Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Gene Ther ; 31(5-6): 263-272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321198

RESUMO

Patients with sialidosis (mucolipidosis type I) type I typically present with myoclonus, seizures, ataxia, cherry-red spots, and blindness because of mutations in the neuraminidase 1 (NEU1) gene. Currently, there is no treatment for sialidosis. In this study, we developed an adeno-associated virus (AAV)-mediated gene therapy for a Neu1 knockout (Neu1-/-) mouse model of sialidosis. The vector, AAV9-P3-NP, included the human NEU1 promoter, NEU1 cDNA, IRES, and CTSA cDNA. Untreated Neu1-/- mice showed astrogliosis and microglial LAMP1 accumulation in the nervous system, including brain, spinal cord, and dorsal root ganglion, together with impaired motor function. Coexpression of NEU1 and protective protein/cathepsin A (PPCA) in neonatal Neu1-/- mice by intracerebroventricular injection, and less effective by facial vein injection, decreased astrogliosis and LAMP1 accumulation in the nervous system and improved rotarod performance of the treated mice. Facial vein injection also improved the grip strength and survival of Neu1-/- mice. Therefore, cerebrospinal fluid delivery of AAV9-P3-NP, which corrects the neurological deficits of mice with sialidosis, could be a suitable treatment for patients with sialidosis type I. After intracerebroventricular or facial vein injection of AAV vectors, NEU1 and PPCA are expressed together. PPCA-protected NEU1 is then sent to lysosomes, where ß-Gal binds to this complex to form a multienzyme complex in order to execute its function.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Camundongos Knockout , Mucolipidoses , Neuraminidase , Animais , Terapia Genética/métodos , Neuraminidase/genética , Neuraminidase/metabolismo , Camundongos , Dependovirus/genética , Mucolipidoses/terapia , Mucolipidoses/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Catepsina A/genética , Catepsina A/metabolismo , Humanos , Encéfalo/metabolismo
2.
J Biochem Mol Toxicol ; 36(12): e23208, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065643

RESUMO

A comprehensive analysis of the prognostic, diagnostic, and biological significance of miR-148a-3p and cathepsin A (CTSA) in hepatocellular carcinoma (HCC) was performed using bioinformatics algorithms with The Cancer Genome Atlas (TCGA) data. miR-148a-3p and CTSA gene expression in HCC tissues and nontumor specimens was analyzed using TCGA database with R software. CTSA staining analysis was validated using the Human Protein Atlas database. Prognostic, diagnostic, gene set enrichment, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and immune infiltration analyses were implemented using the TCGA database with R software. Based on TCGA data and our cohort populations, CTSA expression was significantly elevated in HCC tissues compared with nontumor specimens. A significant negative correlation between miR-148a-3p and CTSA was observed in the TCGA data and our cohort population. Mechanistically, CTSA was a direct gene target of miR-148a-3p. Both CTSA and miR-148a-3p could serve as prognostic and diagnostic indicators in HCC. miR-148a-3p expression was significantly and negatively correlated with the StromalScore, ImmuneScore, and ESTIMATEScore in patients with liver cancer. miR-148a-3p mimic-mediated apoptosis and the inhibition of HCC cell growth and migration were counteracted by CTSA overexpression. The miR-148a-3p/CTSA axis was implicated in immune cell infiltration and carcinogenesis of HCC. miR-148a-3p and CTSA might be prospective molecular targets to enhance the potency of immunotherapy in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Catepsina A/genética , Catepsina A/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Prognóstico
3.
Fish Shellfish Immunol ; 128: 484-493, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985629

RESUMO

Cathepsins are major lysosomal enzymes that participate in necessary physiological processes, including protein degradation, tissue differentiation, and innate or adaptive immune responses. According to their proteolytic activity, vertebrate cathepsins are classified as cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W, and X or Z), aspartic proteases (cathepsin D and E), and serine proteases (cathepsin A and G). Several cathepsins were reported in teleosts, however, no cathepsin gene has been identified from Pacific cod so far. In the present study, a total of 13 cathepsin genes were identified for Pacific cod. The evolutionary path of each cathepsin gene was demonstrated via analysis of phylogenetic trees, multiple alignments, conserved domains, motif compositions, and tertiary structures. Tissue distribution analysis showed that all cathepsin genes were ubiquitously expressed in eight healthy tissues but they exhibited diverse levels of expression. Several cathepsin genes were found to be highly expressed in the kidney, spleen, head kidney and liver, whereas low or modest levels were detected in the gills, skin, intestines, and heart. Temporal-specific expression of cathepsins in early developmental stages of Pacific cod were also conducted. CTSK, S, F, and Z were highly expressed at 1 dph and 5 dph and decreased later, while CTSL, L1, and L.1 transcript levels gradually increased in a time-dependent manner. Additionally, the expression profiles of cathepsin genes in Pacific cod were evaluated in the spleen and liver after poly I:C challenge. The results indicated that all cathepsin genes were significantly upregulated upon poly I:C stimulation, suggesting that they play key roles in antiviral immune responses in Pacific cod. Our findings establish a foundation for future exploration of the molecular mechanisms of cathepsins in modulating antiviral immunity in Pacific cod.


Assuntos
Catepsinas , Gadiformes , Animais , Antivirais , Catepsina A/genética , Catepsina B/genética , Catepsina D/genética , Catepsina L/genética , Catepsinas/genética , Gadiformes/genética , Filogenia , Poli I-C/farmacologia
4.
J Neurol ; 269(12): 6673-6677, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35904593

RESUMO

BACKGROUND: Cathepsin A-related arteriopathy with strokes and leukoencephalopathy (CARASAL) is a rare monogenic cause of cerebral small vessel disease. To date, fewer than 15 patients with CARASAL have been described, all of common European ancestry. METHODS: Clinical and imaging phenotypes of two patients are presented. Genetic variants were identified using targeted Sanger and focused exome sequencing, respectively. RESULTS: Both patients carried the same pathogenic p.Arg325Cys mutation in CTSA. One patient of Chinese ethnicity presented with migraine, tinnitus and slowly progressive cognitive impairment with significant cerebral small vessel disease in the absence of typical cardiovascular risk factors. She later suffered an ischaemic stroke. A second patient from Brazil, of Italian ethnicity developed progressive dysphagia and dysarthria in his 50s, he later developed hearing loss and chronic disequilibrium. Magnetic resonance imaging in both cases demonstrated extensive signal change in the deep cerebral white matter, anterior temporal lobes, thalami, internal and external capsules and brainstem. CONCLUSIONS: CARASAL should be considered in patients with early onset or severe cerebral small vessel disease, particularly where there are prominent symptoms or signs related to brainstem involvement, such as hearing dysfunction, tinnitus or dysphagia or where there is significant thalamic and brainstem involvement on imaging.


Assuntos
Isquemia Encefálica , CADASIL , Doenças de Pequenos Vasos Cerebrais , Transtornos de Deglutição , Leucoencefalopatias , Acidente Vascular Cerebral , Zumbido , Feminino , Humanos , Masculino , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/genética , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Catepsina A/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Leucoencefalopatias/complicações , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem
5.
ACS Appl Bio Mater ; 5(1): 205-213, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35014832

RESUMO

Human neuraminidase 1 (NEU1) is a lysosomal glycosidase that cleaves the terminal sialic acids of sialylglycoconjugates. NEU1 is biosynthesized in the endoplasmic reticulum (ER) lumen as an N-glycosylated protein. NEU1 also associates with cathepsin A (CTSA) in ER, migrates to lysosomes, and exerts catalytic activity. Extraordinary in cellulo crystallization of NEU1 protein in ER despite carrying three N-glycans per molecule at N186, N343, and N352, respectively, were observed when the single human NEU1 gene was overexpressed in mammalian cells. In this study, we first purified the NEU1 from the isolated crystals produced by the HEK293 NEU1-KO cell transiently overexpressing the normal NEU1 and found that the N-glycans were high-mannose or complex types carrying terminal sialic acids. The result suggests that a part of NEU1 crystals were formed or transported to the Golgi apparatus. Second, we compared the effects of single amino acid substitution at the N-sequons, including N186Q, N343Q, and N352Q, each one N-glycan reduction from one NEU1 molecule. We demonstrated that N186Q mutant protein with low enzyme activity and formed a few amounts of smaller crystals. The N343Q mutant exhibited half of the normal intracellular activity, but the numbers and sizes of crystals were almost the same as those of normal NEU1. The N352Q mutant exhibited almost the same activity as the normal enzyme. The numbers of the N352Q crystals were smaller than those of normal NEU1. According to these findings, the N186Q NEU1 protein should have lower stability in ER due to abnormal folding. The second N-glycan at the N343-sequon has little effect on self-aggregation of NEU1. The third N-glycan at the N352-sequon contributes to the self-aggregation of NEU1. We also demonstrated that the three NEU1 mutants associate with the relatively excessive CTSA and migrate to lysosomes.


Assuntos
Neuraminidase , Ácidos Siálicos , Animais , Catepsina A/genética , Cristalização , Células HEK293 , Humanos , Mamíferos/metabolismo , Neuraminidase/genética , Polissacarídeos
6.
Drug Metab Dispos ; 50(3): 243-248, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933885

RESUMO

The prodrug tenofovir alafenamide (TAF) is a first-line antiviral agent for the treatment of chronic hepatitis B infection. TAF activation involves multiple steps, and the first step is an ester hydrolysis reaction catalyzed by hydrolases. This study was to determine the contributions of carboxylesterase 1 (CES1) and cathepsin A (CatA) to TAF hydrolysis in the human liver. Our in vitro incubation studies showed that both CatA and CES1 catalyzed TAF hydrolysis in a pH-dependent manner. At their physiologic pH environment, the activity of CatA (pH 5.2) was approximately 1,000-fold higher than that of CES1 (pH 7.2). Given that the hepatic protein expression of CatA was approximately 200-fold lower than that of CES1, the contribution of CatA to TAF hydrolysis in the human liver was estimated to be much greater than that of CES1, which is contrary to the previous perception that CES1 is the primary hepatic enzyme hydrolyzing TAF. The findings were further supported by a TAF incubation study with the CatA inhibitor telaprevir and the CES1 inhibitor bis-(p-nitrophenyl) phosphate. Moreover, an in vitro study revealed that the CES1 variant G143E (rs71647871) is a loss-of-function variant for CES1-mediated TAF hydrolysis. In summary, our results suggest that CatA may play a more important role in the hepatic activation of TAF than CES1. Additionally, TAF activation in the liver could be affected by CES1 genetic variation, but the magnitude of impact appears to be limited due to the major contribution of CatA to hepatic TAF activation. SIGNIFICANCE STATEMENT: Contrary to the general perception that carboxylesterase 1 (CES1) is the major enzyme responsible for tenofovir alafenamide (TAF) hydrolysis in the human liver, the present study demonstrated that cathepsin A may play a more significant role in TAF hepatic hydrolysis. Furthermore, the CES1 variant G143E (rs71647871) was found to be a loss-of-function variant for CES1-mediated TAF hydrolysis.


Assuntos
Hidrolases de Éster Carboxílico , Fígado , Alanina/genética , Alanina/metabolismo , Carboxilesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Catepsina A/genética , Catepsina A/metabolismo , Variação Genética/genética , Humanos , Hidrólise , Fígado/metabolismo , Tenofovir/análogos & derivados
7.
Genes (Basel) ; 12(12)2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34946974

RESUMO

Cathepsin A (CatA) is important as a drug-metabolizing enzyme responsible for the activation of prodrugs, such as the anti-human immunodeficiency virus drug Tenofovir Alafenamide (TAF). The present study was undertaken to clarify the presence of polymorphisms of the CatA gene in healthy Japanese subjects and the influence of gene polymorphism on the expression level of CatA protein and the drug-metabolizing activity. Single-strand conformation polymorphism method was used to analyze genetic polymorphisms in healthy Japanese subjects. Nine genetic polymorphisms were identified in the CatA gene. The polymorphism (85_87CTG>-) in exon 2 was a mutation causing a deletion of leucine, resulting in the change of the leucine 9-repeat (Leu9) to 8-repeat (Leu8) in the signal peptide region of CatA protein. The effect of Leu8 on the expression level of CatA protein was evaluated in Flp-In-293 cells with a stably expressed CatA, resulting in the expression of CatA protein being significantly elevated in variant 2 with Leu8 compared with Leu9. Higher concentrations of tenofovir alanine (TFV-Ala), a metabolite of TAF, were observed in the Leu8-expressing cells than in the Leu9-expressing cells using LC/MS/MS. Our findings suggest that the drug metabolic activity of CatA is altered by the genetic polymorphism.


Assuntos
Alanina/farmacocinética , Catepsina A/sangue , Catepsina A/genética , Polimorfismo Genético , Tenofovir/análogos & derivados , Voluntários Saudáveis , Humanos , Japão , Células K562 , Tenofovir/farmacocinética
8.
Sci Rep ; 11(1): 14611, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272452

RESUMO

Cathepsin A (CTSA) is a lysosomal protease that regulates galactoside metabolism. The previous study has shown CTSA is abnormally expressed in various types of cancer. However, rarely the previous study has addressed the role of CTSA in hepatocellular carcinoma (HCC) and its prognostic value. To study the clinical value and potential function of CTSA in HCC, datasets from the Cancer Genome Atlas (TCGA) database and a 136 HCC patient cohort were analyzed. CTSA expression was found to be significantly higher in HCC patients compared with normal liver tissues, which was supported by immunohistochemistry (IHC) validation. Both gene ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that CTSA co-expressed genes were involved in ATP hydrolysis coupled proton transport, carbohydrate metabolic process, lysosome organization, oxidative phosphorylation, other glycan degradation, etc. Survival analysis showed a significant reduction both in overall survival (OS) and recurrence-free survival (RFS) of patients with high CTSA expression from both the TCGA HCC cohort and 136 patients with the HCC cohort. Furthermore, CTSA overexpression has diagnostic value in distinguishing between HCC and normal liver tissue [Area under curve (AUC) = 0.864]. Moreover, Gene set enrichment analysis (GSEA) showed that CTSA expression correlated with the oxidative phosphorylation, proteasome, and lysosome, etc. in HCC tissues. These findings demonstrate that CTSA may as a potential diagnostic and prognostic biomarker in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Catepsina A/genética , Catepsina A/metabolismo , Oncogenes , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/diagnóstico , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Recidiva Local de Neoplasia , Prognóstico , Análise de Sobrevida
9.
Enzyme Microb Technol ; 149: 109848, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311885

RESUMO

The signal peptide sequence is known to increase transport efficiency to organelles in eukaryotic cells. In this study, we focus on the signal peptide of the vacuolar protein for vacuolar targeting. The signal peptide sequence QRPL of carboxypeptidase Y (CPY) was inserted inside the interest protein that does not locate in the vacuole for vacuolar targeting. We constructed recombinant strains MBTL-Q-DJ1 and MBTL-Q-DJ2 containing QRPL and green florescent protein (GFP) or aldehyde dehydrogenase 6 (ALD6), respectively. The protein location was then confirmed by confocal microscopy. Fascinatingly, the green fluorescent protein that contains QRPL inside the sequence could be expressed faster than its natural form (within 1 h after induction). Also, the aldehyde removal activity of ALD6 protein in the recombinant yeast was then analyzed by measuring the luminescent intensity in Vibrio fischeri. We confirmed that MBTL-Q-DJ2 containing ALD6 protein has the aldehydes-reducing ability, and in particular, the highest efficiency showed at 500 µg/µL of vacuolar enzyme. In summary, the signal peptide QRPL could be used not only to transport proteins accurately to vacuole but also to improve the protein activity and shorten the induction time.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Catepsina A/genética , Sinais Direcionadores de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Cell Biochem Funct ; 39(1): 67-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32529664

RESUMO

Mouse embryonic stem cells (mESCs) are pluripotent cells that possess the ability to self-renew and differentiate into three germ layers. Owing to these characteristics, mESCs act as important models for stem cell research and are being used in many clinical applications. Among the many cathepsins, cathepsin A (Ctsa), a serine protease, affects the function and properties of stem cells. However, studies on the role of Ctsa in stem cells are limited. Here, we observed a significant increase in Ctsa expression during mESC differentiation at protein levels. Furthermore, we established Ctsa knockdown mESCs. Ctsa knockdown led to Erk1/2 phosphorylation, which in turn inhibited the pluripotency of mESCs and induced G2/M cell cycle arrest to inhibit mESC proliferation. The knockdown also induced abnormal differentiation in mESCs and aberrant expression of differentiation markers. Furthermore, we identified inhibition of teratoma formation in nude mice. Our results suggested that Ctsa affects mESC pluripotency, proliferation, cell cycle and differentiation, and highlighted the potential of Ctsa to act as a core factor that can regulate various mESC properties. SIGNIFICANCE OF THE STUDY: Our results indicate that cathepsin A (Ctsa) affects the properties of mESCs. Inhibition of Ctsa resulted in a decrease in the pluripotency of mouse embryonic stem cells (mESCs). Further, Ctsa suppression resulted in decreased proliferation via cell cycle arrest. Moreover, Ctsa inhibition reduced differentiation abilities and formation of teratoma in mESCs. Our results demonstrated that Ctsa is an important factor controlling mESC abilities.


Assuntos
Catepsina A/metabolismo , Diferenciação Celular , Proliferação de Células , Sistema de Sinalização das MAP Quinases , Células-Tronco Embrionárias Murinas/enzimologia , Animais , Catepsina A/genética , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Técnicas de Silenciamento de Genes , Pontos de Checagem da Fase M do Ciclo Celular/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia
11.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255835

RESUMO

Canine malignant mammary gland tumors present with a poor prognosis due to metastasis to other organs, such as lung and lymph node metastases. Unlike in human studies where obesity has been shown to increase the risk of breast cancer, this has not been well studied in veterinary science. In our preliminary study, we discovered that leptin downregulated cathepsin A, which is responsible for lysosomal-associated membrane protein 2a (LAMP2a) degradation. LAMP2a is a rate-limiting factor in chaperone-mediated autophagy and is highly active in malignant cancers. Therefore, in this study, alterations in metastatic capacity through cathepsin A by leptin, which are secreted at high levels in the blood of obese patients, were investigated. We used a canine inflammatory mammary gland adenocarcinoma (CHMp) cell line cultured with RPMI-1640 and 10% fetal bovine serum. The samples were then subjected to real-time polymerase chain reaction, Western blot, immunocytochemistry, and lysosome isolation to investigate and visualize the metastasis and chaperone-mediated autophagy-related proteins. Results showed that leptin downregulated cathepsin A expression at both transcript and protein levels, whereas LAMP2a, the rate-limiting factor of chaperone-mediated autophagy, was upregulated by inhibition of LAMP2a degradation. Furthermore, leptin promoted LAMP2a multimerization through the lysosomal mTORC2 (mTOR complex 2)/PH domain and leucine rich repeat protein phosphatase 1 (PHLPP1)/AKT1 (Serine/threonine-protein kinase 1) pathway. These findings suggest that targeting leptin receptors can alleviate mammary gland cancer cell metastasis in dogs.


Assuntos
Adenocarcinoma/tratamento farmacológico , Catepsina A/genética , Leptina/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Fosfoproteínas Fosfatases/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Autofagia/efeitos dos fármacos , Cães , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leptina/genética , Metástase Linfática , Proteínas de Membrana Lisossomal/genética , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Metástase Neoplásica
12.
J Biol Chem ; 295(36): 12605-12617, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32647007

RESUMO

In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 µmol/mg tissue/min; CatA-TG, 8.62 µmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 µm; CatA-TG, 21.9 µm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 µl; CatA-TG, 61.9 µl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.


Assuntos
Catepsina A/metabolismo , Miócitos Cardíacos/metabolismo , Proteólise , Superóxido Dismutase/metabolismo , Remodelação Ventricular , Animais , Catepsina A/genética , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Superóxido Dismutase/genética
13.
Biochem Soc Trans ; 48(3): 1153-1165, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32539119

RESUMO

Enzymes that catalyze peptide ligation are powerful tools for site-specific protein bioconjugation and the study of cellular signaling. Peptide ligases can be divided into two classes: proteases that have been engineered to favor peptide ligation, and protease-related enzymes with naturally evolved peptide ligation activity. Here, we provide a review of key natural peptide ligases and proteases engineered to favor peptide ligation activity. We cover the protein engineering approaches used to generate and improve these tools, along with recent biological applications, advantages, and limitations associated with each enzyme. Finally, we address future challenges and opportunities for further development of peptide ligases as tools for biological research.


Assuntos
Ligases/química , Peptídeo Hidrolases/química , Peptídeos/química , Engenharia de Proteínas/métodos , Transdução de Sinais , Animais , Catálise , Catepsina A/genética , Cisteína Endopeptidases/genética , Variação Genética , Humanos , Subtilisina/genética , Tripsina/genética
14.
Arch Biochem Biophys ; 688: 108407, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32407712

RESUMO

Prostate cancer has the highest incidence among men in advanced countries, as well as a high mortality rate. Despite the efforts of numerous researchers to identify a gene-based therapeutic target as an effective treatment of prostate cancer, there is still a need for further research. The cathepsin gene family is known to have a close correlation with various cancer types and is highly expressed across these cancer types. This study aimed at investigating the correlation between the cathepsin A (CTSA) gene and prostate cancer. Our findings indicated a significantly elevated level of CTSA gene expression in the tissues of patients with prostate cancer when compared with normal prostate tissues. Furthermore, the knockdown of the CTSA gene in the representative prostate cancer cell lines PC3 and DU145 led to reduced proliferation and a marked reduction in anchorage-independent colony formation, which was shown to be caused by cell cycle arrest in the S phase. In addition, CTSA gene-knockdown prostate cancer cell lines showed a substantial decrease in migration and invasion, as well as a decrease in the marker genes that promote epithelial mesenchymal transition (EMT). Such phenotypic changes in prostate cancer cell lines through CTSA gene suppression were found to be mainly caused by reduced p38 MAPK protein phosphorylation; i.e. the inactivation of the p38 MAPK cell signaling pathway. Tumorigenesis was also found to be inhibited in CTSA gene-knockdown prostate cancer cell lines when a xenograft assay was carried out using Balb/c nude mice, and the p38 MAPK phosphorylation was inhibited in tumor tissues. Thus, the CTSA gene is presumed to play a key role in human prostate cancer tissues through high-level expression, and the suppression of the CTSA gene leads to the inhibition of prostate cancer cell proliferation, colony formation, and metastasis. The mechanism, by which these effects occur, was demonstrated to be the inactivation of the p38 MAPK signaling pathway.


Assuntos
Catepsina A/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Catepsina A/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Metástase Neoplásica/genética , Metástase Neoplásica/fisiopatologia , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Biochem Pharmacol ; 177: 113980, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32305437

RESUMO

Human Cathepsin A (CatA) is a lysosomal serine carboxypeptidase of the renin-angiotensin system (RAS) and is structurally similar to acetylcholinesterase (AChE). CatA can remove the C-terminal amino acids of endothelin I, angiotensin I, Substance P, oxytocin, and bradykinin, and can deamidate neurokinin A. Proteomic studies identified CatA and its homologue, SCPEP1, as potential targets of organophosphates (OP). CatA could be stably inhibited by low µM to high nM concentrations of racemic sarin (GB), soman (GD), cyclosarin (GF), VX, and VR within minutes to hours at pH 7. Cyclosarin was the most potent with a kinetically measured dissociation constant (KI) of 2 µM followed by VR (KI = 2.8 µM). Bimolecular rate constants for inhibition by cyclosarin and VR were 1.3 × 103 M-1sec-1 and 1.2 × 103 M-1sec-1, respectively, and were approximately 3-orders of magnitude lower than those of human AChE indicating slower reactivity. Notably, both AChE and CatA bound diisopropylfluorophosphate (DFP) comparably and had KIDFP = 13 µM and 11 µM, respectively. At low pH, greater than 85% of the enzyme spontaneously reactivated after OP inhibition, conditions under which OP-adducts of cholinesterases irreversibly age. At pH 6.5 CatA remained stably inhibited by GB and GF and <10% of the enzyme spontaneously reactivated after 200 h. A crystal structure of DFP-inhibited CatA was determined and contained an aged adduct. Similar to AChE, CatA appears to have a "backdoor" for product release. CatA has not been shown previously to age. These results may have implications for: OP-associated inflammation; cardiovascular effects; and the dysregulation of RAS enzymes by OP.


Assuntos
Catepsina A/antagonistas & inibidores , Compostos Organofosforados/química , Compostos Organotiofosforados/química , Sarina/química , Soman/química , Acetilcolinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Sítios de Ligação , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Linhagem Celular , Substâncias para a Guerra Química/química , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Isoflurofato/química , Isoflurofato/farmacologia , Cinética , Modelos Moleculares , Compostos Organofosforados/toxicidade , Compostos Organotiofosforados/toxicidade , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarina/toxicidade , Soman/toxicidade , Especificidade por Substrato , Fatores de Tempo
16.
Mol Med Rep ; 21(6): 2553-2559, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323791

RESUMO

Cathepsin A (CTSA) is a lysosomal protease that is abnormally expressed in various types of cancer; however, the function of CTSA in lung adenocarcinoma (LUAD) is unknown. The aim of the present study was to investigate the role of CTSA during LUAD development in vitro. The Cancer Genome Atlas (TCGA) database was used to analyze the expression of CTSA mRNA in LUAD tissues. CTSA was significantly upregulated in LUAD tissues compared with normal lung tissues. To explore the effect of CTSA on LUAD in vitro, LUAD A549 cells were transfected with CTSA small interfering RNA and the hallmarks of tumorigenesis were investigated using cell proliferation, cell cycle, wound healing, invasion and western blot assays. Following CTSA knockdown, proliferation of LUAD cells was decreased and an increased proportion of LUAD cells were arrested at the G0/G1 phase, with altered expression of critical cell cycle and proliferative marker proteins, including p53, p21 and proliferating cell nuclear antigen. Moreover, CTSA knockdown decreased the migration and invasion of A549 cells, as determined by wound healing, invasion, and western blotting assays. The expression levels of key proteins involved in epithelial­mesenchymal transition were analyzed by western blotting. CTSA knockdown enhanced the expression of E­cadherin, but decreased the expression of N­cadherin and ß­catenin in A549 cells. To the best of our knowledge, the present study suggested for the first time it has been identified that CTSA may serve as a tumor promoter in LUAD, enhancing the malignant progression of LUAD cells by promoting cell proliferation, migration and invasion. The results suggested that CTSA may serve as a novel therapeutic target for LUAD.


Assuntos
Catepsina A/metabolismo , Movimento Celular , Proliferação de Células , Células A549 , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Caderinas/genética , Caderinas/metabolismo , Catepsina A/antagonistas & inibidores , Catepsina A/genética , Pontos de Checagem do Ciclo Celular , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
Int J Biol Macromol ; 153: 865-872, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32169455

RESUMO

Cathepsins are a group of lysosomal hydrolytic enzymes, broadly distributed in animals, and regulate various physiological processes. However, the immune functions of cathepsins are poorly understood in invertebrates. Therefore, to further provide information about the importance of cathepsins in the innate immune system of crustaceans, cathepsin A from Procambarus clarkii (Pc-cathepsin A) was characterized and its distribution in different tissues was determined. The immunological functions of the Pc-cathepsin A were also evaluated. The Pc-cathepsin A showed high sequence homology to cathepsins of other species, as it contained serine and histidine active sites. Quantitative RT-PCR analysis revealed that the expression of Pc-cathepsin A was highest in the gill, gut, and the hepatopancreas, with variable amounts in the muscle, stomach, heart, and hemocytes. The mRNA expression of Pc-cathepsin A was significantly increased in hepatopancreas challenged with lipopolysaccharide (LPS), peptidoglycan (PGN), and polycytidylic acid (poly I:C). The results of an in vivo analysis revealed that Pc-cathepsin A knockdown by double-stranded RNA in P. clarkii modulated the expression of immune-pathway associated genes in hepatopancreas. Collectively, these results suggest that Pc-cathepsin A modulates innate immune responses by affecting the expression of immune-pathway associated genes, thus revealing a regulatory link between Pc-cathepsin A and immune pathways in P. clarkii, and that Pc-cathepsin A plays an essential biological role in the immune defence against microbial pathogens.


Assuntos
Astacoidea , Catepsina A/farmacologia , Fatores Imunológicos/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Catepsina A/química , Catepsina A/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/genética
18.
FASEB J ; 33(11): 12392-12408, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431059

RESUMO

Insufficient autophagy has been reported in idiopathic pulmonary fibrosis (IPF) lungs. Specific roles of autophagy-related proteins in lung fibrosis development remain largely unknown. Here, we investigated the role of autophagy marker protein microtubule-associated protein 1 light chain 3ß (LC3B) in the development of lung fibrosis. LC3B-/- mice upon aging show smaller lamellar body profiles, increased cellularity, alveolar epithelial cell type II (AECII) apoptosis, surfactant alterations, and lysosomal and endoplasmic reticulum stress. Autophagosomal soluble N-ethylmaleimide-sensitive factor attachment protein receptor syntaxin 17 is increased in the AECII of aged LC3B-/- mice and patients with IPF. Proteasomal activity, however, remained unaltered in LC3B-/- mice. In vitro knockdown of LC3B sensitized mouse lung epithelial cells to bleomycin-induced apoptosis, but its overexpression was protective. In vivo, LC3B-/- mice displayed increased susceptibility to bleomycin-induced lung injury and fibrosis. We identified cathepsin A as a novel LC3B binding partner and its overexpression in vitro drives MLE12 cells to apoptosis. Additionally, cathepsin A is increased in the AECII of aged LC3B-/- mice and in the lungs of patients with IPF. Our study reveals that LC3B mediated autophagy plays essential roles in AECII by modulating the functions of proteins like cathepsin A and protects alveolar epithelial cells from apoptosis and subsequent lung injury and fibrosis.-Kesireddy, V. S., Chillappagari, S., Ahuja, S., Knudsen, L., Henneke, I., Graumann, J., Meiners, S., Ochs, M., Ruppert, C., Korfei, M., Seeger, W., Mahavadi, P. Susceptibility of microtubule-associated protein 1 light chain 3ß (MAP1LC3B/LC3B) knockout mice to lung injury and fibrosis.


Assuntos
Células Epiteliais Alveolares , Apoptose/genética , Predisposição Genética para Doença , Proteínas Associadas aos Microtúbulos/deficiência , Fibrose Pulmonar , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Bleomicina/efeitos adversos , Bleomicina/farmacologia , Catepsina A/genética , Catepsina A/metabolismo , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
19.
Biol Rev Camb Philos Soc ; 94(6): 2033-2048, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343816

RESUMO

During cytokinesis, the organization of the spindle midzone and chromosome segregation is controlled by the central spindle, a microtubule cytoskeleton containing kinesin motors and non-motor microtubule-associated proteins. The anaphase spindle elongation 1/protein regulator of cytokinesis 1/microtubule associated protein 65 (Ase1/PRC1/MAP65) family of microtubule-bundling proteins are key regulators of central spindle assembly, mediating microtubule crosslinking and spindle elongation in the midzone. Ase1/PRC1/MAP65 serves as a complex regulatory platform for the recruitment of other midzone proteins at the spindle midzone. Herein, we summarize recent advances in understanding of the structural domains and molecular kinetics of the Ase1/PRC1/MAP65 family. We summarize the regulatory network involved in post-translational modifications of Ase1/PRC1 by cyclin-dependent kinase 1 (Cdk1), cell division cycle 14 (Cdc14) and Polo-like kinase 1 (Plk1) and also highlight multiple functions of Ase1/PRC1 in central spindle organization, spindle elongation and cytokinesis during cell division.


Assuntos
Catepsina A/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Catepsina A/química , Catepsina A/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Biochemistry ; 58(52): 5351-5365, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31192586

RESUMO

Cathepsin A (CatA, EC 3.4.16.5, UniProtKB P10619 ) is a human lysosomal carboxypeptidase. Counterintuitively, crystal structures of CatA and its homologues show a cluster of Glu and Asp residues binding the C-terminal carboxylic acid of the product or inhibitor. Each of these enzymes functions in an acidic environment and contains a highly conserved pair of Glu residues with side chain carboxyl group oxygens that are approximately 2.3-2.6 Šapart. In small molecules, carboxyl groups separated by ∼3 Šcan overcome the repulsive interaction by protonation of one of the two groups. The pKa of one group increases (pKa ∼ 11) and can be as much as ∼6 pH units higher than the paired group. Consequently, at low and neutral pH, one carboxylate can carry a net negative charge while the other can remain protonated and neutral. In CatA, E69 and E149 form a Glu pair that is important to catalysis as evidenced by the 56-fold decrease in kcat/Km in the E69Q/E149Q variant. Here, we have measured the pH dependencies of log(kcat), log(Km), and log(kcat/Km) for wild type CatA and its variants and have compared the measured pKa with calculated values. We propose a substrate-assisted mechanism in which the high pKa of E149 (>8.5) favors the binding of the carboxylate form of the substrate and promotes the abstraction of the proton from H429 of the catalytic triad effectively decreasing its pKa in a low-pH environment. We also identify a similar motif consisting of a pair of histidines in S-formylglutathione hydrolase.


Assuntos
Ácidos Carboxílicos/metabolismo , Catepsina A/química , Catepsina A/metabolismo , Sequência de Aminoácidos , Biocatálise , Catepsina A/genética , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA