CK1 activity was partially purified from T. gondii tachyzoites by ion-exchange and hydrophobic interaction chromatography with biochemical and serological properties closely resembling those of recombinant TgCK1alpha. In contrast, we were not able to identify a native CK1 activity corresponding to the larger TgCK1beta 49 kDa isoform in tachyzoite lysates. Purvalanol B and the related compound aminopurvalanol A selectively inhibit TgCK1alpha, confirming the existence of potentially exploitable structural differences between host and parasite CK1 enzymes. Since the more cell-permeable aminopurvalanol also inhibits parasite growth, these results provide further impetus to investigate inhibitors of CK1 as anti-parasitic agents.


Assuntos
Adenina/análogos & derivados , Caseína Quinase I/genética , Caseína Quinase Ialfa/genética , Toxoplasma/genética , Adenina/farmacologia , Sequência de Aminoácidos , Animais , Antiprotozoários/farmacologia , Western Blotting , Caseína Quinase I/biossíntese , Caseína Quinase I/metabolismo , Caseína Quinase Ialfa/biossíntese , Caseína Quinase Ialfa/metabolismo , Membrana Celular/metabolismo , Clonagem Molecular , Citoplasma/metabolismo , Inibidores Enzimáticos/farmacologia , Imunoprecipitação , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Toxoplasma/efeitos dos fármacos , Toxoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA