Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Aging Cell ; 21(3): e13565, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181976

RESUMO

Regulation of neuroinflammation and ß-amyloid (Aß) production are critical factors in the pathogenesis of Alzheimer's disease (AD). Cathepsin E (CatE), an aspartic protease, is widely studied as an inducer of growth arrest and apoptosis in several types of cancer cells. However, the function of CatE in AD is unknown. In this study, we demonstrated that the ablation of CatE in human amyloid precursor protein knock-in mice, called APPNL-G-F mice, significantly reduced Aß accumulation, neuroinflammation, and cognitive impairments. Mechanistically, microglial CatE is involved in the secretion of soluble TNF-related apoptosis-inducing ligand, which plays an important role in microglia-mediated NF-κB-dependent neuroinflammation and neuronal Aß production by beta-site APP cleaving enzyme 1. Furthermore, cannula-delivered CatE inhibitors improved memory function and reduced Aß accumulation and neuroinflammation in AD mice. Our findings reveal that CatE as a modulator of microglial activation and neurodegeneration in AD and suggest CatE as a therapeutic target for AD by targeting neuroinflammation and Aß pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Catepsina E/genética , Catepsina E/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neuroinflamatórias
2.
Front Immunol ; 12: 649551, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815409

RESUMO

Pancreatic cancer is a lethal malignancy with a poor prognosis. This study aims to identify pancreatic cancer-related genes and develop a robust diagnostic model to detect this disease. Weighted gene co-expression network analysis (WGCNA) was used to determine potential hub genes for pancreatic cancer. Their mRNA and protein expression levels were validated through reverse transcription PCR (RT-PCR) and immunohistochemical (IHC). Diagnostic models were developed by eight machine learning algorithms and ten-fold cross-validation. Four hub genes (TSPAN1, TMPRSS4, SDR16C5, and CTSE) were identified based on bioinformatics. RT-PCR showed that the four hub genes were expressed at medium to high levels, IHC revealed that their protein expression levels were higher in pancreatic cancer tissues. For the panel of these four genes, eight models performed with 0.87-0.92 area under the curve value (AUC), 0.91-0.94 sensitivity, and 0.84-0.86 specificity in the validation cohort. In the external validation set, these models also showed good performance (0.86-0.98 AUC, 0.84-1.00 sensitivity, and 0.86-1.00 specificity). In conclusion, this study has identified four hub genes that might be closely related to pancreatic cancer: TSPAN1, TMPRSS4, SDR16C5, and CTSE. Four-gene panels might provide a theoretical basis for the diagnosis of pancreatic cancer.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Modelos Genéticos , Neoplasias Pancreáticas/diagnóstico , Aldeído Oxirredutases/genética , Catepsina E/genética , Biologia Computacional , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Mapas de Interação de Proteínas/genética , Curva ROC , Serina Endopeptidases/genética , Tetraspaninas/genética , Neoplasias Pancreáticas
3.
Dev Comp Immunol ; 106: 103607, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31904433

RESUMO

We isolated and characterised a cDNA encoding the aspartic protease cathepsin E (CTSE) in Korean rose bitterling, Rhodeus uyekii. The full-length Rhodeus uyekii CTSE (RuCTSE) cDNA (1396 bp) contains an open reading frame of 1218 bp, encoding 405 amino acids. Alignment of multiple CTSE protein sequences revealed that two of the aspartyl protease active site residues and a disulphide bond were well-conserved among the other CTSE sequences. Phylogenetic analysis revealed that RuCTSE is most closely related to freshwater fish cathepsin E. RuCTSE is widely expressed in the liver, spleen, ovary, testis, brain, eye, intestine, muscle, fin, stomach, and kidney. This first report of teleost CTSE will provide important information related to the identification of other cathepsin E genes in various fish species and will serve as a useful molecular tool to help clarify biological activities in other teleosts.


Assuntos
Ácido Aspártico Proteases/genética , Catepsina E/genética , Cyprinidae/imunologia , Proteínas de Peixes/genética , Fígado/metabolismo , Ovário/metabolismo , Baço/metabolismo , Animais , Ácido Aspártico Proteases/metabolismo , Catepsina E/metabolismo , Clonagem Molecular , Sequência Conservada/genética , Feminino , Proteínas de Peixes/metabolismo , Especificidade de Órgãos , Filogenia , Alinhamento de Sequência , Transcriptoma
4.
Pancreatology ; 19(7): 951-956, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31582345

RESUMO

Cathepsin E (CTSE) is an intracellular, hydrolytic aspartic protease found to be expressed in cells of the immune and gastrointestinal systems, lymphoid tissues, erythrocytes, and cancer cells. The precise functions are not fully understood; however, various studies have investigated its numerous cell-type specific roles. CTSE expression has been shown to be a potential early biomarker for pancreatic ductal adenocarcinoma (PDAC). PDAC patients have low survival rates mostly due to the lack of early detection methods. CTSE-specific activity probes have been developed and tested to assist in tumor imaging and functional studies investigating the role of CTSE expression in PDAC tumors. Furthermore, a CTSE protease-specific, photodynamic therapy pro-drug was developed to explore its potential use to treat tumors that express CTSE. Since CTSE is expressed in pancreatic diseases that are risk factors for PDAC, such as pancreatic cysts and chronic pancreatitis, learning about its function in these disease types could assist in early PDAC detection and in understanding the biology of PDAC progression. Overall, CTSE expression and activity shows potential to detect PDAC and other pancreatic diseases. Further research is needed to fully understand its functions and potential translational applicability.


Assuntos
Catepsina E/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/terapia , Biomarcadores Tumorais , Catepsina E/genética , Humanos
6.
Immunity ; 51(1): 155-168.e5, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248780

RESUMO

Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.


Assuntos
Catepsina E/metabolismo , Elementos Facilitadores Genéticos/genética , Imunidade/genética , Receptores CXCR4/metabolismo , Células Th1/imunologia , Animais , Catepsina E/genética , Comércio , Regulação da Expressão Gênica , Patrimônio Genético , Variação Genética , Centro Germinativo/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Antígenos Comuns de Leucócito/genética , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Modelos Animais , Receptores CXCR4/genética
7.
Pain ; 160(9): 2050-2062, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31095099

RESUMO

Pain is a frequent and disabling symptom in patients with multiple sclerosis (MS); however, the underlying mechanisms of MS-related pain are not fully understood. Here, we demonstrated that cathepsin E (CatE) in neutrophils contributes to the generation of mechanical allodynia in experimental autoimmune encephalomyelitis, an animal model of MS. We showed that CatE-deficient (CatE) mice were highly resistant to myelin oligodendrocyte glycoprotein (MOG35-55)-induced mechanical allodynia. After MOG35-55 immunization, neutrophils immediately accumulated in the dorsal root ganglion (DRG). Adoptive transfer of MOG35-55-stimulated wild-type neutrophils into the dorsal root ganglion induced mechanical allodynia in the recipient C57BL/6 mice. However, the pain threshold did not change when MOG35-55-stimulated CatE neutrophils were transferred into the recipient C57BL/6 mice. MOG35-55 stimulation caused CatE-dependent secretion of elastase in neutrophils. Behavioral analyses revealed that sivelestat, a selective neutrophil elastase inhibitor, suppressed mechanical allodynia induced by adoptively transferred MOG35-55-stimulated neutrophils. MOG35-55 directly bound to toll-like receptor 4, which led to increased production of CatE in neutrophils. Our findings suggest that inhibition of CatE-dependent elastase production in neutrophil might be a potential therapeutic target for pain in patients with MS.


Assuntos
Catepsina E/deficiência , Encefalomielite Autoimune Experimental/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Neuralgia/metabolismo , Neutrófilos/metabolismo , Animais , Catepsina E/genética , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Neuralgia/induzido quimicamente , Neuralgia/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade
8.
Sci Rep ; 9(1): 3054, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816218

RESUMO

Global DNA hypomethylation in CD4+ cells in systemic lupus erythematosus (SLE) was suggested to play a key role in the pathogenesis. To identify new methylation-sensitive genes, we integrated genome-wide DNA methylation and mRNA profiling data in CD4+ cells of MRL/lpr (MRL) and C57BL6/J (B6) mice. We identified Cathepsin E (Ctse), in which 13 methyl-CpGs within 583 bp region of intron 1 were hypomethylated, and Ctse mRNA upregulated in MRL compared with B6 mice. One of methyl-CpGs, mCGCG was 93.3 ± 2.05% methylated in B6 mice, while 80.0 ± 6.2% methylated and mutated to CGGG in MRL mice. Kaiso is known to bind to mCGCG and we hypothesized that it represses expression of Ctse in B6 mice. The binding of Kaiso to mCGCG site in B6 mice was reduced in MRL mice revealed by ChIP-PCR. EL4 cells treated with 5-azaC and/or Trichostatin A showed the suppression of binding of Kaiso to mCGCG motif by ChIP-PCR and the overexpression of Ctse was demonstrated by qPCR. Ctse gene silencing by siRNA in EL4 cells resulted in reduction of IL-10 secretion. The hypomethylation of mCGCG motif, reduced recruitment of Kaiso, and increased expression of Ctse and Il-10 in CD4+ cells may be involved in the pathogenesis of SLE.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Catepsina E/genética , Regulação da Expressão Gênica/imunologia , Lúpus Eritematoso Sistêmico/genética , Fatores de Transcrição/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-10/metabolismo , Íntrons/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Mutação , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo
9.
J Cell Physiol ; 234(4): 4454-4459, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317601

RESUMO

Lung cancer is one of the most frequently diagnosed malignant tumors and the main reason for cancer-related death around the world, whereas nonsmall cell lung cancer that consists two subtypes: lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) is responsible for an estimated 85% of all lung cancers. The current study aimed to explore gene expression and methylation differences between LUAD and LUSC. EdgeR was used to identify differentially regulated genes between normal and cancer in the LUAD and LUSC extracted from The Cancer Genome Atlas (TCGA), respectively, whereas SAM was used to find genes with differential methylation between normal and cancer in the LUAD and LUSC, respectively. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to analyze the function which these genes enriched in. A total of 391 genes with opposite methylation patterns in LUAD and LUSC and four functional pathways were obtained (false discovery rate (FDR) < 0.1). These pathways mainly included fat digestion and absorption, phenylalanine metabolism, bile secretion, and so on, which were related to the airframe nutrition metabolic pathway. Moreover, two genes CTSE (cathepsin E) and solute carrier family 5 member 7 (SLC5A7) were also found, among which CTSE was overexpressed and hypomethylated in LUAD corresponding to normal lung tissues, whereas SLC5A7 showed the opposite in LUAD. In conclusion, this study investigated the differences between the gene expression and methylation patterns in LUAD and LUSC, and explored their different biological characteristics. Further understanding of these differences may promote the discovery and development of new, accurate strategies for the prevention, diagnosis, and treatment of lung cancer.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Metilação de DNA , Neoplasias Pulmonares/genética , Transcriptoma , Adenocarcinoma de Pulmão/patologia , Carcinoma de Células Escamosas/patologia , Catepsina E/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/patologia , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Simportadores/genética
10.
J Genet ; 97(1): 145-155, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29666334

RESUMO

The cathepsin E-A-like, also known as 'similar to nothepsin', is a new member of the aspartic protease family, which may take part in processing of egg yolk macromolecules, due to it was identified in the chicken egg-yolk. Previously, studies have suggested that the expression of cathepsin E-A-like increased gradually during sexual maturation of pullets, but the exact regulation mechanism is poorly understood. In this study, to gain insight into the function and regulation mechanism of the gene in egg-laying hen, we cloned the cathepsin E-A-like gene and evaluated its evolutionary origin by using both phylogenetic and syntenic methods. The mode of the gene expression regulation was analysed through stimulating juvenile hens with 17ß-estradiol and chicken embryo hepatocytes with 17ß-estradiol combined with oestrogen receptor antagonists including MPP, ICI 182,780 and tamoxifen. Our results showed that cathepsin E-A-like was an orthologoues gene with nothepsin, which is present in birds but not in mammals. The expression of cathepsin E-A-like significantly increased in a dose-dependent manner after the juvenile hens were treated with 17ß-estradiol (P < 0.05). Compared with the 17ß-estradiol treatment group, the expression of cathepsin E-A-like was not significantly changed when the hepatocytes were treated with 17ß-estradiol combined with MPP (P < 0.05). In contrast, compared with the 17ß-estradiol combined with MPP treatment group, the expression of cathepsin E-A-like was significantly downregulated when the hepatocytes were treated with 17ß-estradiol combined with tamoxifen or ICI 182,780 (P < 0.05). These results demonstrated that cathepsin E-A-like shared the same evolutionary origin with nothepsin. The expression of cathepsin E-A-like was regulated by oestrogen, and the regulative effect was predominantly mediated through ER-Β in liver of chicken.


Assuntos
Catepsina E/genética , Galinhas/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Sequência de Aminoácidos , Animais , Catepsina E/química , Catepsina E/metabolismo , Clonagem Molecular , Sequência Conservada/genética , Receptor beta de Estrogênio/antagonistas & inibidores , Genoma , Fígado/efeitos dos fármacos , Filogenia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Sintenia/genética
11.
Mol Cells ; 41(2): 140-149, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29385670

RESUMO

The TIS21/BTG2/PC3 gene belongs to the antiproliferative gene (APRO) family and exhibits tumor suppressive activity. However, here we report that TIS21 controls lipid metabolism, rather than cell proliferation, under fasting condition. Using microarray analysis, whole gene expression changes were investigated in liver of TIS21 knockout (TIS21-KO) mice after 20 h fasting and compared with wild type (WT). Peroxisome proliferator-activated receptor alpha (PPARα) target gene expression was almost absent in contrast to increased lipid synthesis in the TIS21-KO mice compared to WT mice. Immunohistochemistry with hematoxylin and eosin staining revealed that lipid deposition was focal in the TIS21-KO liver as opposed to the diffuse and homogeneous pattern in the WT liver after 24 h starvation. In addition, cathepsin E expression was over 10 times higher in the TIS21-KO liver than that in the WT, as opposed to the significant reduction of thioltransferase in both adult and fetal livers. At present, we cannot account for the role of cathepsin E. However, downregulation of glutaredoxin 2 thioltransferase expression might affect hypoxic damage in the TIS21-KO liver. We suggest that the TIS21/BTG2 gene might be essential to maintain energy metabolism and reducing power in the liver under fasting condition.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Imediatamente Precoces/genética , Fígado/metabolismo , PPAR alfa/genética , Proteínas Supressoras de Tumor/genética , Animais , Catepsina E/genética , Catepsina E/metabolismo , Metabolismo Energético/genética , Jejum , Ontologia Genética , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/metabolismo , Proteínas Supressoras de Tumor/metabolismo
12.
J Neuroinflammation ; 14(1): 115, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28583160

RESUMO

BACKGROUND: Increasing evidence supports a key role for inflammation in the neurodegenerative process of familial amyloidotic polyneuropathy (FAP). While there seems to be an overactivation of the neuronal interleukin-1 signaling pathway, the immune response is apparently compromised in FAP. Accordingly, little immune cell infiltration is observed around pre-fibrillar or fibrillar amyloid deposits, with the underlying mechanism for this phenomenon remaining poorly understood. Cathepsin E (CtsE) is an important intermediate for antigen presentation and chemotaxis, but its role in the pathogenesis of FAP disease remains unknown. METHODS: In this study, we used both mouse primary macrophages and in vivo studies based on transgenic models of FAP and human samples to characterize CtsE expression in different physiological systems. RESULTS: We show that CtsE is critically decreased in bone marrow-derived macrophages from a FAP mouse model, possibly contributing for cell function impairment. Compromised levels of CtsE were also found in injured nerves of transgenic mice and, most importantly, in naïve peripheral nerves, sensory ganglia, murine stomach, and sural nerve biopsies derived from FAP patients. Expression of CtsE in tissues was associated with transthyretin (TTR) deposition and differentially regulated accordingly with the physiological system under study. Preventing deposition with a TTR small interfering RNA rescued CtsE in the peripheral nervous system (PNS). In contrast, the expression of CtsE increased in splenic cells (mainly monocytes) or peritoneal macrophages, indicating a differential macrophage phenotype. CONCLUSION: Altogether, our data highlights the potential of CtsE as a novel FAP biomarker and a possible modulator for innate immune cell chemotaxis to the disease most affected tissues-the peripheral nerve and the gastrointestinal tract.


Assuntos
Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/imunologia , Catepsina E/genética , Catepsina E/imunologia , Imunidade Celular/imunologia , Adulto , Neuropatias Amiloides Familiares/patologia , Animais , Catepsina E/biossíntese , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
13.
J Biochem ; 159(4): 449-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26711235

RESUMO

Six aspartic proteinase precursors, a pro-cathepsin E (ProCatE) and five pepsinogens (Pgs), were purified from the stomach of adult newts (Cynops pyrrhogaster). On sodium dodecylsulfate-polyacrylamide gel electrophoresis, the molecular weights of the Pgs and active enzymes were 37-38 kDa and 31-34 kDa, respectively. The purified ProCatE was a dimer whose subunits were connected by a disulphide bond. cDNA cloning by polymerase chain reaction and subsequent phylogenetic analysis revealed that three of the purified Pgs were classified as PgA and the remaining two were classified as PgBC belonging to C-type Pg. Our results suggest that PgBC is one of the major constituents of acid protease in the urodele stomach. We hypothesize that PgBC is an amphibian-specific Pg that diverged during its evolutional lineage. PgBC was purified and characterized for the first time. The purified urodele pepsin A was completely inhibited by equal molar units of pepstatin A. Conversely, the urodele pepsin BC had low sensitivity to pepstatin A. In acidic condition, the activation rates of newt pepsin A and BC were similar to those of mammalian pepsin A and C1, respectively. Our results suggest that the enzymological characters that distinguish A- and C-type pepsins appear to be conserved in mammals and amphibians.


Assuntos
Ácido Aspártico Proteases/genética , Mucosa Gástrica/metabolismo , Salamandridae/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Proteases/classificação , Ácido Aspártico Proteases/isolamento & purificação , Catepsina E/classificação , Catepsina E/genética , Catepsina E/isolamento & purificação , Clonagem Molecular , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Ensaios Enzimáticos , Precursores Enzimáticos/classificação , Precursores Enzimáticos/genética , Precursores Enzimáticos/isolamento & purificação , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peso Molecular , Pepsina A/classificação , Pepsina A/genética , Pepsina A/isolamento & purificação , Pepsinogênios/classificação , Pepsinogênios/genética , Pepsinogênios/isolamento & purificação , Pepstatinas/farmacologia , Filogenia , Inibidores de Proteases/farmacologia
14.
J Neurosci ; 35(36): 12488-501, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26354916

RESUMO

Proteinase cascades are part of the basic machinery of neuronal death pathways. Neuronal cathepsin B (CatB), a typical cysteine lysosomal protease, plays a critical role in neuronal death through lysosomal leakage or excessive autophagy. On the other hand, much attention has been paid to microglial CatB in neuronal death. We herein show the critical role of proteolytic relay through microglial CatB and CatE in the polarization of microglia/macrophages in the neurotoxic phenotype, leading to hypoxia/ischemia (HI)-induced hippocampal neuronal damage in neonatal mice. HI caused extensive brain injury in neonatal wild-type mice, but not in CatB(-/-) mice. Furthermore, HI-induced polarization of microglia/macrophages in the neurotoxic phenotype followed by the neuroprotective phenotype in wild-type mice. On the other hand, microglia/macrophages exhibited only the early and transient polarization in the neuroprotective phenotype in CatB(-/-) mice. CA-074Me, a specific CatB inhibitor, significantly inhibited the neuronal death of primary cultured hippocampal neurons induced by the conditioned medium from cultured microglia polarized in the neurotoxic phenotype. Furthermore, CA-074Me prevented the activation of nuclear factor-κB (NF-κB) in cultured microglia by inhibiting autophagic inhibitor of κBα degradation following exposure to oxygen-glucose deprivation. Rather surprisingly, CatE increased the CatB expression after HI by the liberation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) from microglia through the proteasomal pathway. A significant increase in CatB and CatE levels was found exclusively in microglia/macrophages after HI. Thus, a proteolytic relay through the early CatE/TRAIL-dependent proteosomal and late CatB-dependent autophagic pathways for NF-κB activation may play a critical role in the polarization of microglia/macrophages in the neurotoxic phenotype. Significance statement: Proteinase cascades are part of the basic machinery of neuronal death pathways. Cathepsin B, a typical cysteine lysosomal protease, plays a critical role in neuronal death through lysosomal leakage or excessive autophagy in neurons. On the other hand, much attention has been also paid to the role of microglial cathepsin B in neuronal death. In this study, using in vivo and in vitro models of relevance to brain ischemia, we found a critical role of proteolytic relay through cathepsin B and cathepsin E in the neurotoxic polarization of microglia/macrophages, which is responsible for aggravation of hypoxia/ischemia-induced neuronal injury. These findings suggest orally active selective inhibitors of cathepsin B or cathepsin E as promising pharmacological agents for the treatment of ischemic brain injury.


Assuntos
Catepsina B/metabolismo , Catepsina E/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Proteólise , Animais , Catepsina B/antagonistas & inibidores , Catepsina B/genética , Catepsina E/genética , Células Cultivadas , Dipeptídeos/farmacologia , Hipocampo/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fenótipo , Inibidores de Proteases/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
15.
Parasit Vectors ; 8: 404, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26226952

RESUMO

BACKGROUND: Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. METHODS: BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. RESULTS: The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. CONCLUSIONS: Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients.


Assuntos
Autofagia/fisiologia , Catepsina E/metabolismo , Regulação da Expressão Gênica/imunologia , Leishmania major/imunologia , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Catepsina E/genética , Macrófagos/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Proteínas Mitocondriais/genética
16.
Biochem Biophys Res Commun ; 465(2): 213-7, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26239660

RESUMO

Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes.


Assuntos
Catepsina D/metabolismo , Cistatina B/metabolismo , Citosol/enzimologia , Células Matadoras Naturais/enzimologia , Linfócitos/enzimologia , Macrófagos/enzimologia , Animais , Catepsina D/antagonistas & inibidores , Catepsina D/genética , Catepsina E/antagonistas & inibidores , Catepsina E/genética , Catepsina E/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cistatina B/farmacologia , Citosol/efeitos dos fármacos , Dipeptídeos/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Expressão Gênica , Células HEK293 , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Pepstatinas/farmacologia , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/enzimologia
17.
Protein Pept Lett ; 22(6): 525-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25962065

RESUMO

Cathepsin E is an aspartic protease that belongs to the pepsin family. This protease is similar to cathepsin D but differs in its tissue distribution and cell localization. Elevated levels of this enzyme are linked to several tumors, including devastating pancreatic ductal adenocarcinoma. In this manuscript, we present a new protocol for the high-yield purification of recombinant human cathepsin E in the baculovirus expression system. The recombinant protein was produced by the Sf9 insect cell line and secreted into the medium in the form of an inactive zymogen. Procathepsin E was purified using ion-exchange and size exclusion chromatographies followed by pepstatin- and heparin-affinity chromatography steps. The zymogen was activated at an acidic pH, resulting in a high yield of the activated intermediate of cathepsin E. The enzymatic activity, stability, and molecular weight corresponded to those of cathepsin E. The new purification procedure will promote further studies of this enzyme to improve the understanding of its structure-function relationship and consequently enable the development of better therapeutic approaches.


Assuntos
Catepsina E/isolamento & purificação , Catepsina E/metabolismo , Precursores Enzimáticos/isolamento & purificação , Precursores Enzimáticos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Catepsina E/química , Catepsina E/genética , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Escherichia coli , Células HEK293 , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9
18.
Ann Surg Oncol ; 22(7): 2431-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25348778

RESUMO

BACKGROUND: Cathepsin E (CTSE), an aspartic proteinase, is differentially expressed in the metaplasia-dysplasia-neoplasia sequence of gastric and colon cancer. We evaluated CTSE in Barrett's esophagus (BE) and cancer because increased CTSE levels are linked to improved survival in several cancers, and other cathepsins are up-regulated in BE and esophageal adenocarcinoma (EAC). METHODS: A total of 273 pretreatment tissues from 199 patients were analyzed [31 normal squamous esophagus (NE), 29 BE intestinal metaplasia, 31 BE with dysplasia (BE/D), 108 EAC]. CTSE relative mRNA expression was measured by real-time polymerase chain reaction, and protein expression was measured by immunohistochemistry. CTSE serum levels were determined by enzyme-linked immunosorbent assay. RESULTS: Median CTSE mRNA expression levels were ≥1,000-fold higher in BE/intestinal metaplasia and BE/D compared to NE. CTSE levels were significantly lower in EAC compared to BE/intestinal metaplasia and BE/D, but significantly higher than NE levels. A similar expression pattern was present in immunohistochemistry, with absent staining in NE, intense staining in intestinal metaplasia and dysplasia, and less intense EAC staining. CTSE serum analysis did not discriminate patient groups. In a uni- and multivariable Cox proportional hazards model, CTSE expression was not significantly associated with survival in patients with EAC, although CTSE expression above the 25th percentile was associated with a 41 % relative risk reduction for death (hazard ratio 0.59, 95 % confidence interval 0.27-1.26, p = 0.17). CONCLUSIONS: CTSE mRNA expression is up-regulated more than any known gene in Barrett intestinal metaplasia and dysplasia tissues. Protein expression is similarly highly intense in intestinal metaplasia and dysplasia tissues.


Assuntos
Adenocarcinoma/metabolismo , Esôfago de Barrett/metabolismo , Catepsina E/sangue , Neoplasias Esofágicas/metabolismo , Esôfago/metabolismo , Metaplasia/metabolismo , Lesões Pré-Cancerosas/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Idoso , Esôfago de Barrett/mortalidade , Esôfago de Barrett/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Catepsina E/genética , Ensaio de Imunoadsorção Enzimática , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Masculino , Metaplasia/mortalidade , Metaplasia/patologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Lesões Pré-Cancerosas/mortalidade , Lesões Pré-Cancerosas/patologia , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida
19.
Am J Pathol ; 184(10): 2730-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25239563

RESUMO

Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets.


Assuntos
Catepsina E/metabolismo , Dinâmica Mitocondrial , Enfisema Pulmonar/metabolismo , Animais , Apoptose , Lavagem Broncoalveolar , Catepsina E/genética , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/farmacologia , Enfisema Pulmonar/fisiopatologia , Quinazolinonas/farmacologia , Fumaça/efeitos adversos , Poluição por Fumaça de Tabaco/efeitos adversos
20.
PLoS One ; 9(9): e106566, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184278

RESUMO

The monitoring of pancreatic ductal adenocarcinoma (PDAC) in high-risk populations is essential. Cathepsin E (CTSE) is specifically and highly expressed in PDAC and pancreatic intraepithelial neoplasias (PanINs), and its expression gradually increases along with disease progression. In this study, we first established an in situ 7,12-dimethyl-1,2-benzanthracene (DMBA)-induced rat model for PanINs and PDAC and then confirmed that tumorigenesis properties in this model were consistent with those of human PDAC in that CTSE expression gradually increased with tumor development using histology and immunohistochemistry. Then, using in vivo imaging of heterotopically implanted tumors generated from CTSE- overexpressing cells (PANC-1-CTSE) in nude mice and in vitro imaging of PanINs and PDAC in DMBA-induced rats, the specificity of the synthesized CTSE-activatable probe was verified. Quantitative determination identified that the fluorescence signal ratio of pancreatic tumor to normal pancreas gradually increased in association with progressive pathological grades, with the exception of no significant difference between PanIN-II and PanIN-III grades. Finally, we monitored pancreatic carcinogenesis in vivo using confocal laser endomicroscopy (CLE) in combination with the CTSE-activatable probe. A prospective double-blind control study was performed to evaluate the accuracy of this method in diagnosing PDAC and PanINs of all grades (>82.7%). This allowed us to establish effective diagnostic criteria for CLE in PDAC and PanINs to facilitate the monitoring of PDAC in high-risk populations.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Catepsina E , Imagem Molecular/métodos , Neoplasias Pancreáticas/diagnóstico , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Catepsina E/biossíntese , Catepsina E/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Microscopia Confocal , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA