Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(30): eadh0480, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494450

RESUMO

Fractal-like, intricate morphologies are known to exhibit beneficial mechanical behavior in various engineering and technological domains. The evolution of fractal-like, internal walls of ammonoid cephalopod shells represent one of the most clear evolutionary trends toward complexity in biology, but the driver behind their iterative evolution has remained unanswered since the first hypotheses introduced in the early 1800s. We show a clear correlation between the fractal-like morphology and structural stability. Using linear and nonlinear computational mechanical simulations, we demonstrate that the increase in the complexity of septal geometry leads to a substantial increase in the mechanical stability of the entire shell. We hypothesize that the observed tendency is a driving force toward the evolution of the higher complexity of ammonoid septa, providing the animals with superior structural support and protection against predation. Resolving the adaptational value of this unique trait is vital to fully comprehend the intricate evolutionary trends between morphology, ecological shifts, and mass extinctions through Earth's history.


Assuntos
Evolução Biológica , Cefalópodes , Animais , Fractais , Comportamento Predatório , Exoesqueleto/anatomia & histologia , Cefalópodes/anatomia & histologia , Cefalópodes/fisiologia
2.
Sci Rep ; 12(1): 11287, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787639

RESUMO

Externally shelled cephalopods with coiled, planispiral conchs were ecologically successful for hundreds of millions of years. These animals displayed remarkable morphological disparity, reflecting comparable differences in physical properties that would have constrained their life habits and ecological roles. To investigate these constraints, self-propelling, neutrally buoyant, biomimetic robots were 3D-printed for four disparate morphologies. These robots were engineered to assume orientations computed from virtual hydrostatic simulations while producing Nautilus-like thrusts. Compressed morphotypes had improved hydrodynamic stability (coasting efficiency) and experienced lower drag while jetting backwards. However, inflated morphotypes had improved maneuverability while rotating about the vertical axis. These differences highlight an inescapable physical tradeoff between hydrodynamic stability and yaw maneuverability, illuminating different functional advantages and life-habit constraints across the cephalopod morphospace. This tradeoff reveals there is no single optimum conch morphology, and elucidates the success and iterative evolution of disparate morphologies through deep time, including non-streamlined forms.


Assuntos
Cefalópodes , Robótica , Animais , Biomimética , Cefalópodes/anatomia & histologia , Hábitos , Hidrodinâmica
3.
PLoS One ; 16(11): e0258510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34758037

RESUMO

The world's largest ammonite, Parapuzosia (P.) seppenradensis (Landois, 1895), fascinated the world ever since the discovery, in 1895, of a specimen of 1.74 metres (m) diameter near Seppenrade in Westfalia, Germany, but subsequent findings of the taxon are exceedingly rare and its systematic position remains enigmatic. Here we revise the historical specimens and document abundant new material from England and Mexico. Our study comprises 154 specimens of large (< 1 m diameter) to giant (> 1m diameter) Parapuzosia from the Santonian and lower Campanian, mostly with stratigraphic information. High-resolution integrated stratigraphy allows for precise cross-Atlantic correlation of the occurrences. Our specimens were analysed regarding morphometry, growth stages and stratigraphic occurrence wherever possible. Our analysis provides insight into the ontogeny of Parapuzosia (P.) seppenradensis and into the evolution of this species from its potential ancestor P. (P.) leptophylla Sharpe, 1857. The latter grew to shell diameters of about 1 m and was restricted to Europe in the early Santonian, but it reached the Gulf of Mexico during the late Santonian. P. (P.) seppenradensis first appears in the uppermost Santonian- earliest Campanian on both sides of the Atlantic. Initially, it also reached diameters of about 1 m, but gradual evolutionary increase in size is seen in the middle early Campanian to diameters of 1.5 to 1.8 m. P. (P.) seppenradensis is characterized by five ontogenetic growth stages and by size dimorphism. We therefore here include the many historic species names used in the past to describe the morphological and size variability of the taxon. The concentration of adult shells in small geographic areas and scarcity of Parapuzosia in nearby coeval outcrop regions may point to a monocyclic, possibly even semelparous reproduction strategy in this giant cephalopod. Its gigantism exceeds a general trend of size increase in late Cretaceous cephalopods. Whether the coeval increase in size of mosasaurs, the top predators in Cretaceous seas, caused ecological pressure on Parapuzosia towards larger diameters remains unclear.


Assuntos
Distribuição Animal , Evolução Biológica , Cefalópodes/anatomia & histologia , Cefalópodes/crescimento & desenvolvimento , Fósseis/história , Exoesqueleto , Animais , Tamanho Corporal , Cefalópodes/classificação , Inglaterra , Alemanha , Golfo do México , História do Século XIX , História Antiga , México , Reprodução
4.
PLoS One ; 15(8): e0235180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760063

RESUMO

Nipponites is a heteromorph ammonoid with a complex and unique morphology that obscures its mode of life and ethology. The seemingly aberrant shell of this Late Cretaceous nostoceratid seems deleterious. However, hydrostatic simulations suggest that this morphology confers several advantages for exploiting a quasi-planktic mode of life. Virtual, 3D models of Nipponites mirabilis were used to compute various hydrostatic properties through 14 ontogenetic stages. At each stage, Nipponites had the capacity for neutral buoyancy and was not restricted to the seafloor. Throughout ontogeny, horizontally facing to upwardly facing soft body orientations were preferred at rest. These orientations were aided by the obliquity of the shell's ribs, which denote former positions of the aperture that were tilted from the growth direction of the shell. Static orientations were somewhat fixed, inferred by stability values that are slightly higher than extant Nautilus. The initial open-whorled, planispiral phase is well suited to horizontal backwards movement with little rocking. Nipponites then deviated from this bilaterally symmetric coiling pattern with a series of alternating U-shaped bends in the shell. This modification allows for proficient rotation about the vertical axis, while possibly maintaining the option for horizontal backwards movement by redirecting its hyponome. These particular hydrostatic properties likely result in a tradeoff between hydrodynamic streamlining, suggesting that Nipponites assumed a low energy lifestyle of slowly pirouetting in search for planktic prey. Each computed hydrostatic property influences the others in some way, suggesting that Nipponites maintained a delicate hydrostatic balancing act throughout its ontogeny in order to facilitate this mode of life.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Evolução Biológica , Cefalópodes/fisiologia , Movimento/fisiologia , Exoesqueleto/anatomia & histologia , Animais , Cefalópodes/anatomia & histologia , Pressão Hidrostática , Modelos Anatômicos
5.
Sci Rep ; 10(1): 2950, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076034

RESUMO

Reconstructing the physiology of extinct organisms is key to understanding mechanisms of selective extinction during biotic crises. Soft tissues of extinct organisms are rarely preserved and, therefore, a proxy for physiological aspects is needed. Here, we examine whether cephalopod conchs yield information about their physiology by assessing how the formation of chambers respond to external stimuli such as environmental changes. We measured chamber volume through ontogeny to detect differences in the pattern of chamber volume development in nautilids, coleoids, and ammonoids. Results reveal that the differences between ontogenetic trajectories of these cephalopods involve the presence or absence of abrupt decreases of chamber volume. Accepting the link between metabolic rate and growth, we assume that this difference is rooted in metabolic rates that differ between cephalopod clades. High metabolic rates combined with small hatching size in ammonoids as opposed to lower metabolic rates and much larger hatchlings in most nautilids may explain the selective extinction of ammonoids as a consequence of low food availability at the end of the Cretaceous.


Assuntos
Metabolismo Basal , Cefalópodes/anatomia & histologia , Cefalópodes/metabolismo , Extinção Biológica , Animais , Cefalópodes/crescimento & desenvolvimento , Fósseis
6.
BMC Evol Biol ; 19(1): 210, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722660

RESUMO

BACKGROUND: Many pathologies that modify the shell geometry and ornamentation of ammonoids are known from the fossil record. Since they may reflect the developmental response of the organism to a perturbation (usually a sublethal injury), their study is essential for exploring the developmental mechanisms of these extinct animals. Ammonoid pathologies are also useful to assess the value of some morphological characters used in taxonomy, as well as to improve phylogenetic reconstructions and evolutionary scenarios. RESULTS: We report on the discovery of an enigmatic pathological middle Toarcian (Lower Jurassic) ammonoid specimen from southern France, characterized by a pronounced left-right asymmetry in both ornamentation and suture lines. For each side independently, the taxonomic interpretations of ornamentation and suture lines are congruent, suggesting a Hildoceras semipolitum species assignment for the left side and a Brodieia primaria species assignment for the right side. The former exhibits a lateral groove whereas the second displays sinuous ribs. This specimen, together with the few analogous cases reported in the literature, lead us to erect a new forma-type pathology herein called "forma janusa" for specimens displaying a left-right asymmetry in the absence of any clear evidence of injury or parasitism, whereby the two sides match with the regular morphology of two distinct, known species. CONCLUSIONS: Since "forma janusa" specimens reflect the underlying developmental plasticity of the ammonoid taxa, we hypothesize that such specimens may also indicate unsuspected phylogenetic closeness between the two displayed taxa and may even reveal a direct ancestor-descendant relationship. This hypothesis is not, as yet, contradicted by the stratigraphical data at hand: in all studied cases the two distinct taxa correspond to contemporaneous or sub-contemporaneous taxa. More generally, the newly described specimen suggests that a hitherto unidentified developmental link may exist between sinuous ribs and lateral grooves. Overall, we recommend an integrative approach for revisiting aberrant individuals that illustrate the intricate links among shell morphogenesis, developmental plasticity and phylogeny.


Assuntos
Exoesqueleto/anatomia & histologia , Cefalópodes/anatomia & histologia , Fósseis , Animais , Evolução Biológica , Cefalópodes/classificação , França , Morfogênese , Filogenia
7.
Naturwissenschaften ; 104(11-12): 98, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101477

RESUMO

The taxonomic affinities of fossils from the Frasnian succession of Belgium previously described as phyllopod and phyllocarid crustacean shields are discussed. The rediscovery of the holotype of Ellipsocaris dewalquei, the type species of the genus Ellipsocaris Woodward in Dewalque, 1882, allows to end the discussion on the taxonomic assignation of the genus Ellipsocaris. It is removed from the phyllopod crustaceans as interpreted originally and considered here as an ammonoid anaptychus. Furthermore, it is considered to be a junior synonym of the genus Sidetes Giebel, 1847. Similarly, Van Straelen's (1933) lower to middle Frasnian record Spathiocaris chagrinensis Ruedemann, 1916, is also an ammonoid anaptychus. Although ammonoids can be relatively frequent in some Frasnian horizons of Belgium, anaptychi remain particularly scarce and the attribution to the present material to peculiar ammonoid species is not possible.


Assuntos
Cefalópodes/anatomia & histologia , Cefalópodes/classificação , Fósseis , Animais , Bélgica , Filogenia , Especificidade da Espécie
8.
J Exp Zool B Mol Dev Evol ; 326(7): 437-450, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27921363

RESUMO

The idea that physical processes involved in biological development underlie morphogenetic rules and channel morphological evolution has been central to the rise of evolutionary developmental biology. Here, we explore this idea in the context of seashell morphogenesis. We show that a morphomechanical model predicts the effects of variations in shell shape on the ornamental pattern in ammonites, a now extinct group of cephalopods with external chambered shell. Our model shows that several seemingly unrelated characteristics of synchronous, ontogenetic, intraspecific, and evolutionary variations in ornamental patterns among various ammonite species may all be understood from the fact that the mechanical forces underlying the oscillatory behavior of the shell secreting system scale with the cross-sectional curvature of the shell aperture. This simple morphogenetic rule, emerging from biophysical interactions during shell formation, introduced a non-random component in the production of phenotypic variation and channeled the morphological evolution of ammonites over millions of years. As such, it provides a paradigm for the concept of "developmental constraints."


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Evolução Biológica , Cefalópodes/crescimento & desenvolvimento , Fenômenos Mecânicos , Exoesqueleto/anatomia & histologia , Animais , Cefalópodes/anatomia & histologia , Fósseis , Modelos Biológicos , Morfogênese
9.
Proc Natl Acad Sci U S A ; 113(29): 8206-11, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382180

RESUMO

We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide "color-blind" animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.


Assuntos
Cefalópodes/anatomia & histologia , Cefalópodes/fisiologia , Defeitos da Visão Cromática/fisiopatologia , Pupila/fisiologia , Animais , Comportamento Animal , Mimetismo Biológico , Cor , Opsinas/fisiologia , Pigmentação
10.
Integr Comp Biol ; 56(5): 820-833, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27252200

RESUMO

Non-visual and extraocular photoreceptors are common among animals, but current understanding linking molecular pathways to physiological function of these receptors is lacking. Opsin diversity in extraocular tissues suggests that many putative extraocular photoreceptors utilize the "visual" phototransduction pathway-the same phototransduction pathway as photoreceptors within the retina dedicated to light detection for image sensing. Here, we provide a brief overview of the current understanding of non-visual and extraocular photoreceptors, and contribute a synopsis of several novel putative extraocular photoreceptors that use both visual and non-visual phototransduction pathways. Crayfish, cephalopods, and flat fish express opsins in diverse tissues, suggesting the presence of extraocular photoreceptors. In most cases, we find that these animals use the same phototransduction pathway that is utilized in the retinas for image-formation. However, we also find the presence of non-visual phototransduction components in the skin of flounders. Our evidence suggests that extraocular photoreceptors may employ a number of phototransduction pathways that do not appear to correlate with purpose or location of the photoreceptor.


Assuntos
Cefalópodes/fisiologia , Crustáceos/fisiologia , Peixes/fisiologia , Fenômenos Fisiológicos Oculares , Opsinas/fisiologia , Animais , Cefalópodes/anatomia & histologia , Crustáceos/anatomia & histologia , Peixes/anatomia & histologia , Células Fotorreceptoras de Invertebrados , Células Fotorreceptoras de Vertebrados
11.
PLoS One ; 11(3): e0151404, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963712

RESUMO

The Ammonoidea is a group of extinct cephalopods ideal to study evolution through deep time. The evolution of the planispiral shell and complexly folded septa in ammonoids has been thought to have increased the functional surface area of the chambers permitting enhanced metabolic functions such as: chamber emptying, rate of mineralization and increased growth rates throughout ontogeny. Using nano-computed tomography and synchrotron radiation based micro-computed tomography, we present the first study of ontogenetic changes in surface area to volume ratios in the phragmocone chambers of several phylogenetically distant ammonoids and extant cephalopods. Contrary to the initial hypothesis, ammonoids do not possess a persistently high relative chamber surface area. Instead, the functional surface area of the chambers is higher in earliest ontogeny when compared to Spirula spirula. The higher the functional surface area the quicker the potential emptying rate of the chamber; quicker chamber emptying rates would theoretically permit faster growth. This is supported by the persistently higher siphuncular surface area to chamber volume ratio we collected for the ammonite Amauroceras sp. compared to either S. spirula or nautilids. We demonstrate that the curvature of the surface of the chamber increases with greater septal complexity increasing the potential refilling rates. We further show a unique relationship between ammonoid chamber shape and size that does not exist in S. spirula or nautilids. This view of chamber function also has implications for the evolution of the internal shell of coleoids, relating this event to the decoupling of soft-body growth and shell growth.


Assuntos
Exoesqueleto/anatomia & histologia , Evolução Biológica , Cefalópodes/anatomia & histologia , Fósseis/anatomia & histologia , Exoesqueleto/diagnóstico por imagem , Exoesqueleto/crescimento & desenvolvimento , Animais , Tamanho Corporal , Cefalópodes/crescimento & desenvolvimento , Fósseis/diagnóstico por imagem , Imageamento Tridimensional , Modelos Biológicos , Nanotecnologia , Especificidade da Espécie , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Microtomografia por Raio-X
12.
PLoS One ; 11(1): e0145865, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26761441

RESUMO

Based on material from the uppermost Tithonian La Caja Formation at Puerto Piñones, northeastern Mexico, the complete ontogenetic development (protoconch to adult) of the ammonite Salinites grossicostatum is outlined by a detailed morphometrical shell analysis. The embryonic stage, consisting of a small ellipsoid protoconch and ammonitella, ends at about 0.6 mm. Four major morphological changes are differentiated throughout ontogeny based on internal features such as reduced septal spacing and siphuncle position. Sexual dimorphism is reflected by shell size, siphuncular diameter, differences in the morphology of the apophysis, and by two distinct general trends in septal spacing. In addition, macroconchs are characterized by septal crowding at different stages, followed by the return to normal septum distances. Our analysis indicates a change in the mode of life after the neanic stage. A change in habitat preference is inferred for adult individuals. While microconchs persisted at Puerto Piñones, large mature macroconchs temporarily migrated to other areas, possibly for egg deposition. Salinites grossicostatum is endemic to the ancient Gulf of Mexico and is there restricted to outer continental shelf environments.


Assuntos
Exoesqueleto , Cefalópodes/anatomia & histologia , Cefalópodes/fisiologia , Fósseis , Animais , Evolução Biológica , Cefalópodes/crescimento & desenvolvimento , Ecossistema , Meio Ambiente , Feminino , Geografia , Masculino , México , Paleontologia , Fatores Sexuais
13.
Biol Lett ; 12(1): 20150877, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26740564

RESUMO

Although the calcitic hard parts of belemnites (extinct Coleoidea) are very abundant fossils, their soft parts are hardly known and their mode of life is debated. New fossils of the Jurassic belemnitid Acanthoteuthis provided supplementary anatomical data on the fins, nuchal cartilage, collar complex, statoliths, hyponome and radula. These data yielded evidence of their pelagic habitat, their nektonic habit and high swimming velocities. The new morphological characters were included in a cladistic analysis, which confirms the position of the Belemnitida in the stem of Decabrachia (Decapodiformes).


Assuntos
Cefalópodes/anatomia & histologia , Fósseis , Adaptação Biológica , Animais , Cefalópodes/classificação , Filogenia , Natação
14.
J Vet Med Sci ; 78(1): 43-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26369293

RESUMO

The digestive organs in decapodiform cephalopod species morphologically vary by individual lifestyle. We examined the following six species of adult decapodiformes cephalopods representing different habitats: Todarodes pacificus, Loligo bleekeri, Loligo edulis, Watasenia scintillans (pelagic), Sepia lycidas and Euprymna morsei (benthic). L. bleekeri and L. edulis possess a bursiform cecal sac connected to the cecum. Pelagic species have a single digestive gland smaller than in benthic species. T. pacificus has an oval digestive gland larger than that of L. bleekeri and L. edulis, which possess withered-looking and smaller digestive glands. In contrast, the digestive glands in benthic species are paired. S. lycidas and E. morsei have well-developed and larger digestive glands than those of the pelagic species. Well-developed digestive duct appendages are found in benthic species. In qualification of the mass of digestive organs, pelagic species have smaller stomachs, digestive glands and digestive ducts' appendages than benthic species. Because pelagic species need to swim, they may possess smaller stomachs and larger cecums for more rapid digestion. A smaller digestive gland may have the advantage of reducing the body weight in pelagic species for rapid swimming. In contrast, since benthic species require a longer time for digestion than pelagic species, they compact more food in their stomachs and absorb nutrients via more organs, such as the digestive grand and digestive duct appendages, in addition to cecum.


Assuntos
Cefalópodes/anatomia & histologia , Sistema Digestório/anatomia & histologia , Animais , Ceco/anatomia & histologia , Ceco/fisiologia , Cefalópodes/fisiologia , Decapodiformes/anatomia & histologia , Decapodiformes/fisiologia , Fenômenos Fisiológicos do Sistema Digestório , Intestinos/anatomia & histologia , Intestinos/fisiologia , Loligo/anatomia & histologia , Loligo/fisiologia , Sepia/anatomia & histologia , Sepia/fisiologia , Estômago/anatomia & histologia , Estômago/fisiologia
15.
J Comp Neurol ; 524(10): 2142-57, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26663197

RESUMO

Cephalopods have the largest and most complex nervous system of all invertebrates, and the brain-to-body weight ratio exceeds those of most fish and reptiles. The brain is composed of lobe units, the functions of which have been studied through surgical manipulation and electrical stimulation. However, how information is processed in each lobe for the animal to make a behavioral decision has rarely been investigated. To perform such functional analyses, it is necessary to precisely describe how brain lobes are spatially organized and mutually interconnected as a whole. We thus made three-dimensional digital brain atlases of both hatchling and juvenile pygmy squid, Idiosepius paradoxus. I. paradoxus is the smallest squid and has a brain small enough to scan as a whole region in the field-of-view of a low-magnification laser scan microscope objective. Precise analyses of the confocal images of the brains revealed one newly identified lobe and also that the relative volume of the vertical lobe system, the higher association center, in the pygmy squid represents the largest portion compared with the cephalopod species reported previously. In addition, principal component analyses of relative volumes of lobe complexes revealed that the organization of I. paradoxus brain is comparable to those of Decapodiformes species commonly used to analyze complex behaviors such as Sepia officinalis and Sepioteuthis sepioidea. These results suggest that the pygmy squid can be a good model to investigate the brain functions of coleoids utilizing physiological methods. J. Comp. Neurol. 524:2142-2157, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Cefalópodes/anatomia & histologia , Imageamento Tridimensional , Fatores Etários , Animais , Encéfalo/metabolismo , Masculino , Microscopia Confocal , Modelos Neurológicos , Sinapsinas/metabolismo , Tubulina (Proteína)/metabolismo
16.
Am Nat ; 186(2): 165-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26655146

RESUMO

Luxuriant, bushy antlers, bizarre crests, and huge, twisting horns and tusks are conventionally understood as products of sexual selection. This view stems from both direct observation and from the empirical finding that the size of these structures grows faster than body size (i.e., ornament size shows positive allometry). We contend that the familiar evolutionary increase in the complexity of ornaments over time in many animal clades is decoupled from ornament size evolution. Increased body size comes with extended growth. Since growth scales to the quarter power of body size, we predicted that ornament complexity should scale according to the quarter power law as well, irrespective of the role of sexual selection in the evolution and function of the ornament. To test this hypothesis, we selected three clades (ammonites, deer, and ceratopsian dinosaurs) whose species bore ornaments that differ in terms of the importance of sexual selection to their evolution. We found that the exponent of the regression of ornament complexity to body size is the same for the three groups and is statistically indistinguishable from 0.25. We suggest that the evolution of ornament complexity is a by-product of Cope's rule. We argue that although sexual selection may control size in most ornaments, it does not influence their shape.


Assuntos
Evolução Biológica , Seleção Genética , Caracteres Sexuais , Animais , Tamanho Corporal , Cefalópodes/anatomia & histologia , Cefalópodes/crescimento & desenvolvimento , Cervos/anatomia & histologia , Cervos/crescimento & desenvolvimento , Dinossauros/anatomia & histologia , Dinossauros/crescimento & desenvolvimento , Fósseis , Fractais , Filogenia
17.
Artigo em Inglês | MEDLINE | ID: mdl-26113381

RESUMO

In this review we show that the cephalopod vertical lobe (VL) provides a good system for assessing the level of evolutionary convergence of the function and organization of neuronal circuitry for mediating learning and memory in animals with complex behavior. The pioneering work of JZ Young described the morphological convergence of the VL with the mammalian hippocampus, cerebellum and the insect mushroom body. Studies in octopus and cuttlefish VL networks suggest evolutionary convergence into a universal organization of connectivity as a divergence-convergence ('fan-out fan-in') network with activity-dependent long-term plasticity mechanisms. Yet, these studies also show that the properties of the neurons, neurotransmitters, neuromodulators and mechanisms of long-term potentiation (LTP) induction and maintenance are highly variable among different species. This suggests that complex networks may have evolved independently multiple times and that even though memory and learning networks share similar organization and cellular processes, there are many molecular ways of constructing them.


Assuntos
Evolução Biológica , Cefalópodes/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cefalópodes/anatomia & histologia , Sinapses/fisiologia
18.
Integr Comp Biol ; 55(6): 1070-83, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26002349

RESUMO

Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods.


Assuntos
Encéfalo/anatomia & histologia , Cefalópodes/anatomia & histologia , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fenômenos Fisiológicos Oculares/genética , Sequência de Aminoácidos , Animais , Arrestina/genética , Arrestina/metabolismo , Cefalópodes/genética , Cristalino , Células Fotorreceptoras/fisiologia , Filogenia , Isoformas de Proteínas
19.
BMC Syst Biol ; 9: 12, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25884468

RESUMO

BACKGROUND: Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. RESULTS: We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. CONCLUSIONS: These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.


Assuntos
Exoesqueleto/anatomia & histologia , Cefalópodes/anatomia & histologia , Cefalópodes/fisiologia , Biologia Computacional , Evolução Molecular , Animais , Extinção Biológica , Hidrodinâmica , Seleção Genética
20.
Environ Sci Pollut Res Int ; 22(17): 12960-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25916470

RESUMO

This study is to determine total mercury in edible tissues of eight species of cephalopods and 12 species of crustaceans purchased from 11 identified major fish landing ports and wet markets throughout Peninsular Malaysia. The concentration of mercury was measured by cold vapor atomic absorption spectrometry (AAS) technique using the Perkin Elmer Flow Injection Mercury System (FIMS-400). In general, the mercury levels were low with concentrations in cephalopods ranging from 0.099 to 2.715 mg/kg dry weight (or 0.0184-0.505 mg/kg wet weight) and in crustaceans ranging from 0.057 to 1.359 mg/kg dry weight (or 0.0111-0.265 mg/kg wet weight). The mercury levels showed no significant differences (P > 0.05) between species for both cephalopods and crustaceans. There was no significant correlation between mercury concentrations and the body size of individual for both groups as well. Comparisons with mercury levels obtained found from other previous studies and/or species noted that they were of the same magnitude or relatively low compared to various locations reported worldwide.


Assuntos
Cefalópodes/química , Crustáceos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , Animais , Tamanho Corporal , Cefalópodes/anatomia & histologia , Crustáceos/anatomia & histologia , Malásia , Mercúrio/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA