Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.225
Filtrar
1.
J Biomed Sci ; 31(1): 46, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725007

RESUMO

BACKGROUND: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions. METHODS: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions. RESULTS: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis. CONCLUSION: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catepsinas , Cognição , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Catepsinas/metabolismo , Catepsinas/genética , Cognição/fisiologia , Receptor trkB/metabolismo , Receptor trkB/genética , Masculino , Camundongos Knockout
2.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
3.
Aquat Toxicol ; 266: 106783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064891

RESUMO

Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.


Assuntos
Linguado , Poluentes Químicos da Água , Animais , Catepsinas/genética , Catepsinas/metabolismo , Linguado/genética , Linguado/metabolismo , Filogenia , Clonagem Molecular , Poluentes Químicos da Água/toxicidade , Estresse Fisiológico/genética
4.
Mol Carcinog ; 63(3): 400-416, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38051285

RESUMO

Recent studies have shown that high cell cycle activity negatively correlates with antitumor immunity in certain cancer types. However, a similar correlation has not been proven in liver cancer. We downloaded transcriptomic profiles of the cancer genome atlas-liver hepatocellular carcinoma (TCGA-LIHC) and assessed the cell cycle distribution of samples using single sample gene set enrichment analysis (ssGSEA), termed the cell cycle score (CCS). We obtained cell cycle-related differentially expressed prognostic genes and identified CENPA, CDC20, and CTSV using LASSO regression. We studied the effect of CTSV on clinical features and immune alterations in liver cancer based on TCGA-LIHC data. In vitro and in vivo experiments were performed to validate the role of CTSV in liver cancer using liver cancer cell lines and tissues. We found that the CCS closely correlated with the clinical features and prognosis of patients in TCGA-LIHC. Analysis of differentially expressed genes (DEGs), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) regression identified cathepsin V (CTSV) with prognostic significance in LIHC. Importantly, single-gene survival analysis of CTSV using microarray and sequencing data indicated that high levels of CTSV expression correlated with an unfavorable prognosis in various cancers. Gene set enrichment analysis revealed that high CTSV expression closely correlated with decreased expression of metabolic genes and increased expression of cell cycle genes. Furthermore, difference and correlation analyses of the relationship between CTSV expression and immune infiltrates, determined using CIBERSORT and TIMER algorithms, revealed that CTSV expression correlated with macrophages and CD4+ T cells. In vitro and in vivo experiments revealed that knockdown of CTSV inhibited liver cancer cells proliferation. Immunohistochemical staining showed that high CTSV expression correlated with macrophage infiltration in liver cancer tissues, predicted a poor prognosis, and is associated with the effectiveness of hepatocellular carcinoma treatment. In couclusion, CTSV is a novel cell cycle-associated gene with clinical significance in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Catepsinas/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética
5.
J Invest Dermatol ; 144(3): 466-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37865898

RESUMO

Epidermal differentiation is ultimately aimed at the formation of a functional barrier capable of protecting the organism from the environment while preventing loss of biologically vital elements. Epidermal differentiation entails a delicately regulated process of cell-cell junction formation and dissolution to enable upward cell migration and desquamation. Over the past two decades, the deciphering of the genetic basis of a number of inherited conditions has delineated the pivotal role played in this process by a series of proteases and protease inhibitors, including serpins, cathepsins, and cystatins, suggesting novel avenues for therapeutic intervention in both rare and common disorders of cornification.


Assuntos
Peptídeo Hidrolases , Pele , Peptídeo Hidrolases/genética , Inibidores de Proteases/farmacologia , Catepsinas/genética , Endopeptidases
6.
Fish Shellfish Immunol ; 139: 108852, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37295735

RESUMO

Cathepsins belong to a group of proteins that are present in both prokaryotic and eukaryotic organisms and have an extremely high degree of evolutionary conservation. These proteins are functionally active in extracellular environments as soluble enzymatic proteins or attached to plasma membrane receptors. In addition, they occur in cellular secretory vesicles, mitochondria, the cytosol, and within the nuclei of eukaryotic cells. Cathepsins are classified into various groups based on their sequence variations, leading to their structural and functional diversification. The molecular understanding of the physiology of crustaceans has shown that proteases, including cathepsins, are expressed ubiquitously. They also contain one of the central regulatory systems for crustacean reproduction, growth, and immune responses. This review focuses on various aspects of the crustaceans cathepsins and emphasizes their biological roles in different physiological processes such as reproduction, growth, development, and immune responses. We also describe the bioactivity of crustaceans cathepsins. Because of the vital biological roles that cathepsins play as cellular proteases in physiological processes, they have been proposed as potential novel targets for the development of management strategies for the aquaculture industries.


Assuntos
Catepsinas , Fenômenos Fisiológicos , Animais , Catepsinas/genética , Catepsinas/química , Proteínas , Evolução Biológica
7.
J Alzheimers Dis ; 93(2): 395-401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038815

RESUMO

Frontotemporal dementia (FTD) can manifest as diverse clinical phenotypes and is frequently caused by mutations in different genes, complicating differential diagnosis. This underlines the urgent need for valid biomarkers. Altered lysosomal and immune functions proposedly contribute to FTD pathogenesis. Cathepsins, including cathepsin S, are enzymes preferentially expressed in brain in microglia, which influence lysosomal and immune function. Here, we examined whether alterations in serum cathepsin S levels associate with specific clinical, genetic, or neuropathological FTD subgroups, but no such alterations were observed. However, further research on other lysosomal proteins may reveal new biologically relevant biomarkers in FTD.


Assuntos
Demência Frontotemporal , Humanos , Demência Frontotemporal/diagnóstico , Proteínas tau/metabolismo , Encéfalo/patologia , Mutação/genética , Biomarcadores , Catepsinas/genética , Catepsinas/metabolismo , Proteína C9orf72/genética
8.
Viruses ; 15(2)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36851718

RESUMO

The baculoviral chitinase (CHIA) and cathepsin (V-CATH) enzymes promote terminal insect host liquefaction, which aids viral progeny dissemination. Recombinant Autographa californica nucleopolyhedrovirus (AcMNPV)-derived viruses were previously generated with reprogrammed chiA transcription by replacing the native promoter with the AcMNPV polyhedrin (polh) or core protein (p6.9) promoter sequences, but of both these chiA-reprogrammed viruses lacked v-cath transcription and V-CATH enzymatic activity. Here, we report that dual p6.9/polh promoter reprogramming of the adjacent chiA/v-cath genes resulted in modulated temporal transcription of both genes without impacting infectious budded virus production. These promoter changes increased CHIA and V-CATH enzyme activities in infected Spodoptera frugiperda-derived cultured cells and Trichoplusia ni larvae. In addition, larvae infected with the dual reprogrammed virus had earlier mortalities and liquefaction. This recombinant baculovirus, lacking exogenous genomic elements and increased chiA/v-cath expression levels, may be desirable for and amenable to producing enhanced baculovirus-based biopesticides.


Assuntos
Quitinases , Animais , Baculoviridae , Catepsinas/genética , Quitinases/genética , Larva , Spodoptera , Virulência/genética , Transcrição Gênica
9.
Hum Pathol ; 134: 30-44, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565726

RESUMO

Cathepsin proteases, activated in the lysosomes, are upregulated in many cancers. Intraoperative detection systems of microscopic residual tumor using cathepsin-mediated release of fluorescent nanoparticles may guide surgical excisions to improve local control. We sought to define the genetic and proteomic expression of cathepsins and their clinicopathological correlates in myxofibrosarcoma and undifferentiated pleomorphic sarcoma (UPS)-soft tissue sarcomas with high rates of positive resection margins and local recurrence-and to establish a cellular justification for cathepsin-dependent systems to identify residual cancer in the resection bed. Real-time quantitative polymerase chain reaction analysis of 58 fresh-frozen tumor specimens revealed that 56 (97%) had elevated mRNA expression of ≥1 cathepsin, including cathepsin-B (79%), cathepsin-K (59%), cathepsin-L (71%), and -S (71%). Immunohistochemical analysis of these fresh-frozen specimens revealed that 98% of tumors were positive for one or more of cathepsin-B (85%), cathepsin-K (50%), cathepsin-L (63%), and -S (10%). Strong cathepsin-K expression was associated with greater risks of local recurrence (hazard ratio, 3.78; p = 0.044) and disease-specific mortality (hazard ratio, 3.70; p = 0.025). Immunohistochemical analysis of 33 formalin-fixed paraffin-embedded block samples revealed that 97% were positive for cathepsin-B (88%), cathepsin-K (76%), cathepsin-L (52%), or -S (52%) at the tumor periphery; cathepsin-K positivity correlated with a radiographic tail-like sign (p = 0.004) and microscopic infiltrative growth (p = 0.020). We conclude that cathepsins are broadly overexpressed in myxofibrosarcoma and UPS, and cathepsin-K may be an immunohistochemical marker of local infiltration and poorer prognosis that could be used to guide precision surgery.


Assuntos
Fibrossarcoma , Histiocitoma Fibroso Maligno , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Adulto , Catepsinas/genética , Catepsinas/metabolismo , Peptídeo Hidrolases , Proteômica , Sarcoma/cirurgia , Sarcoma/patologia , Fibrossarcoma/genética , Fibrossarcoma/cirurgia , Fibrossarcoma/patologia , Neoplasias de Tecidos Moles/patologia
10.
Cells ; 11(21)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359887

RESUMO

Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.


Assuntos
Síndrome de Unverricht-Lundborg , Humanos , Síndrome de Unverricht-Lundborg/genética , Cistatina B/genética , Irmãos , Perfil Genético , Catepsinas/genética
11.
Proc Natl Acad Sci U S A ; 119(43): e2209405119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251995

RESUMO

Feline morbillivirus (FeMV) is a recently discovered pathogen of domestic cats and has been classified as a morbillivirus in the Paramyxovirus family. We determined the complete sequence of FeMVUS5 directly from an FeMV-positive urine sample without virus isolation or cell passage. Sequence analysis of the viral genome revealed potential divergence from characteristics of archetypal morbilliviruses. First, the virus lacks the canonical polybasic furin cleavage signal in the fusion (F) glycoprotein. Second, conserved amino acids in the hemagglutinin (H) glycoprotein used by all other morbilliviruses for binding and/or fusion activation with the cellular receptor CD150 (signaling lymphocyte activation molecule [SLAM]/F1) are absent. We show that, despite this sequence divergence, FeMV H glycoprotein uses feline CD150 as a receptor and cannot use human CD150. We demonstrate that the protease responsible for cleaving the FeMV F glycoprotein is a cathepsin, making FeMV a unique morbillivirus and more similar to the closely related zoonotic Nipah and Hendra viruses. We developed a reverse genetics system for FeMVUS5 and generated recombinant viruses expressing Venus fluorescent protein from an additional transcription unit located either between the phospho-protein (P) and matrix (M) genes or the H and large (L) genes of the genome. We used these recombinant FeMVs to establish a natural infection and demonstrate that FeMV causes an acute morbillivirus-like disease in the cat. Virus was shed in the urine and detectable in the kidneys at later time points. This opens the door for long-term studies to address the postulated role of this morbillivirus in the development of chronic kidney disease.


Assuntos
Infecções por Morbillivirus , Morbillivirus , Aminoácidos , Animais , Catepsinas/genética , Gatos , Furina , Hemaglutininas , Humanos , Rim , Morbillivirus/genética , Infecções por Morbillivirus/veterinária
12.
Eur J Med Genet ; 65(10): 104605, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058494

RESUMO

BACKGROUND: Papillon Lefevre syndrome (PLS) is an autosomal recessive disorder that results from a mutated gene that encodes a lysosomal peptidase known as cathepsin C (CTSC). The clinical presentation of PLS involves mainly palmoplantar keratosis and periodontitis with a variable degree of severity. SUBJECTS: and methods: Our study included ten patients with a broad spectrum of palmoplantar keratosis and periodontitis severity. CTSC variants were detected by Sanger sequencing. CTSC protein secreted in urine was detected by western blotting. RESULTS: Five patients have missense variants, Four have nonsense variants, and one has splice variants in CTSC. The activation products of cathepsin C protein (Heavy and light chains) were absent in all patients' urine samples except one with a significantly reduced level compared to the controls. The dimeric form of CTSC protein was found in all the studied cases. The monomeric form was found in five cases. The products of proteolytic activation of CTSC by other cathepsins (L and S) were found in the urine samples of five of the patients. Each patient had a characteristic pattern of accumulated CTSC protein maturation/activation substrates, intermediates, and products. 40% of the patients had the activation products of other lysosomal cathepsins. CONCLUSION: Urinary CTSC in PLS patients could be used as a diagnostic biomarker for the biochemical screening of the disease. Different variants in CTSC result in different profiles of CTSC secreted in the urine of PLS patients. The profiles of secreted CTSC in urine could be correlated to the severity of palmoplantar keratosis.


Assuntos
Doença de Papillon-Lefevre , Periodontite , Catepsina C/genética , Catepsina C/metabolismo , Catepsinas/genética , Humanos , Mutação , Doença de Papillon-Lefevre/diagnóstico , Doença de Papillon-Lefevre/genética
13.
J Biomech ; 143: 111266, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088868

RESUMO

Cysteine cathepsins are potent proteases implicated in cardiovascular disease for degrading extracellular matrix (ECM) whose structure and integrity determine the mechanical behavior of arteries. Cathepsin knockout mouse models fed atherogenic diets have been used to study their roles in cardiovascular disease, but the impacts of cathepsin knockout on non-atherosclerotic arterial mechanics are scarce. We examine arterial mechanics in several cathepsin knockout mouse lines (CatK-/-, CatL-/-ApoE-/- and CatS-/-ApoE-/-) and controls (C57/Bl6, apolipoprotein E-/-). Common carotid arteries of three month-old mice were isolated and underwent biaxial mechanical testing and opening angle tests. Measured wall thicknesses and pressure-diameter curves were fed into a 4-fiber constitutive model to assess differences in material properties. Pressure-diameter data revealed CatL-/-ApoE-/- arteries were smaller in caliber compared to CatK-/-, CatS-/-ApoE-/- and ApoE-/- controls and were less compliant than ApoE-/- and CatS-/-ApoE-/- arteries at lower pressures, where elastin governs the mechanical response. CatK-/- arteries showed increased in vivo axial stretches compared to CatL-/-ApoE-/- and CatS-/-ApoE-/- arteries. CatL-/-ApoE-/- arteries were less compliant than ApoE-/- and CatS-/-ApoE-/- arteries pressurized to sub-diastolic pressures. 4-fiber and unified fiber distribution models were able to capture arteries' nonlinear mechanical responses; calculated material parameters suggested that ApoE-/- arteries had increased axial parameters compared to CatL-/-ApoE-/- and CatS-/-ApoE-/- arteries. Taken together, the data suggests that loss of the potent collagenase catK increases axial and circumferential arterial compliance, while knockout of the elastase catL decreased circumferential arterial compliance, and knockout of the elastase catS showed no impact on carotid arterial mechanics.


Assuntos
Doenças Cardiovasculares , Elastina , Animais , Apolipoproteínas E/genética , Artérias Carótidas/fisiologia , Catepsinas/genética , Cisteína , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elastase Pancreática
14.
Mar Drugs ; 20(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36005507

RESUMO

Cathepsins are lysosomal cysteine proteases belonging to the papain family and play crucial roles in intracellular protein degradation/turnover, hormone maturation, antigen processing, and immune responses. In the present study, 18 cathepsins were systematically identified from the fish S. schlegelii genome. Phylogenetic analysis indicated that cathepsin superfamilies are categorized into eleven major clusters. Synteny and genome organization analysis revealed that whole-genome duplication led to the expansion of S. schlegelii cathepsins. Evolutionary rate analyses indicated that the lowest Ka/Ks ratios were observed in CTSBa (0.13) and CTSBb (0.14), and the highest Ka/Ks ratios were observed in CTSZa (1.97) and CTSZb (1.75). In addition, cathepsins were ubiquitously expressed in all examined tissues, with high expression levels observed in the gill, intestine, head kidney, and spleen. Additionally, most cathepsins were differentially expressed in the head kidney, gill, spleen, and liver following Aeromonas salmonicida infection, and their expression signatures showed tissue-specific and time-dependent patterns. Finally, protein-protein interaction network (PPI) analyses revealed that cathepsins are closely related to a few immune-related genes, such as interleukins, chemokines, and TLR genes. These results are expected to be valuable for comparative immunological studies and provide insights for further functional characterization of cathepsins in fish species.


Assuntos
Aeromonas salmonicida , Doenças dos Peixes , Perciformes , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Sequência de Aminoácidos , Animais , Catepsinas/genética , Catepsinas/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Imunidade Inata/genética , Perciformes/metabolismo , Filogenia
15.
Fish Shellfish Immunol ; 128: 484-493, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35985629

RESUMO

Cathepsins are major lysosomal enzymes that participate in necessary physiological processes, including protein degradation, tissue differentiation, and innate or adaptive immune responses. According to their proteolytic activity, vertebrate cathepsins are classified as cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W, and X or Z), aspartic proteases (cathepsin D and E), and serine proteases (cathepsin A and G). Several cathepsins were reported in teleosts, however, no cathepsin gene has been identified from Pacific cod so far. In the present study, a total of 13 cathepsin genes were identified for Pacific cod. The evolutionary path of each cathepsin gene was demonstrated via analysis of phylogenetic trees, multiple alignments, conserved domains, motif compositions, and tertiary structures. Tissue distribution analysis showed that all cathepsin genes were ubiquitously expressed in eight healthy tissues but they exhibited diverse levels of expression. Several cathepsin genes were found to be highly expressed in the kidney, spleen, head kidney and liver, whereas low or modest levels were detected in the gills, skin, intestines, and heart. Temporal-specific expression of cathepsins in early developmental stages of Pacific cod were also conducted. CTSK, S, F, and Z were highly expressed at 1 dph and 5 dph and decreased later, while CTSL, L1, and L.1 transcript levels gradually increased in a time-dependent manner. Additionally, the expression profiles of cathepsin genes in Pacific cod were evaluated in the spleen and liver after poly I:C challenge. The results indicated that all cathepsin genes were significantly upregulated upon poly I:C stimulation, suggesting that they play key roles in antiviral immune responses in Pacific cod. Our findings establish a foundation for future exploration of the molecular mechanisms of cathepsins in modulating antiviral immunity in Pacific cod.


Assuntos
Catepsinas , Gadiformes , Animais , Antivirais , Catepsina A/genética , Catepsina B/genética , Catepsina D/genética , Catepsina L/genética , Catepsinas/genética , Gadiformes/genética , Filogenia , Poli I-C/farmacologia
16.
Mol Aspects Med ; 88: 101106, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35868042

RESUMO

Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.


Assuntos
Catepsinas , Cisteína , Humanos , Cisteína/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Lisossomos/metabolismo , Proteólise
17.
Cell Physiol Biochem ; 56(2): 150-165, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35413750

RESUMO

BACKGROUND/AIMS: Galectin 3 (GAL-3) is a beta galactoside binding lectin that has different roles in normal and pathophysiological conditions. GAL-3 was found to be up regulated in animal models of myocardial infarction (MI). Cathepsins are intracellular lysosomal proteases that degrade proteins. The objective of his study is to investigate if high GAL-3 after myocardial infarction has a protective role on the heart through its modulation of lysosomal Cathepsins in ischemic myocardium. METHODS: Male C57B6/J mice and GAL-3 knockout (KO) mice were used for permanent ligation of the left anterior descending artery of the heart to create infarction in the anterior myocardium. Hearts and plasma samples were collected 24 hours after the induction of MI and were used for enzyme linked immunosorbent assay and immunofluorescent staining. RESULTS: Our results show that the significant increase in GAL-3 levels in the left ventricle at 24-hour following MI is associated with significant lower levels of cathepsins B, D, L and S in GAL-3 wild MI group than GAL-3 KO MI group. We also report a significant lower plasma level of Troponin I in GAL-3 wild MI group than GAL-3 KO MI group. CONCLUSION: The increased levels of GAL-3 at 24-hour following MI regulates the process of cardiomyocytes injury through modulation of lysosomal cathepsins B, D, L and S.


Assuntos
Galectina 3 , Infarto do Miocárdio , Animais , Catepsinas/genética , Catepsinas/metabolismo , Modelos Animais de Doenças , Galectina 3/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/fisiologia
18.
Bioengineered ; 13(4): 10180-10190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35443863

RESUMO

Chronic inflammation is positively associated with the development of urinary bladder cancer. However, its detailed regulatory mechanism remains elusive. The quantitative real-time polymerase chain reaction was used to measure mRNA levels of relative genes. The protein levels were monitored by western blotting. Cell proliferation and viability were evaluated by the cell counting Kit 8 (CCK8) and colony formation assays, respectively. The dual-luciferase reporter assay was performed to assay the transcriptional activity. In vivo experiments were implemented in nude mice as well. The TCGA database analysis suggested that the aberrant expression of cathepsin V (CTSV) was related to a poor outcome in bladder cancer patients. CTSV boosted the inflammation reaction, which facilitated the development of bladder cancer. The overexpression of CTSV increased the proliferation and viability of bladder cancer cells. On the contrary, the deletion of CTSV significantly inhibited the proliferation and viability of bladder cancer cells. The tumor repression resulting from CTSV deficiency in vitro was also verified in vivo. Moreover, multiple cancer-associated luciferase screening showed that the overexpression of CTSV triggered the inflammatory signaling pathway, which could be restored by introducing the NF-κB inhibitor. CTSV is upregulated and promotes proliferation through the NF-κB pathway in bladder cancer and may be a potential target in inflammation-associated bladder cancer.


Assuntos
Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , NF-kappa B , Neoplasias da Bexiga Urinária , Animais , Catepsinas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Humanos , Inflamação , Masculino , Camundongos , Camundongos Nus , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias da Bexiga Urinária/patologia
19.
Mol Aspects Med ; 88: 101086, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35305807

RESUMO

Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.


Assuntos
Neoplasias da Mama , Catepsinas , Humanos , Feminino , Catepsinas/genética , Catepsinas/química , Peptídeos/metabolismo , Matriz Extracelular/metabolismo
20.
J Orthop Surg Res ; 17(1): 154, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264209

RESUMO

BACKGROUND: Osteosarcoma (OS) is a malignant bone tumour of mesenchymal origin. These tumours are characterised by rich vascularisation, therefore promoting rapid proliferation and facilitating metastasis. CD44 has been reported to be involved in OS, but its role and molecular mechanisms in the pathogenesis of the disease are not fully determined. METHODS: In this study, we investigated the antitumor effect of CD44 on the development of OS and further explored the molecular mechanisms. The expression of CD44, cathepsin S and MMP-9 was detected by Western blot (WB) and reverse transcription-polymerase chain reaction (RT-qPCR) in different cell lines (MG63, U2OS OS and hFOB 1.19). To elucidate the role of CD44 in OS, MG63 and U2OS cells were treated with small interference RNA (siRNA) to knock down CD44, and the knockdown efficiency was validated with GFP and RT-qPCR. Furthermore, cell proliferation was assayed using Cell Counting Kit­8 (CCK-8) and colony formation assays, and cell migration and invasion were assayed by transwell and wound-healing assays. RESULTS: We found that CD44 expression in the MG63 and U2OS OS cell lines was markedly increased compared to that of the human osteoblast hFOB 1.19 cell line. Knockdown of CD44 inhibited proliferation, migration and invasion of MG63 and U2OS cells. Cathepsin S expression in the MG63 and U2OS OS cell lines was increased compared to that of the human osteoblast hFOB 1.19 cell line. When CD44 was knocked down, its expression level went down. CONCLUSION: Taken together, our data reinforced the evidence that CD44 knockdown inhibited cell proliferation, migration and invasion of OS cells accompanied by altered expression of cathepsin S. These findings offer new clues for OS development and progression, suggesting CD44 as a potential therapeutic target for OS.


Assuntos
Neoplasias Ósseas/genética , Catepsinas/genética , Receptores de Hialuronatos/genética , Osteossarcoma/genética , Neoplasias Ósseas/patologia , Catepsinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Receptores de Hialuronatos/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Osteossarcoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA